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Abstract The concept of effective particles is introduced in the Minkowski space-time Hamiltonians in quan-
tum field theory using a new kind of the relativistic renormalization group procedure that does not integrate
out high-energy modes but instead integrates out the large changes of invariant mass. The new procedure is
explained using examples of known interactions. Some applications in phenomenology, including processes
measurable in colliders, are briefly presented.

1 Introduction

Effective particles can be introduced in the quantum field theory (QFT) in such a way that their size plays the role
of a scale parameter in a renormalization group procedure for the corresponding Hamiltonians. The example
of QCD is particularly interesting because the effective quarks of large size are expected to correspond to the
constituent quarks that are used in classification of hadrons, while point-like quarks and gluons correspond to
partons used in description of hadrons in high-energy collisions. But the renormalization group procedure for
effective particles (RGPEP) that is used here is not limited to QCD. Its general nature stems form the fact that
one does not specify the size of quanta when one expands a quantum field in space into its Fourier modes.
Namely, the Heisenberg and Pauli [1,2] formulation of QFT is equally applicable to various particles despite
the fact that they have different sizes, see Fig. 1. One can say that the concept of a quantum field operator
is blind to the size of individual quanta. In contrast, in the renormalized theories derived using the RGPEP,
this free size parameter determines the width of vertex form factors in the Hamiltonian interaction terms for
effective particles.

2 Example of the RGPEP Calculation: Asymptotic Freedom in Yang–Mills theory

Canonical quantization of the Yang–Mills (YM) theory begins with the Lagrangian density L =
− tr FμνFμν/2, in which the field strength tensor is Fμν = ∂μAν − ∂ν Aμ + ig[Aμ, Aν]. The associated
energy-momentum tensor is T μν = −Faμα∂ν Aa

α + gμνFaαβFa
αβ/4. Consequently, the field four-momentum
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Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warszawa, Poland
E-mail: Arkadiusz.Trawinski@fuw.edu.pl

http://crossmark.crossref.org/dialog/?doi=10.1007/s00601-016-1194-x&domain=pdf


49 Page 2 of 9 S. D. Głazek et al.

Fig. 1 Quantum field operators are blind to the size of individual quanta

is given by Pν = ∫
�
dσμ T μν , where dσμ is a measure on the hypersurface � in the Minkowski space-time.

In the front form (FF) of Hamiltonian dynamics [3], one uses the variables x± = t ± z and x⊥ = (x, y), with a
similar convention for all tensors. The FF Hamiltonian results from integration of HYM = T+− over the front
hypersurface � defined by the condition x+ = 0. The canonical FF Hamiltonian density in gauge A+ = 0
contains three terms, HYM = HA2 +HA3 +HA4 . Our example concerns the three-gluon term HA3 , to exhibit
asymptotic freedom. Quantization is achieved by replacing the classical gauge-field A by a field operator,

Âμ =
∑

kσc

[
tc ε

μ
kσ akσc e

−ikx + tc ε
μ∗
kσ a†

kσc e
ikx

]

on �
(1)

where akσc and a†
kσc are the annihilation and creation operators of gluons with momentum k = (k+, k⊥),

polarization vectors εσ and color matrices tc that span the algebra of SU (Nc). We consider the number of
colors Nc = 3. Thus, the starting Hamiltonian is

ĤY M =
∫

�

: HYM ( Â) : (2)

where the double dots indicate normal ordering. Our focus is on the term that comes from HA3 =
g i∂αAa

β [Aα, Aβ ]a , which in the local quantum theory for point-like particles leads to

ĤA3 =
∫

x ∈ �

: g i∂α Â
a
β(x) [ Âα(x), Âβ(x)]a : . (3)

If the quanta are not point-like, see Fig. 2, the local interaction is merely an approximation, in which the size s
is a free parameter. Thus, instead of the quantum size-blind field operator Â(x), we can introduce an effective
particle quantum field Â(x, s) and the non-local three-gluon interaction term

ĤA3,s =
∫

xi ∈ �

gs(x1, x2, x3) : i∂αA
a
β(x1, s) [Aα(x2, s), A

β(x3, s)]a : . (4)

The function gs(x1, x2, x3) is determined using the RGPEP, except that one works with momentum variables
rather than the space-time coordinates. The required elements of the RGPEP can be found in a sequence of
Refs. [4–8]. A brief summary of the procedure follows.

