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Abstract We employ the generalized parton picture to analyze the reaction π− p → D− Λ+
c . Thereby it is

assumed that the process amplitude factorizes into one for the perturbatively calculable subprocess ū u → c̄ c
and hadronic matrix elements that can be parameterized in terms of generalized parton distributions for the
π− → D− and p → Λ+

c transitions, respectively. Representing these parton distributions in terms of valence-
quark light-cone wave functions for π , D, p and Λc allows us to make numerical predictions for unpolarized
differential and integrated cross sections as well as spin observables. In the kinematical region where this
approach is supposed to work, i.e. s � 20 GeV2 and in the forward hemisphere, the resulting cross sections
are of the order of nb. This is a finding that could be of interest in view of plans to measure π− p → D− Λ+

c ,
e.g., at J-PARC or COMPASS.

1 Motivation

Exclusive production of charmed hadrons is still a very controversial topic. Experimental data are very scarce
and theoretical predictions differ by orders of magnitude, depending on the approach used. From general
scaling considerations [1] one expects, e.g., that the p̄ p → Λ̄−

c Λ+
c cross section is suppressed by at least two

to three orders of magnitude as compared to the p̄ p → Λ̄ Λ cross section. This means that one probably has to
deal with cross sections of the order of nb, a challenge which nevertheless seems to be experimentally treatable,
as the measurement of e+e− → Λ+

c Λ̄−
c cross sections has shown [2]. A considerable improvement of the

experimental situation on pair production of charmed hadrons is to be expected from the P̄ANDA detector at
FAIR [3]. Another class of reactions for which experimental data may become available even in the near future
is the pion-induced exclusive production of charmed hadrons as planned, e.g., at J-PARC [4].

In the present contribution we are going to present a theoretical analysis of π− p → D− Λ+
c based on the

generalized parton picture. Assuming the intrinsic charm of the p (and the π) to be negligible, the charmed
hadrons in the final state are produced via a handbag-type mechanism (see Fig. 1). The blobs in Fig. 1 indicate
soft hadronic matrix elements that are parameterized in terms of generalized parton distributions (GPDs), the
c̄ c pair is produced perturbatively with the c-quark mass mc acting as a hard scale. A model for the p → Λ+

c
GPDs is available from foregoing work on p̄ p → Λ̄−

c Λ+
c [5]. The new ingredients are the π− → D−

transition GPDs which we model in analogy to Ref. [5] as overlap of valence-quark light-cone wave functions
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Fig. 1 The double-handbag contribution to π− p → D− Λ+
c (with momenta, LC-helicities and color of the individual particles

indicated)

for π− and D−. With these models for the p → Λ+
c and π− → D− GPDs we will estimate the contribution

of our handbag-type mechanism to the π− p → D− Λ+
c cross section. In Sect. 2 we will sketch the steps and

assumptions which finally give us a factorized form of the hadronic π− p → D− Λ+
c scattering amplitude.

Here also the model wave functions leading to the GPDs used for the numerical calculations are presented.
Section 3 contains the numerical predictions and a short discussion of competing production mechanisms
based on hadrondynamics and our conclusions.

2 Double-Handbag Amplitude, GPDs and Transition Form Factors

We consider π− p → D− Λ+
c in a symmetric CM frame. This means that the transverse component of the

momentum transfer � = (p′ − p) = (q − q ′) is symmetrically shared between the particles and the 3-vector
part of the average momentum p̄ = (p + p′)/2 is aligned along the z-axis (for assignments of momenta see
Fig. 1). Expressed in light-cone coordinates the particle four-momenta can then be written as

p =
[
(1 + ξ) p̄+,

m2
p + �2⊥/4

2(1 + ξ) p̄+ , −�⊥
2

]
, q =

[
m2

π + �2⊥/4

2(1 + η)q̄− , (1 + η)q̄−,
�⊥
2

]
,

p′ =
[
(1 − ξ) p̄+,

M2
Λc

+ �2⊥/4

2(1 − ξ) p̄+ ,
�⊥
2

]
, q ′ =

[
M2

D + �2⊥/4

2(1 − η)q̄− , (1 − η)q̄−, −�⊥
2

]
,

(1)

where we have introduced the skewness parameter ξ = −�+/2 p̄+. The minus component of the average
momentum q̄− = (q− + q ′−)/2 and the skewness parameter η = �−/2q̄− have been introduced for conve-
nience, but are determined by ξ , p̄+ and �2⊥.

