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Abstract We report on ongoing work to determine the pion-cloud contribution to the electromagnetic N → Δ
transition form factors. The starting point is an SU (6) spin-flavor symmetric constituent-quark model with
instantaneous confinement that is augmented by dynamical pions which couple directly to the quarks. This
system is treated in a relativistically invariant way within the framework of point-form quantum mechanics
using a multichannel formulation. The first step is to determine the electromagnetic form factors of the bare
particles that consist only of three quarks. These form factors are basic ingredients for calculating the pion-
cloud contributions. Already without the pion cloud, electromagnetic nucleon and N → Δ transition form
factors compare reasonably well with the data. By inclusion of the pion-cloud contribution coming from the
π − N intermediate state the reproduction of the data is further improved.

1 Introduction and Formalism

Electroexcitation of the Δ resonance in electron-nucleon scattering provides important information on the
structure of the Δ. Although the Δ resonance was discovered several decades ago, precise experimental
data became available only recently [1,2]. Many model calculations and also lattice simulations predicted
electromagnetic N → Δ transition form factors, indicating that the pion cloud of the nucleon and the Δ may
play a substantial role, not only in the sub-leading form factors G∗

E and G∗
C , but also in the leading form factor

G∗
M [3–7].

The electromagnetic N → Δ transition form factors encode the structure of the γ ∗NΔ vertex and show
up in the covariant decomposition of the N → Δ transition current. A common choice for the covariant
decomposition of this current, involving the form factors gM , gE and gC , is given by [8]:
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Jμ
N→Δ(p′, σ ′; p, σ ) = i

√
2

3

3e (mΔ + mN )

2mN
[
(mΔ + mN )2 + Q2

] ūβ

(
p′, σ ′)

×
{
gM

(
Q2) εβμρσ p′

ρqσ

+ gE
(
Q2) (

qβ p′μ − q · p′gβμ
)
iγ5

+ gC
(
Q2) (

qβqμ − q2gβμ
)
iγ5

}
u (p, σ ) . (1)

Here ūβ

(
p′, σ ′) denotes the Rarita-Schwinger spinor of the spin-3/2 Δ and u (p, σ ) the Dirac spinor

of the spin-1/2 nucleon. These spinors are normalized according to ūβ

(
p, σ ′) uβ (p, σ ) = −2mΔδσσ ′ ,

ū
(
p, σ ′) u (p, σ ) = 2mN δσσ ′ . Like the nucleon spinor, the Rarita-Schwinger spinor satisfies a Dirac equa-

tion, i.e. p′
νγ

νuβ

(
p′, σ ′) = mΔuβ(p′, σ ′) and, in addition, the transversality condition p′βuβ(p′, σ ′) =

0 = γ βuβ

(
p′, σ ′). The transition current satisfies the current-conservation condition qμ J

μ
N→Δ = 0, where

q = (
p′ − p

)
and q2 = −Q2.

For a proper relativistic description of the N → Δ transition form factors we make use of point-form
relativistic quantum mechanics in connection with the Bakamjian-Thomas construction. Like in previous
work [9–11] we use this framework to determine the γ -exchange amplitude for e− p → e−Δ+ scattering.
From this scattering amplitude we extract the electromagnetic p → Δ+ transition current and determine
the form factors by means of a covariant analysis. Thereby both, the nucleon and the Delta are assumed to
consist of a 3q and a 3q +π component and, in addition to the dynamics of electron and quarks, the dynamics
of the photon and the pion are fully taken into account. This is accomplished by means of a multichannel
formulation that comprises all states which can occur during the scattering process (i.e. |3q, e〉, |3q, π, e〉,
|3q, e, γ 〉, |3q, π, e, γ 〉). What one then needs, in principle, are scattering solutions of

⎛
⎜⎜⎜⎜⎜⎝

M̂conf
3qe K̂π K̂γ K̂πγ

K̂ †
π M̂conf

3qπe K̂ ′
πγ K̂γ

K̂ †
γ K̂ ′†

πγ M̂conf
3qeγ K̂π

K̂ †
πγ K̂ †

γ K̂ †
π M̂conf

3qπeγ

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

|ψ3qe〉
|ψ3qπe〉
|ψ3qeγ 〉
|ψ3qπeγ 〉

⎞
⎟⎟⎠ = √

s

⎛
⎜⎜⎝

|ψ3qe〉
|ψ3qπe〉
|ψ3qeγ 〉
|ψ3qπeγ 〉

⎞
⎟⎟⎠ (2)

which evolve from an asymptotic electron-nucleon in-state |eN 〉 with invariant mass
√
s into an asymptotic

electron-Delta out-state |eΔ〉. The diagonal entries of this matrix mass operator contain, in addition to the
relativistic kinetic energies of the particles in the particular channel, an instantaneous confinement potential
between the quarks. The off-diagonal entries are vertex operators which describe the transition between the
channels. In a velocity-state representation these vertex operators are directly related to usual quantum-field
theoretical interaction-Lagrangean densities [12]. The 4-vertices K̂πγ and K̂ ′

πγ show up only for pseudovector
pion-quark coupling. These vertices are neglected in the present form of the model, but obviously have to be
included in an improved version.