Fig. 2 Nonlocal interaction of quanta of size s can be approximated by a local interaction for wavelengths much greater than s.
The effective particle size s is the free scale parameter in the RGPEP
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The RGPEP employs equations that connect theories with different values of the effective particle size s.
There is an initial condition set at s = 0 by canonical QCD. In our example,

ĤA3,s=0 =
∫

x ∈ �

: g i∂α Â
a
β(x, 0) [ Âα(x, 0), Âβ(x, 0)]a : (5)

where the field operator is built from creation and annihilation operators for point-like quanta,

Âμ(x, s = 0) =
∑

kσc

[
tc ε

μ
kσ akσc,s=0 e

−ikx + tc ε
μ∗
kσ a†

kσc,s=0 e
ikx

]

on �
. (6)

Direct evaluation yields

ĤA3,s=0 =
∑

123

δ12.3

[
g Y123 a†

1,0 a
†
2,0 a3,0 + g Y ∗

123 a†
3,0 a2,0 a1,0

]
(7)

where an abbreviated notation is used, such as 1 in place of k1, σ1, c1, the factor δ12.3 takes care of momentum
conservation and the coefficients Y123 stand for the gluon momentum, spin and color dependent factors implied
by Eqs. (5) and (6). This is an example of a term in the general initial Hamiltonian for s = 0. The general
structure of the latter reads

H0(a0) =
∞∑

n=2

∑

i1,i2,...,in

c0(i1, . . . , in) a
†
i1,0

· · · ain ,0 (8)

where the coefficients c0 are determined by the regulated canonical theory and counterterms. In the same
notation, the Hamiltonian for effective particles of size s reads

Hs(as) =
∞∑

n=2

∑

i1,i2,...,in

cs(i1, . . . , in) a
†
i1,s

· · · ain ,s (9)

and the coefficients cs are calculated using the RGPEP. One of these coefficients is gs(i1, i2, i3) that corresponds
to the function gs(x1, x2, x3) in Eq. (4).

The coefficients cs in Eq. (9) are derived from the condition that the Hamiltonian is not changed, Hs(as) =
H0(a0), when the canonical quanta with size s = 0 are replaced by the effective quanta of size s > 0, using
a unitary transformation, as = Us a0 U

†
s . One works in a canonical operator basis and calculates the same

coefficients cs using the operator Hs = Hs(a0) = U †
s Hs(as)Us that is determined by the RGPEP equations

H′
s = [Gs,Hs] (10)

Gs = [H f , H̃s] (11)

where H̃s differs from Hs only by multiplication of coefficients cs by the square of +-momentum carried by
the corresponding product of creation or annihilation operators. This multiplication secures boost invariance
of the effective theory. In Eqs. (10) and (11), the Hamiltonian is divided into a free part, equal to H0 for g = 0,
and the interaction HI , so that Hs = H f +HI . The key feature of solutions to these equations, and the reason
for using them here, is that the coefficients cs exponentially suppress interactions that change the invariant
mass of effective particles by more than 1/s, see below. No modes are eliminated from the dynamics. Instead,
vertex form factors suppress changes of invariant mass, see below.

Solutions to Eq. (10) define the YM theories a priori non-perturbatively. As such, they are not easy to
obtain. In contrast, asymptotic freedom is found in the expansion in powers of the coupling constant,

Hs = H f + gH1s + g2H2s + g3H3s + · · · . (12)

The terms of order g and g3 yield the result [8]

HA3 (1+3)s =
∑

123

∫

123

δ12.3 e−s4 M4
12

[
Vs123 a

†
1,sa

†
2,sa3,s + V ∗

s123 a
†
3,sa2,sa1,s

]
(13)
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in which M12 denotes the invariant mass of gluons 1 and 2. We see that the effective three-gluon interaction
vertex is softened by the exponential form factor, which suppresses the interaction that involves a pair of gluons
with invariant mass M12 the more the larger size s. The calculation shows that in the limit of vanishing relative
transverse momentum of gluons Vs123 = gs Y123 and

gs = g0 + g3
0

48π2 Nc 11 ln
s

s0
. (14)

The resulting Hamiltonian function β(s) corresponds to the Green’s function β(λ) obtained in Refs. [9,10],
where λ denotes the length of a four-dimensional Euclidean momentum. Thus the effective particle formulation
of QFT shows how the key feature of four-dimensional calculations of QCD manifests itself in the renormalized
Hamiltonians. This way, the effective Hamiltonian approach passes an obligatory test for tackling issues of
strong interaction theory. It provides the Minkowskian space-time scale parameter that corresponds to the
abstract four-dimensional Euclidean scale parameter: the size of effective particles.