The hadronic amplitude as depicted in Fig. 1 can then be written in the form

M =
∫

d4kav
1 θ

(
kav+

1

) ∫
d4z1

(2π)4 e
ikav

1 z1

∫
d4kav

2 θ
(
kav−

2

) ∫
d4z2

(2π)4 e
ikav

2 z2

× 〈
Λ+
c : p′μ′|T Ψ̄ c(−z1/2)Ψ u(z1/2)|p : pμ〉

H̃
(
k′

1, k′
2; k1, k2

) 〈
D−: q ′ν′|T Ψ̄ u(z2/2)Ψ c(−z2/2)|π−: qν

〉
,

(2)

with H̃ denoting the perturbatively calculable kernel that represents the partonic subprocess ū u → g → c̄ c.
Here two of the four integrations over the quark 4-momenta (and the corresponding Fourier transforms)
have already been eliminated by introducing average quark momenta kav

i = (ki + k′
i )/2 and the fact that

the momentum transfer on hadron and parton level should be the same, i.e. (k1 − k′
1) = (p − p′) and

k2 − k′
2 = (q − q ′) (a consequence of translational invariance). The further analysis of M makes use of the

collinear approximation for the active partons. This means that their momenta are replaced by
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k1 ≈
[
k+

1 ,
x2

1�2⊥
8k+

1

,−1

2
x1�⊥

]
, k′

1 ≈
[
k′+

1 ,
m2

c + x ′2
1 �2⊥/4

2k′+
1

,
1

2
x ′

1�⊥

]
,

k2 ≈
[

x2
2�2⊥
8k−

2

, k−
2 ,

1

2
x2�⊥

]
, k′

2 ≈
[
m2

c + x ′2
2 �2⊥/4

2k′−
2

, k′−
2 , −1

2
x ′

2�⊥

]
,

(3)

with the momentum fractions x (′)
i defined by k(′)+

1 = x (′)
1 p(′)+ and k(′)−

2 = x (′)
2 q(′)−. For later purposes it is

also convenient to introduce average momentum fractions x̄i via the relations x (′)
1 = (x̄1 ± ξ)/(1 ± ξ) and

x (′)
2 = (x̄2 ± η)/(1 ± η). The justification of the collinear approximation rests on the physically plausible

assumptions that the parton virtualities and (intrinsic) transverse momenta are restricted by a typical hadronic
scale of the order of 1 GeV and that the GPDs exhibit a pronounced peak at large values of x̄1 (x̄2) close
to the ratio x̄10 = mc/MΛc (x̄20 = mc/MD) (for details, see Ref. [5]). As a consequence of the collinear
approximation H̃ does not depend on kav−

1 , kav
1⊥, kav+

2 , kav
2⊥ and the corresponding integrations can be carried

out leading to delta functions in the associated z-variables. These delta functions force the products of the
quark-field operators onto the light cone (z1 → z−1 and z2 → z+2 ) and the time ordering can be dropped [6].

To proceed further one picks out the “leading twist” contributions from the bilocal quark-field operator
products:

〈Λ+
c | Ψ c

(−z−1 /2)Ψ u(z−1 /2) |p〉 : 〈Λ+
c | Ψ c

(−z−1 /2)
{
γ + , γ +γ5, iσ

+ j}Ψ u(z−1 /2) |p〉 , (4)

〈D−| Ψ u
(z+2 /2)Ψ c(−z+2 /2) |π−〉 : 〈D−| Ψ u

(z+2 /2)
{
γ −, γ −γ5, iσ

− j}Ψ c(−z+2 /2) |π−〉 . (5)

The three Dirac structures showing up in Eqs. (4) and (5) can be considered as + or − components of
(bilocal) vector, pseudovector and tensor currents, respectively. These currents are then Fourier transformed
(with respect to z−1 or z+2 ) and decomposed into appropriate hadronic covariants. The coefficients in front of
these covariants are the quantities which are usually understood as GPDs. Due to parity invariance the matrix
elements 〈D−| Ψ u

γ −γ5Ψ
c |π−〉 vanish and the covariant decomposition of the remaining vector and tensor

currents gives rise to two π− → D− transition GPDs, Hcu
πD and Ecu

TπD , which are defined by:

q̄−
∫

dz+2
2π

ei x̄2q̄−z+2 〈D− : q ′| Ψ u (
z+2 /2

) {
γ −, iσ− j

}
Ψ c (−z+2 /2

) |π− : q〉

=
{

2q̄− Hcu
πD(x̄2, η, t),

q̄−� j − �−q̄ j

mπ + MD
Ecu
TπD(x̄2, η, t)

}
.