At this point it is convenient to reduce Eq. (2) to an eigenvalue problem for |ψ3qe〉 by means of a Feshbach
reduction: [

M̂conf
3qe + K̂π (

√
s − M̂conf

3qπe)
−1 K̂ †

π + V̂ opt
1γ (

√
s)

]
|ψ3qe〉 = √

s |ψ3qe〉. (3)

Here V̂ opt
1γ (

√
s) is the 1γ -exchange optical potential. The invariant 1γ -exchange amplitude for electroproduc-

tion of the Delta is now obtained by sandwiching V̂ opt
1γ (

√
s) between (the valence component of) physical

electron-nucleon |eN 〉 and electron-Delta |eΔ〉 states , i.e. eigenstates of [M̂conf
3qe + K̂π (

√
s − M̂conf

3qπe)
−1 K̂ †

π ].
The crucial point is now to observe that, due to instantaneous confinement, propagating intermediate states
do not contain free quarks, they rather contain bare nucleons N0 or bare Deltas Δ0. The bare particles are
eigenstates of the pure confinement problem. This allows us to rewrite the scattering amplitude in terms of pure
hadronic degrees of freedom with the quark substructure being hidden in strong and electromagnetic vertex
form factors of the bare baryons. This is graphically represented in Fig. 1.

In order to calculate the graphs shown in Fig. 1 we obviously have to know the structure of the strong
and electromagnetic vertices for bare baryons and also the masses of the bare nucleon and the bare Delta. For
scalar, isoscalar confinement these masses and also the three-quark wave functions are the same due to SU (6)
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Fig. 1 The three graphs contributing to electroexcitation of the Δ resonance in the presence of a pion cloud. The big blobs represent
electromagnetic (transition) form factors involving the bare nucleon N0 and the bare Delta Δ0. The small black blobs represent
strong form factors at the πN0N0, πN0Δ0 and πΔ0Δ0 vertices. All these form factors are determined by the valence-quark wave
functions of the bare baryons. A vertex form factor, calculated within a constituent-quark model [9] and the same approach as
used here, is also assumed at the pion-photon vertex

spin-flavor symmetry. Instead of choosing a particular confining interaction we therefore rather parameterize
the three-quark wave function of N0 and Δ0 by means of a Gaussian. Knowing further the bare nucleon
and Delta mass mN0 = mΔ0 =: m0, the (pseudovector) pion-quark coupling fπqq and the constituent-quark
masses mu = md =: mq , one can first calculate the strong couplings and form factors at the πN0N0, πN0Δ0
and πΔ0Δ0 vertices and in the sequel the renormalization effect of pion loops on the nucleon and Delta
mass. One thus has a four-parameter model which provides a microscopic description of a coupled system of
nucleons, pions and Deltas. With the constituent-quark mass mq = 0.263 GeV taken from the literature [13],
the remaining three parameters can be adapted in such a way that the solution of a mass-eigenvalue problem
analogous to Eq. (2) (just without electron and photon) gives the physical nucleon and Delta masses. A more
detailed account of how strong form factors and couplings are calculated and the model parameters are fixed can
be found in Ref. [14]. The values used here are α = 2.645 GeV−1 for the range of the Gaussian, fπqq = 0.678
for the pseudovector pion-quark coupling and m0 = 1.67 GeV for the bare nucleon and Delta mass.1

The pion-baryon couplings and form factors are thus already determined after having fixed the parameters
of the model in the way just sketched. What is still necessary to calculate the leading order electroproduction
amplitude as depicted in Fig. 1, are the electromagnetic (transition) form factors of the bare baryons. We
follow the same strategy as outlined above, but neglect the pion, to end up with the γ -exchange amplitude

MeB0→eB′
0

γ for eB0 → eB ′
0 scattering. As one would expect, this amplitude can be written as (covariant) photon

propagator times electron current contracted with the baryonic current, MeB0→eB′
0

1γ ∝ jeμ I
μ

B0→B′
0
/Q2. This

allows to extract a microscopic expression for the baryonic current Iμ

B0→B′
0
, which turns out to be an integral

over the three-quark wave functions of incoming and outgoing baryons, multiplied with the electromagnetic
quark current and some Wigner-rotation factors [9].