3 Early Examples of RGPEP Insight in Phenomenology and Theory of Particles

The RGPEP provides a conceptual insight into particle dynamics in various systems. For example, in the case
of protons, the universal RGPEP parameter s tells us that the low-energy effective theory that can be sought
using QCD, to support the quark model classification of hadrons, concerns quarks whose size is comparable
with the size of the proton itself. Such large quarks ought to be thought about as built from partons of smaller
size s, and the RGPEP provides mathematical tools for the corresponding construction of operators and states
in the effective Fock-space basis. Using this insight, one can ask if the configurations of three bulky effective
quarks built of small partons can explain ridge-like correlations in high-energy pp collisions observed by
the ATLAS and CMS collaborations at LHC [11,12]. It was found [13] that among various simple models,
including the gluon string stretched between a quark and a diquark [14], three quarks joined by a three-prong
gluon body in the shape of letter Y, or a combination of various shapes and distributions of partons in effective
particles, only the Y effective-particle picture of a proton provides eccentricity increasing with multiplicity.
The model study [13] was carried out before the data exhibiting such type of behavior of

√
s = 13 TeV pp

collisions [11,12] were published. This example illustrates the phenomenological utility of the scale dependent,
effective particle picture in QFT.

The RGPEP can be applied to QED in description of hydrogen and muonic hydrogen atoms [15] for the
purpose of explanation of the difference between the proton radii extracted from data for level splittings in
these atoms [16]. This is a computationally ambitious goal. But the question of principle that RGPEP answers
is how to derive the Schrödinger equation from relativistic QFT. In QED, the RGPEP would start from the
classical Lagrangian density L = − 1

4 FμνFμν + ψ̄(i∂/ − eA/ − m)ψ . One treats the electrons and protons

as point-like and proceeds to quantization as in Sec. 2 to obtain Ĥ , regularize it, identify counterterms and
calculate ĤQED s . The eigenvalue problem, ĤQED s |ψs〉 = E |ψs〉 is identified with the Schrödinger equation
for the hydrogen atoms represented as lepton-proton bound states when the size parameter s is sufficiently
large to prevent the interactions from inducing the invariant mass changes that exceed the constituent masses.
The RGPEP valence constituent picture of atoms is illustrated schematically by

⎡

⎢
⎢
⎢
⎢
⎢
⎣

..

..
eγ eē pγ
eγ pγ
eγ p
ep

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

..

..
eγ eē
eγ γ
eγ
e

⎤

⎥
⎥
⎥
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⎦

×

⎡

⎢
⎢
⎢
⎢
⎢
⎣

..

..
peē
pγ γ
pγ
p

⎤

⎥
⎥
⎥
⎥
⎥
⎦

+ · · · = |es ps〉 + · · · . (15)

The left column represents a hydrogen atom as a superposition of virtual particle components in canonical
theory, the size of quanta s = 0. The lowest Fock component is put in a frame to indicate the state that
provides the first approximation to an atom when one works with canonical QED. Once one introduces the
effective quanta, the whole tower of Fock components is rewritten as an effective state of |es ps〉 plus more
effective-particle components, indicated by the three dots. When the size parameter s is increased, the canonical
interactions that act in and among all the Fock components are increasingly transformed into a complex
interaction that predominantly acts in the component |es ps〉, because the change of the number of quanta,
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even massless photons, involves much larger changes of invariant mass than the changes that occur in the
component |es ps〉. For sufficiently large s and for small α, the eigenvalue equation ĤQED s |ψs〉 = E |ψs〉 can
be reduced to the eigenvalue equation for the component |es ps〉, which, after including proton electromagnetic
form factors, especially the electric one, GE , takes the familiar Schrödinger form up to terms of formal order
α,

p 2

2μ
ψs(p ) +

∫
d3k

(2π)3 Vs(p, k ) ψs(k ) = −EB ψs(p ) (16)

where the potential is

Vs(p, k ) = e−s4(p 2−k 2)2/c4 −4πα

q 2 GE (q 2). (17)

