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Abstract We use a hybrid constituent-quark model for the microscopic description of πNN , πN� and
π�� vertices. In this model quarks are confined by an instantaneous potential and are allowed to emit and
absorb a pion, which is also treated as dynamical degree of freedom. The point form of relativistic quantum
mechanics is employed to achieve a relativistically invariant description of this system. Starting with an SU (6)
spin-flavor symmetric wave function for N0 and �0, i.e. the eigenstates of the pure confinement problem,
we calculate the strength of the πN0N0, πN0�0 and π�0�0 couplings and the corresponding vertex form
factors. Interestingly the ratios of the resulting couplings resemble strongly those needed in purely hadronic
coupled-channel models, but deviate significantly from the ratios following from SU(6) spin-flavor symmetry
in the non-relativistic constituent-quark model.

1 Motivation and Formalism

Our interest in πNN , πN� and π�� couplings and vertex form factors is connected with our attempt to take
pion-loop effects into account when describing the electromagnetic structure of N and � within a constituent-
quark model. As it turns out, the calculation of the loop effects boils down to a purely hadronic problem,
in which the quark substructure of the N and the � is hidden in strong and electromagnetic form factors of
“bare” baryons, i.e. eigenstates of the pure confinement problem. Since πNN , πN� and π�� couplings and
vertex form factors are basic building blocks of nuclear physics and every hadronic model of meson–baryon
dynamics, their microscopic description is also highly desirable on more fundamental grounds.

Our starting point for calculating the strong πNN , πN� and π�� couplings and form factors is the
mass-eigenvalue problem for three quarks that are confined by an instantaneous potential and can emit and
reabsorb a pion. To describe this system in a relativistically invariant way, we make use of the point-form of
relativistic quantum mechanics. Employing the Bakamjian–Thomas construction, the overall four-momentum
operator P̂μ can be separated into a free 4-velocity operator V̂μ and an invariant mass operator M̂ that contains
all the internal motion, i.e. P̂μ = M̂ V̂μ [1]. Bakamjian–Thomas-type mass operators are most conveniently
represented by means of velocity states |V ;k1, μ1; k2, μ2; . . . ;kn, μn〉, which specify an n-body system by
its overall velocity V (VμVμ = 1), the CM momenta ki of the individual particles and their (canonical) spin
projections μi [1]. Since the physical baryons of our model contain, in addition to the 3q-component, also a
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3qπ-component, the mass eigenvalue problem can be formulated as a 2-channel problem of the form(
M̂conf

3q K̂π

K̂ †
π M̂conf

3qπ

)( |ψ3q〉
|ψ3qπ 〉

)
= m

( |ψ3q〉
|ψ3qπ 〉

)
, (1)

with |ψ3q〉 and |ψ3qπ 〉 denoting the two Fock-components of the physical baryon states |B〉. The mass operators
on the diagonal contain, in addition to the relativistic particle energies, an instantaneous confinement potential
between the quarks. The vertex operator K̂ (†)

π connects the two channels and describes the absorption (emission)
of the π by one of the quarks. Its velocity-state representation can be directly connected to a corresponding field-
theoretical interaction Lagrangean [1]. We use a pseudovector interaction Lagrangean for the πqq-coupling

Lπqq(x) = − fπqq
mπ

(
ψ̄q(x)γμγ5τψq(x)

) · ∂μφπ (x). (2)

After elimination of the 3qπ-channel the mass-eigenvalue equation takes on the form[
M̂conf

3q + K̂π (m − M̂conf
3qπ )−1 K̂ †

π︸ ︷︷ ︸
V̂ opt

π (m)

] |ψ3q〉 = m |ψ3q〉 , (3)

where V̂ opt
π (m) is an optical potential that describes the emission and reabsorption of the pion by the quarks.

One can now solve Eq. (3) by expanding the (3q-components of the) eigenstates in terms of eigenstates of
the pure confinement problem, i.e. |ψ3q〉 = ∑

B0
αB0 |B0〉, and determining the open coefficients αB0 . Since

the particles that propagate within the pion loop are also bare baryons (rather than quarks), the problem of
solving the mass eigenvalue equation (3) reduces then to a pure hadronic problem, in which the dressing and
mixing of bare baryons by means of pion loops produces finally the physical baryons. The quark substructure
determines just the coupling strengths at the pion-baryon vertices and leads to vertex form factors. To set up
the mass-eigenvalue equation on the hadronic level one needs matrix elements 〈B ′