(6)

An analogous analysis leads to eight GPDs for the p → Λ+
c transition [5]. These are functions of x̄1, ξ and

t = �2.
Having expressed the soft hadronic matrix elements in terms of generalized parton distributions one ends

up with an integral in which these parton distributions, multiplied with the hard partonic scattering amplitude
Hλ′

1λ
′
2,λ1λ2

(
x̄1 p̄+, x̄2q̄−)

, are integrated over x̄1 and x̄2. The fact that a heavy c̄ c pair has to be produced (since
we neglect non-perturbative intrinsic charm in the light hadrons) means that the virtuality of the intermediate
gluon should be larger than 4m2

c ≈ 6.3 GeV2. This justifies the perturbative treatment of ū u → c̄ c and puts (for
fixed s > (MΛc +MD)2 ≈ 17.27 GeV2) kinematical constraints on x̄1 and x̄2. For s well above the production
threshold (s � 20 GeV2) and in the forward-scattering hemisphere it can be checked numerically that these
constraints imply x̄1 > ξ and x̄2 > η. This means that only the DGLAP region of the GPDs (|x̄1| > ξ , |x̄2| > η)
can contribute to our handbag-type mechanism, an important observation which simplifies the modeling of the
GPDs.

The supposition that the p → Λ+
c and D− → π− GPDs are strongly peaked at x̄10 and x̄20, respectively,

leads to a further simplification of the π− p → D− Λ+
c amplitude. The major contributions to the x̄1 and

x̄2 integrals will then come from x̄1 ≈ x̄10 and x̄2 ≈ x̄20. One can thus replace the hard partonic scattering
amplitude by its value at the peak position, Hλ′

1λ
′
2,λ1λ2

(
x̄10 p̄+, x̄20q̄−)

and take it out of the integral. What
one is left with are separate integrals over the GPDs which may be interpreted as generalized p → Λ+

c
and D− → π− transition form factors. With this “peaking approximation” our final expressions for the
π− p → D− Λ+

c amplitudes become:
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Fig. 2 Left panel The p → Λ+
c (solid line) and π− → D− (dotted line) transition GPDs Hcu

T pΛc
and Hcu

πD obtained with the wave

functions (9) and (10) and the KK mass exponential for s = 25 GeV2 and �2⊥ = 0. Right panel The corresponding transition
form factors |ST | and G [see Eq. (8)] as functions of |t ′| = |t − t0|, where t0 is the t value for forward scattering

M+,+ = M−,− = 1

4

√
1 − ξ2 H+−,+− RV G,

M+,− = −M−,+ = 1

4

√
1 − ξ2 H++,−+ ST G, (7)

with the D− → π− transition form factor

G(η, t) =
∫ 1

η

dx̄2√
x̄2

2 − η2
Hcu

πD(x̄2, η, t). (8)

In Eq. (7) we have restricted ourselves to the two most important p → Λc GPDs, Hcu
pΛc

and Hcu
T pΛc

(these are

associated with γ + and σ+ j ). The respective form factors are RV and ST , defined analogously to Eq. (8). The
underlying assumption is that those GPDs (and corresponding form factors) which involve non-zero orbital
angular momentum of the (anti)quarks that make up the hadrons are suppressed. It leads also to omission of
Ecu
TπD .

This concludes the general analysis of our process. The next step is the modeling of the GPDs. As mentioned
already above, we have to consider only the DGLAP region There it is possible to model the GPDs as overlaps
of light-cone wave functions for the valence Fock states of the respective hadrons [8]. For the pion and the
proton we take the parameterizations of the light-cone wave functions proposed in Refs. [9] and [10]

ψπ (x,k⊥) = Nπ exp

[
−a2

π k2⊥
x(1 − x)

]
, ψp(xi ,k⊥ i ) = Np(1 + 3x1) exp

[
−a2

p

∑ k2⊥ i

xi

]
. (9)

These forms are supported by several phenomenological applications. Similar wave functions are taken for the
D and the Λc:

ψD(x, k̂⊥) = ND exp [− f (x)] exp

[ −a2
D k2⊥

x(1 − x)

]
, ψΛc (xi , k⊥ i ) = NΛc exp [− f (x1)] exp

[
−a2

Λc

∑ k2⊥ i
xi

]
. (10)

The mass exponential generates the expected peak at x(1) ≈ x̄i0 (with x(1) being the momentum fraction of
the heavy quark). The parameters ND and aD are chosen such that the experimental value of the D-meson
decay constant fD = 0.207 GeV is reproduced and the valence-Fock-state probability becomes 0.9 [7].
An appropriate choice of parameters for the Λc wave function can be found in Ref. [5], where an overlap
representation of p → Λc GPDs has been derived and applied to p̄ p → Λ̄−

c Λ+
c . We use two types of mass

exponentials that have been suggested in the literature [11,12]:

fK K (x) = a2
Λc(D)M

2
Λc(D) (x − x̄i0)2

x(1 − x)
, fBB(x) = a2

Λc(D)MΛc(D)(1 − x) . (11)

