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Abstract I report on our investigations into the impact of (un)polarized transverse momentum dependent
parton distribution functions (TMD PDFs or TMDs) for gluons at hadron colliders, especially at A Fixed
Target Experiment at the LHC (AFTER@LHC). In the context of high energy proton-proton collisions, we
look at final states with low mass (e.g. ηb) in order to investigate the nonperturbative part of TMD PDFs. We
study the factorization theorem for the qT spectrum of ηb produced in proton-proton collisions relying on the
effective field theory approach, defining the tools to perform phenomenological investigations at next-to-next-
to-leading log and next-to-leading order accuracy in the perturbation theory. We provide predictions for the
unpolarized cross section and comment on the possibility of extracting nonperturbative information about the
gluon content of the proton once data at low transverse momentum are available.

1 Gluon TMD PDFs

TMD PDFs describe the probability of finding a parton inside a hadron in 3D momentum space, taking into
account the possible polarization states of both the parton and the hadron. They encode all the possible spin–
spin and spin–orbit interaction terms between a hadron and its constituents. For this reason TMDs play a key
role in understanding the spin structure of hadrons. For a gluon inside a proton we can introduce the following
correlators [1,2]:
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The subscripts U, L, T refer to the polarization state of the proton (unpolarized, longitudinally and transversely
polarized) and the functions are the gluon TMD PDFs for the proton.
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Fig. 1 Feynman diagrams for the process gg → QQ̄ at leading order (LO) in pQCD

The evolution of TMD PDFs is multiplicative in bT -space (bT being the variable conjugate to transverse
momenta). For this reason, we introduce the Fourier transform of the correlator:

G̃μν[pol]
g (x, bT )

def=
∫

d2kn⊥ eikn⊥·bT G̃μν[pol]
g (x, kn⊥). (4)

TMD PDFs in bT -space are defined as the coefficients in the parametrization of (4) with the same Lorentz
structures as in (1), (2), (3), with bT replacing kn⊥. The dimension of TMDs changes according to (4).

The “observability” of TMDs in a particular process strictly depends on the possibility of factorizing hard
contributions from the soft ones [3]. TMD PDFs can be further factorized onto collinear PDFs at large parton
transverse momentum by means of an operator product expansion (OPE). This allows one to distinguish the
emission of a partonwith a high transversemomentum (calculable in perturbation theory) from a low transverse
momentum emission, for which a nonperturbative model is needed.

2 TMD Factorization

Let us consider the process

p(PA) + p(PB, SB) → {QQ̄}[2S+1L(1)
J ](q) + X, (5)

where the colliding protons have four-momenta PA and PB , the first proton is unpolarized and the second one
is in a polarized state described by the spin vector SB , with S2B = −1 and SB · PB = 0. We assume that a

colorless heavy quark-antiquark pair QQ̄[2S+1L(1)
J ] with four-momentum q is produced and forms a bound

state described by a nonrelativistic wave function with spin S, orbital angular momentum L and total angular
momentum J . The S, L , J quantum numbers are indicated in the spectroscopic notation, while the color
assignment of the pair is specified by the singlet or octet superscript, (1) or (8). Following the color-singlet
model, we assume that the two quarks are produced in a color singlet state. The squared invariant mass of the
resonance is M2

h = q2 and Mh is twice the heavy quark mass, up to relativistic corrections (which are usually
neglected).

To lowest order in perturbative QCD (pQCD), we have only the gluon fusion process

g(pa) + g(pb) → {QQ̄}[2S+1L(1)
J ](q), (6)

described by the Feynman diagrams in Fig. 1.
The production of the heavy quark and antiquark in a color singlet state will be described by soft-collinear

effective theory (SCET), while the transition of the quark-antiquark pair into the color singlet quarkonium will
be described by non relativistic QCD (NRQCD).