The three-momentum transfer is q = p − k. The exponential factor that corrects the Coulomb potential
of extended proton, suppresses the interaction that changes the invariant mass of effective electron-proton
system by more than 1/s. Once the size s is selected to secure universal scaling of atomic levels with α,
setting s ∼ 1/

√
μM , where μ is the reduced and M the average constituent mass, this factor introduces a

small dependence of the potential on the lepton mass. This minuscule dependence has a divergent perturbative
expansion in powers of α when one expresses momenta in units of αμc. Therefore, it needs to be evaluated
numerically. It turns out that it is capable of producing a lepton-mass correction in the extraction of proton radius
from atomic levels, of the same magnitude [15] as the variation encountered in the proton radius puzzle [16]
when the effective nature of particles appearing in the Schrödinger equation according the RGPEP is not
accounted for.

It is worth pointing out that the Schrödinger equation emerges from the RGPEP derivation of effective
low-energy Hamiltonian in QFT using the three-momentum variables p = (p⊥, pz),

p⊥ = c
[
(1 − x) p⊥

l − x p⊥
p

]
/
√
x(1 − x) (18)

pz = c (ml + mp) (x − β)/
√
x(1 − x) (19)

where β = ml/(mp + ml), c = √
mlm p/(ml + mp), x = p+

l /(p+
l + p+

p ), while l refers to lepton and p
to proton. These variables correspond to the relative momentum variables used in light-front holography [17]
for description of hadrons. They appear to be non-relativistic while they are in fact the relative momenta of
constituents in a relativistic theory, in which boost invariance is maintained. The correspondence is unlikely
to be a meaningless coincidence. The Schrödinger equation is universally valid as an effective theory for
atomic physics, despite that it apparently contains no remnants of complexity of relativistic QED. Similarly,
the light-front holography [17], motivated by the idea of duality [18], is meant to approximate complex QFT
in terms of solutions to relatively simple field equations in AdS [19]. In the case of strong interactions, the
same variables are also used in showing that the linear confining potential in the instant form of dynamics [3]
corresponds to a quadratic one in the FF [20].

4 Jet Production in Pion-Nucleus Collisions

When a negatively charged pion with energy on the order of TeV collides with a platinum target, as in the E791
Fermilab experiment [21], and diffractively dissociates into two jets, the observed jet distribution is expected
to report on the quark-antiquark pion wave function. The collision is illustrated in Fig. 3. Our description of
it is based on Ref. [22].

One represents the incoming pion as a bound state of two quarks of constituent size sc. According to
Refs. [19,20], the effective constituent wave function should be a solution of a holographic eigenvalue equa-
tion [17] with a quadratic effective potential, which for the ground state is Gaussian, ψπ ∼ exp [−M2

qq̄/(2�2)]
where the constituent invariant mass squared is M2

qq̄ = (l⊥ 2 +m2
c)/[y(1− y)] = 4(l 2 +m2

c). � is a parameter

of the quadratic effective potential written asUeff = �4r2/4 in terms of the relative distance r between the quark
and antiquark, canonically conjugated to the relative momentum variables of Eqs. (18) and (19) according to
quantum mechanics. The quark carries fraction y and antiquark fraction 1 − y of the pion large +-momentum.
The pion transverse momentum is zero, and the quark carries transverse momentum l⊥ while the antiquark
carries −l⊥. The wave function is normalized to 1, assuming that the effective quarks of size sc saturate the
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Fig. 3 Pion is split into two quark jets on the gluons in a nucleus that act like a wedge
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Fig. 4 The pion electromagnetic form factor at low momentum transfers for the wave function model with holographic effective
potential Ueff = �4r2/4 in AdS/QCD [17,20]. Data points are from Ref. [26]

Fig. 5 |π〉 = |qsc q̄sc 〉 in terms of quarks and gluons with 1/s ∼ 100 GeV

pion state, as it should be the case according to the classification of hadrons in particle data tables [23]. The spin
and isospin details are described by multiplying the Gaussian factor by d̄(pπ/ +M)γ5u [22]. The wave function
parameters are adjusted to reproduce the pion radius and decay constant as well as the Gell-Mann–Okubo
formula [24,25]: mc ∼ 331 MeV, � ∼ 436 MeV and M ∼ −1.9 GeV. The pion radius squared is ∼0.44
fm2 while data provide 0.45(1) fm2 [23]. Weak decay constant is fπ ∼ 130.7 MeV, to be compared with the
experimental value of 130.4 MeV [23]. The fitted value of � is about 25% smaller than one could expect on the
basis of other models [20]. The pion electromagnetic form factor obtained using these parameters is plotted
in Fig. 4.