For a more detailed account of the formalism and the modeling of the GPDs we refer to Refs. [5,7], where
also analytical formulae for the model GPDs, hard scattering amplitudes, etc. can be found. An impression
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Fig. 3 Left panel The differential π− p → D− Λ+
c cross section in the CM system versus cos θ obtained with the KK mass

exponential for s = 20, 25, 30 GeV2. Right panel: The integrated π− p → D− Λ+
c cross section versus Mandelstam s for the

KK (solid line) and the BB (dashed line) mass exponential in comparison with predictions from a hybrid Regge model [15]
(dash-dotted line). The effects of uncertainties in the Λc and D− wave-function parameters (in case of the KK mass exponential)
are indicated by the shaded band

how our model GPDs and corresponding form factors for the π− → D− and p → Λ+
c transitions look like

can be gained from Fig. 2. The general behavior of the GPDs is that with increasing s the maximum moves to
larger values of x̄ and becomes smaller. It should also be mentioned that the two p → Λ+

c form factors (and
corresponding GPDs) that show up in Eq. (7) are approximately the same for reasonably small probability
(�10%) to find a c-quark with helicity opposite to the Λc helicity in the Λc [5].

3 Results and Discussion

With these model GPDs (and corresponding form factors) we are now able to calculate the hadronic scattering
amplitudes [see Eq. (7)] and cross sections. Predictions for unpolarized differential and integrated cross sections
obtained with the KK mass exponential are displayed in Fig. 3. The shaded band exhibits the variation of the
cross section, if the wave-function parameters are varied within a reasonable range. Integrated cross-section
results are also shown for the KK mass exponential. Obviously the differences between predictions obtained
with different analytical forms of the wave functions are larger than the variations coming from parametric
errors in the wave functions. The integrated cross sections are of the order of nb with the BB mass exponential
giving the larger results. This is the order of magnitude that has also been found for p̄ p → Λ̄−

c Λ+
c [5] and

p̄ p → D̄0D0 [13], when treated within the generalized parton framework. It seems to be in accordance with
old AGS experiments at s ≈ 25 GeV2 which found upper bounds of 7 nb for π− p → D∗− Λ+

c and ≈ 15 nb
for π− p → D− Λ+

c [14].
Interestingly, an integrated cross section comparable to ours has been found by the authors of Ref. [15]

(dash-dotted line in Fig. 3), who used a hybridized Regge model, i.e. a production mechanism mainly based
on hadron dynamics. This is in contrast to the findings for p̄ p → Λ̄−

c Λ+
c and p̄ p → D̄0D0, where models

using simple [16,17] or Reggeized hadron exchange [18,19] find cross sections which are two to three orders
of magnitude larger than those from the handbag-type mechanism. The crucial point in these models seems
to be the strength of the D(∗) pYc coupling which is either fixed by SU (4)-flavor symmetry [16–18] or by
QCD sum rules [19]. In our case this coupling corresponds to the form factors G and ST . These are the
quantities which make the cross section that small. The flavor dependence of the wave functions leads to a
strong mismatch of light and heavy hadron wave functions in the overlap integral. If this mismatch would not
exist, our cross section would be about two orders of magnitude larger, as we have seen in a similar calculation
of p̄ p → Λ̄−

c Λ+
c performed within a quark-diquark model [20].

Cross sections as large as predicted by the hadronic models would also indicate that, in contrast to our
assumption, charm is produced non-perturbatively which means that (non-perturbative) intrinsic charm of the
proton must be taken into account. This could, in principle, be done within our approach. Then the charmed
hadrons in the final state would, in addition to the handbag mechanism, be produced via mechanisms which
are fed by the ERBL region of the GPDs. It is, however, hardly conceivable that the small amount of intrinsic
charm in the proton that is compatible with inclusive data [21] could increase the cross section for the exclusive
production of charmed hadrons by two or three orders of magnitude. This holds in particular for the kinematic
situations we are considering, where the skewness parameter and thus also the ERBL region becomes small.
Experimental data for processes like π− p → D− Λ+

c , p̄ p → Λ̄−
c Λ+

c , γ p → D̄0 Λ+
c and p̄ p → D0 D̄0
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up to several GeV above production threshold would thus be highly desirable to pin down the production
mechanism of charmed hadrons and shed some more light on the question of non-perturbative intrisic charm
in the proton.
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