By means of a general covariant decomposition of Iμ

B0→B′
0

one would then be able to identify the electro-

magnetic (transition) form factors of the bare baryons. But here a problem shows up. Iμ
N0→Δ0

, e.g., is expected
to have the structure given in Eq. (1). Numerical studies, however, reveal that one needs additional covariants
for a complete covariant decomposition of Iμ

N0→Δ0
, which involve an electron momentum. In addition, the

form factors in front of the covariants do not only depend on the square of the transferred four momentum
q2 = −Q2, but also on the invariant mass

√
s of the electron-baryon system. It is an unwanted feature, but does

not spoil the relativistic invariance of MeN0→eΔ′
0

1γ . A similar observation has already been made in Refs. [9]
and [11] when calculating electromagnetic π and ρ form factors within a constituent-quark model using the
same approach as here. There it turned out that the non-physical, spurious contributions to the electromagnetic
current vanish, or become at least minimal for large invariant mass of the electron-hadron system. Sensible
results for the form factors were obtained in the limit s → ∞. This limit corresponds to the kinematical
situation that the subprocess γ ∗H → H is considered in the infinite-momentum frame and momentum is
transferred in transverse direction.

1 These values differ slightly from those given in Ref. [14], since the numerics in this paper was still afflicted by an error in
the computer program.
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Before we continue, we want to make a few remarks about the observation that our microscopic current
exhibits spurious contributions. An analogous situation occurs in the covariant light-front approach presented
in Ref. [15], where spurious contributions to the current are connected with the four vector that describes the
orientation of the light front. Actually it turned out that the results for the physical π and ρ form factors in
Refs. [9] and [11] are the same as corresponding results obtained within the covariant light-front approach. One
should also mention that most models for electromagnetic bound-state currents are formulated in a particular
reference frame, usually the Breit frame, and the frame dependence of the resulting form factors is kept under
the carpet. The advantage of our approach is, that we have some control on the frame dependence and extract
the form factors in a frame, namely the infinite momentum frame, in which this dependence vanishes. In
our case, the reason that the electromagnetic hadron current exhibits some dependence on the momentum of
the scattered electron is most likely that the Bakamjian-Thomas construction, used to implement interactions
without spoiling relativistic invariance, causes problems with cluster separability. These problems can be cured
by appropriate unitary transformations which are formally known [16], but technically hard to realize. Work
in this direction is in progress.

Here we follow the same strategy as in Refs. [9] and [11] and go to the infinite-momentum frame to extract
the electromagnetic form factors from our microscopic expressions for the currents, Iμ

B0→B′
0
. Concentrating

first on the N → Δ transition we observe that the physical current, as given in Eq. (1), has only four different
spin-matrix elements in leading order in k = √

s/2. These are

J 0
N→Δ

(
3

2
,

1

2

)
= χQ

{√
3 [gM (mN + mΔ) + gE (mN − mΔ)] kQ + O

(
1

k

)}
, (4)

J 0
N→Δ

(
1

2
,

1

2

)
= χQ

{
[−gM + gE ] kQ2 + 2gC (mN − mΔ) kQ2

mΔ

+ O
(

1

k

)}
, (5)

J 0
N→Δ

(
−1

2
,

1

2

)
= χQ

{
[gM (mN + mΔ) − gE (mN − mΔ)] kQ

+2gCkQ3

mΔ

+ O
(

1

k

)}
, (6)

J 0
N→Δ

(
−3

2
,

1

2

)
= χQ

{√
3 [−gM − gE ] kQ2 + O

(
1

k

)}
, (7)

where χQ = (mΔ + mN )/(2mN [(mΔ + mN )2 + Q2]). The remaining spin-matrix elements of the current
are either related by parity, they are identical, or they vanish. Since there are four spin-matrix elements, but
only three form factors, these spin-matrix elements cannot be independent, but must be linearly related. This
relation is, what one calls the “angular condition” [15] and has the form:

J 0
N 1

2
→Δ 3

2

(
M2

N − MNMΔ + Q2) Q + √
3J 0

N 1
2
→Δ 1

2

MΔQ2

+√
3J 0

N 1
2
→Δ− 1

2

(−MNMΔ + M2
Δ

)
Q

+J 0
N 1

2
→Δ− 3

2

(
(MN − MΔ)2 (MN + MΔ) + MNQ

2) = 0 , (8)

where J 0
Nσ →Δσ ′ := limk→∞ J 0

N→Δ(σ ′, σ ). What we observe is that, due to the unphysical contributions which

we pick up in our approach, neither the microscopic model for the bare transition current Iμ
N0→Δ0