When the high-energy pion hits the nucleus and its constituents interact with the target, the low-energy
wave-function picture for the pion as built just from one constituent quark and one constituent antiquark is
not adequate. We need to express the quarks of size sc by the quarks and gluons of much smaller size s for
which we know the nuclear distribution. For example, to use the platinum distribution of gluons in the Bjorken
variable x for Q ∼ 100 GeV [27], we need to use the RGPEP operator Us to transform the quarks from scale
sc to the quarks of scale s ∼ (100 GeV)−1. This is illustrated in Fig. 5. The required formula reads

|π〉 = |qsc q̄sc〉 = Ŵs sc |qsq̄s〉 (20)
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Fig. 6 Examples of interactions that split the pion on gluons in a nucleus according to HQCDs with 1/s ∼ 100 GeV [22]
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Fig. 7 Jet counts distribution φ(x, k⊥), for jets induced by pions impinging on Pt, in two jet-k⊥ bins; data points are from Ref. [21]
and theory curves from Ref. [22]

where the state |qsq̄s〉 has the same wave function as |qsc q̄sc〉, Ŵ = UscU
†
s and both operators U are expressed

in terms of creators and annihilators of effective particles of size s. The operator Ŵ can be evaluated using
expansion in powers of the coupling constant gs , which is equivalent to expansion in powers of bare g when
one limits the calculation to terms order 1, g and g2. To this order, the pion quark-antiquark constituent state
has components with quark-antiquark, quark-antiquark-gluon and quark-antiquark-gluon-gluon of the small
size s. Thus, the calculation of splitting of a pion into two jets amounts to evaluation of action of Ŵ on the
constituent model of pion and calculating scattering amplitude of the resulting components into final quarks,
whose momenta are identified with the momenta of the outgoing jets. Examples of the diagrams that contribute
are provided in Fig. 6.

The resulting jet counts distributions, φ(x, k⊥) in Fig. 3, in comparison with data that are available in
two bins of the jet k⊥, are shown in Fig. 7. The absolute normalization factor for the theoretical curves is
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freely adjusted in both bins, the required coefficients in low to high k⊥ bin being of ratio 13/11. The shapes
of theoretical curves are in a reasonably good agreement with experimentally observed distributions of jets.
However, the calculation does not include effects of propagation of leading quarks through the nucleus and
misses description of hadronization. Inclusion of these elements requires development of the RGPEP beyond
the current stage.

5 Conclusion

The RGPEP opens new options for developing QFT and applying it in phenomenology of particle, nuclear and
atomic physics. We are focused mainly on strong interactions. A critical step that awaits performing in QCD
is to derive the Hamiltonian for effective particles with accuracy to fourth power of the coupling constant g.
This Hamiltonian is expected to contain so far unknown terms whose structure may shed new light on the form
of effective dynamics that applies to hadrons understood in terms of constituent quarks. The simplest theory
to start with is QCD of quarks with masses much larger than �QCD in the RGPEP scheme. The goal would be
to understand the dynamics of effective gluons in colorless objects, with the heavy quarks serving as anchors
for the system. Extension to light quarks will require understanding of how many of them participate in the
dynamics. This number will be determined by the ratio of �QCD to the light quark masses, which is on the
order of 100. Such large number explains why the answer is not simple to obtain. It involves understanding
of the Hamiltonian mechanism of breaking chiral symmetry and buildup of confinement. The RGPEP does
not provide any ready answers to these questions, but it does offer tools for required studies. In particular, the
effective coupling constant gs at suitable values of quark and gluon size s is not known yet and, so far, we do
not have any theoretical estimates for the probability of finding large numbers of light quarks in eigenstates of
ĤQCD s with any value of s that is likely to be effective in describing light hadrons.
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