0| V̂ opt
π (m) |B0〉 of the optical

potential between bare baryon states. The general structure of these matrix elements is (B0 and B ′
0 are at rest)

〈B ′
0| V̂ opt

π (m) |B0〉 ∝
∑
B′′

0

∫
d3k′′

π√
m2

π + k′′ 2
π

√
m2

B′′
0

+ k′′ 2
π

J 5
πB′

0B
′′
0
(k′′

π )
1

m − mB′′
0 π

J 5
πB′′

0 B0
(k′′

π ) , (4)

where mB′′
0 π is the invariant mass of the B ′′

0 π system in the intermediate state and spin- as well as isospin
dependencies have been suppressed.

For the cases we are interested in, i.e. the N and the �, the currents occurring in Eq. (4) can be cast into
the form1:

J 5
πN0N0

(kπ ) = i
fπN0N0

mπ

FπN0N0(k
2
π ) ū(−kπ )γμγ5u(0) kμ

π ,

J 5
π�0�0

(kπ ) = fπ�0�0

mπm�0

Fπ�0�0(k
2
π ) εμνρσ ūμ(−kπ ) uν(0) k�0,ρ kπ,σ ,

J 5
πN0�0

(kπ ) = −i
fπN0�0

mπm�0

FπN0�0(k
2
π ) εμνρσ ū(−kπ )γσ γ5uν(0) k�0,μ kπ,ρ ,

J 5
π�0N0

(kπ ) = i
fπN0�0

mπm�0

Fπ�0N0(k
2
π ) εμνρσ ūν(−kπ )γ5γσu(0) k�0,μ kπ,ρ , (5)

where u(.) is the Dirac spinor of the nucleon and uμ(.) the Rarita–Schwinger spinor of the �. Here we
have again suppressed the isospin dependence and also omitted the spin labels. From Eqs. (4) and (5) one
can then infer the analytical expression for the combination fπB′

0B0
FπB′

0B0
(k2

π ) in terms of quark degrees of
freedom [3].

Assuming a scalar isoscalar confinement potential, the masses of the bare nucleon and the bare Delta are
degenerate, the momentum part of the wave function will be the same and the spin-flavor part of the wave

1 This form exhibits the correct chiral properties and avoids problems with superfluous spin degrees of freedom when treating
spin-3/2 fields covariantly by means of Rarita–Schwinger spinors [2].
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Fig. 1 The left plot shows the (unnormalized) πN0N0, π�0�0, πN0�0, and π�0N0 form factors as functions of Q2 =
−2M0(M0 − (M2

0 + k2
π )1/2). In the right plot the Q2 behavior of FπN0N0 (normalized to 1 at Q2 = 0) is compared to the

outcome of another relativistic constituent-quark model [6] and to phenomenological fits obtained within two purely hadronic
dynamical coupled-channel models [7,8] (SL and PR)

function is SU (6) symmetric. Rather than solving the confinement problem for a particular potential, we
parameterize the momentum part of the 3q wave function of N0 and �0 by means of a Gaussian

ψ
N0,�0
3q (kq1,kq2 ,kq3) ∝ exp

(
−α2(k2

q1
+ k2

q2
+ k2

q3
)
)

, kq1 + kq2 + kq3 = 0 , (6)

and consider the mass of N0 and �0, i.e. MN0 = M�0 =: M0, as free parameter. The parameters of our model
are therefore the oscillator parameter α, the mass M0, the constituent-quark mass mq := mu = md and fπqq ,
the πqq coupling strength. For fixed mq = 263 MeV (taken from Ref. [4]) we have adapted the remaining
parameters such that the physical N and � masses, resulting from the mass renormalization due to pion loops
(with N0 and �0 intermediate states), agree with their experimental values. In order to tune these parameters we
started with a fixed M0 and α and calculated the masses of the physical nucleon and Delta as function of fπqq
by solving the mass eigenvalue equation (3). Then we have varied M0 and α such that the physical nucleon
and Delta masses (i.e. mN = 0.9385 GeV and m� = 1.233 GeV) are obtained for a reasonable value of fπqq
(which also leads to a reasonable value for fπN0N0 ). This gives us M0 = 1.350 GeV, α = 2.915 GeV−1 and
fπqq = 0.6602. Note that in our simple model the physical � is still a stable particle, since the threshold of
the only possible decay channel πN0 is larger than the mass of the physical �. In order to get a � with a finite
decay width within our model one would need in Eq. (1) an additional 3qππ channel. For a purely hadronic
model which provides a finite decay width for the � and makes use of the same relativistic coupled-channel
framework as employed here, see Ref. [5].