, nor the
one including the pion cloud Iμ

N→Δ satisfy this angular condition. A way out would be to make a complete
covariant decomposition of the microscopic current, involving additional, unphysical covariants. In this case
the right-hand side of the angular condition would become a combination of unphysical contributions and after
separating them, one would get a model for the current with the desired properties. This strategy has been
pursued in Ref. [11] for the ρ. As a first attempt, we have rather tried to extract the form factors from the
different possible choices of three spin-matrix elements out of the four given in Eqs. (4)–(7). Most reasonable
results for the form factors are obtained with the combination I 0

N→Δ( 3
2 , 1

2 ), I 0
N→Δ(− 1

2 , 1
2 ) and I 0

N→Δ(− 3
2 , 1

2 ).
A similar strategy was adopted in Ref. [17] to calculate N → Δ transition form factors within a front-form
approach.
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Fig. 2 The upper left and the upper right panel show our model predictions for the magnetic dipole G∗
M and the electric quadrupole

G∗
E form factors, respectively. The lower panel depicts the REM ratio in percent. The label “Free” refers to a calculation without

pion-loop contributions (bare and physical particles are the same). The labels “Bare”, “LoopN” and “Loopπ” refer to the
contributions of the first, the second and the third graph of Fig. 1, respectively. “Total” means the sum of all three graphs

Similar problems with the angular condition are also expected to show up when calculating electromagnetic
Δ form factors. For the nucleon, however, only two independent current matrix elements come with O(k) in
the infinite-momentum frame, allowing for a unambiguous extraction of the electromagnetic nucleon form
factors [18].

2 Results and Discussion

In the present calculation only the N0π state is taken into account in the pion loop. Therefore we do not
need the electromagnetic form factors of the (bare) Δ at this stage. Having fixed the parameters of the model
as described above, we already know the strong πN0N0 and πN0Δ0 couplings and form factors. In a next
step we calculate the electromagnetic N0 and N0 → Δ0 form factors. These are then used to determine the
γ -exchange amplitude as given in Fig. 1. From this amplitude we extract the microscopic transition current
Iμ
N→Δ for the physical (dressed) nucleon and Delta and, in the sequel, the electromagnetic transition form

factors, taking the spin-matrix elements I 0
N→Δ( 3

2 , 1
2 ), I 0

N→Δ(− 1
2 , 1

2 ) and I 0
N→Δ(− 3

2 , 1
2 ) (see discussion above).

The electromagnetic form factors gM , gE and gC , introduced in Eq. (1), relate to the more conventional mag-
netic dipole G∗

M , electric quadrupole G∗
E and Coulomb quadrupole G∗

C form factors of Jones and Scadron [19]
as follows:

G∗
M = gM + G∗

E , (9)

G∗
E = 1

(MΔ + MN )2 + Q2

[
1

2

(−M2
Δ + M2

N + Q2) gE + Q2gC

]
, (10)
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G∗
C = 1

(MΔ + MN )2 + Q2

[(−M2
Δ + M2

N + Q2) gC − 2M2
ΔgE

]
. (11)

In the following we will present our results in terms of these form factors.
Figure 2 shows the magnetic dipole form factor G∗

M , the electric quadrupole form factor G∗
E , and their ratio

REM . Pion-cloud effects, seemingly, do not play a role for G∗
M . This does not mean that they are negligible as

compared to the bare-baryon contribution (first graph in Fig. 1). The bare contribution is nothing else than the
result without pion cloud (pure three-quark model) multiplied with the probabilities to find the bare baryons in
the physical (dressed) ones. The resulting reduction is then again compensated by the pion cloud. Pion-cloud
effects, however, become more visible in the small form factors G∗

E and G∗
C . Here we only show predictions

for G∗
E and the ratio

REM := − G∗
E

(
Q2

)
G∗

M

(
Q2

) . (12)

For these quantities pion-cloud effects seem to be significant, at least for Q2 � 1 GeV2, with both contributions,
the one in which the photon couples to the pion and the one in which it couples to the nucleon, being of
approximately the same importance. Our results compare with the outcome of other theoretical predictions [3,
7,17] and confirm the importance of pion-cloud effects that has also been emphasized by other authors [20–
22]. For Q2 � 0.5 GeV2 our predictions for G∗

M agree well with the data, for vanishing Q2, however, we
underestimate the data by about 25%. This is also reflected in REM . For Q2 � 0.5 GeV2 we get a somewhat
larger modulus for this ratio than measured in experiment. One should, however, keep in mind that our
calculation is still not complete and additional contributions at small Q2 are expected to come from πΔ0
intermediate states. It is the topic of ongoing work to find out, whether such contributions could improve the
agreement with data, or whether further improvements of the model, like a more sophisticated wave function
for the Δ, including, e.g., a d-wave contribution as in Ref. [3], will be necessary.
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