2 Results and Discussion

The left plot of Fig. 1 shows (unnormalized) πN0N0, π�0�0, πN0�0, and π�0N0 form factors as func-
tion of the (negative) four-momentum transfer squared (analytically continued to small time-like momentum
transfers). It is worth noting that Fπ�0N0 and FπN0�0 do not coincide. This is, of course, no surprise, since
in the first case the N0 is real and the �0 virtual, whereas it is just the other way round in the second case.
The form factors describe thus completely different kinematical situations, but they coincide at a particular
negative (i.e. unphysical) value of Q2. Since there is only one coupling strength at the πN0�0-vertex (i.e.
fπ�0N0 = fπN0�0 , see Eq. (5)), this is the natural point to normalize the form factors and extract the coupling
constants. Its value Q2

0 = −0.079 GeV2 is close to the standard normalization point, namely the pion pole
Q2

0 = −m2
π . The resulting coupling strengths are given in Table 1 and compared with those from other models.

The couplings quoted for the hadronic model [8] are the physical (“dressed”) couplings. The couplings
given in Ref. [6] may be interpreted as “bare” couplings, since meson-cloud effects are not included explicitly,
but physical N and � masses are used for their extraction. The values for fπN� and fπ�� taken from Ref. [7]
are bare couplings. Dressing of the nucleon, however, is not considered by the authors. Our results are also
bare couplings, since they have been extracted from vertex matrix elements 〈B ′

0π |K †
π |B0〉 involving only

bare baryons. For the ratio of the coupling strengths we get fπN0�0 : fπN0N0 : fπ�0�0 = 1.209:1:0.608. This
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Table 1 Our prediction for πN0N0, πN0�0 and π�0�0 coupling constants in comparison with results from another relativistic
constituent-quark model [6]. Shown are also values for these coupling constants used in two popular hadronic coupled-channel
models [7,8]. The πqq couplings employed in the quark models are given in the second column

fπqq fπN0N0 fπN0�0 fπ�0�0

Our model 0.6602 1.0027 1.2123 0.6097
Ref. [6] 0.5889 0.9318 1.537
Ref. [7] 1.0027 1.256 0.415
Ref. [8] 0.9708 2.451

may be compared with the prediction from the non-relativistic constituent-quark model assuming SU (6) spin-
flavor symmetry, i.e. fπN�: fπNN : fπ�� = 4

√
2/5:1:9/5 = 1.13:1:1.8 [9]. The differences can solely be

ascribed to relativistic effects and are obviously significant, in particular for the π�0�0-vertex. Remarkably,
our fractions resemble very much those needed in the dynamical coupled-channel model of Ref. [7], i.e.
fπN�: fπNN : fπ�� = 1.26:1:0.42.

In the right plot of Fig. 1 our result for FπN0N0 is compared with the outcome of another relativistic
constituent-quark model [6] and with two parameterizations of this form factor that have been used in the
hadronic models [7,8]. Up to Q2 ≈ 1 GeV2 our prediction is comparable with the form factor parameterization
of Ref. [8], but for higher Q2 it falls off slower.2 The form factors of Refs. [6,7] fall off much faster already
at small Q2. Deviations of our result from the one of Ref. [6] have their origin in different 3q wave functions
of the nucleon, but also in different kinematical and spin-rotation factors entering the microscopic expression
for the pseudovector current of the nucleon.

Having determined the πN0N0, π�0�0 and πN0�0 vertices from a microscopic model, we are now in
the position to calculate the electromagnetic form factors of physical nucleons and Deltas and determine the
effect of pions on their electromagnetic structure. Such calculations exist in the literature (see, e.g., Ref. [4]),
but in all the work known to us the strong pion-baryon vertices were parameterized. We rather try to treat
strong and electromagnetic vertices on the same footing, i.e. start with the same three-quark wave function
for the (bare) baryons, calculate strong and electromagnetic form factors of bare baryons and with these form
factors as input the effect of pion loops (for physical baryons). First exploratory calculations for the nucleon
(with another three-quark wave function and without Deltas) gave reasonable results and show that significant
pion-loop effects can be observed for Q2 � 0.5 GeV2 [3]. It will, of course, be more interesting to investigate
electromagnetic � and N → � transition form factors, where pionic effect are expected to play a more
significant role.
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