TMD factorization can be viewed as a multi-step matching procedure:

QCD → NRQCD ⊕ SCETqT → NRQCD ⊕ SCET�QCD . (7)

In the first step, the hard scale Mh associated with the process is integrated out and we perform the matching of
full QCD onto a combination of SCETqT and NRQCD operators. This step already factorizes the cross section
in terms of TMDs (describing the initial state), a NRQCD matrix element (describing the transition into the
quarkonium) and a spin-independent matching coefficient. In the second step, valid when �QCD � qT � M ,
the TMDs are further factorized in terms of the collinear PDFs. This matching is performed by means of
spin-dependent Wilson coefficients.

The first step has already been investigated at NLO in [4], but with TMDs defined off the light-cone and
with rapidity divergences. Here we investigate TMD factorization on the light-cone [5]. Another recent study
can be found in [6]. In order to check if TMD factorization holds (or, following the SCET terminology, in
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order to “establish” TMD factorization) at NLO, we need to check that the cross section expressed in terms of
TMDs has the same infrared behavior of the cross section evaluated at O(αS) in pQCD.

Let us introduce an effective operator to describe the Feynman amplitudes in Fig. 1:

O(ξ) = CH (−q2;μ2) {χ† 
(h)
μν ψ Bμ,a

n⊥ (ξ) (S†
nSn̄)

ab Bν,b
n̄⊥(ξ)}, (8)

where CH is the spin-independent matching coefficient used to integrate out the hard scale of the process, χ
andψ are the fermion fields, Bn⊥ is the SCET gluon field including collinear Wilson lines, Sn is the SCET soft
Wilson line (for the definition of SCET quantities see [2,7]), a, b are the gauge group indexes, 
 is a Lorentz
matrix and its role will be specified later. Using (8), we can write the cross section for the process in (5):

dσ = 1

2s

d3q

(2π)32q0

∫
d4y e−iqy

∑
X

〈PA, PBSB |O(y)|X + h〉〈X + h|O(0)|PA, PBSB〉. (9)

Introducing the operator definitions [2,7] for the correlators in (1), (2), (3), we cast the cross section in (9) in
a factorized form:
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= π
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]

+ Y (qT ; M) + O(�QCD/M), (10)

where h is the produced resonance, |CH |2 is the hard function and OQQ̄(h) refers to the NRQCD matrix
element:

OQQ̄(h) = |〈0|χ†ψ(y)|h〉|2 = Nc

2π
|Rnl(0)|2[1 + O(v4)]. (11)

In the last equation, Nc is the number of colors, R is the radial wave function of the hadron h and v is the relative
velocity of Q and Q̄. In (10), Y represents corrections for large qT . In order for this effective description to be
valid, we enforce it to reproduce the leading order QCD result for production of pseudoscalar quarkonium [8]
by fixing 
. Its expression is:


μν = αSπ

3
√
M

2
√
2ε⊥μν√

(d − 2)(d − 3)

√
N 2
c − 1, (12)

where d is the dimension of the space and ε
μν
⊥ = εnn̄μν .

Now we investigate how legitimate (10) is beyond the LO of QCD, namely if it reproduces the structure
of infrared poles of the QCD calculation at NLO. Diagrams in Fig. 1 plus the emission of a real gluon do not
suffer of infrared divergences because the transverse momentum of the emitted gluon is fixed and finite. For
this reason, we focus only on virtual diagrams:

σ
(1)
virt

IR←→ [
f̃ g/A1 f̃ g/B1

](1)
virt. (13)

If the IR poles of the NLO calculation for the virtual part of the cross section (LHS of (13)) are the same as
the ones generated by the two TMD PDFs (RHS of (13)), TMD factorization is established at O(αS), namely
the factorized form based on SCET and NRQCD reproduces the physical (QCD) result, up to a finite matching
coefficient that can be calculated subtracting the RHS from the LHS of (13). Comparing the results for the
cross section in [9,10] and for the TMD PDFs in [2], we check that their IR poles are the same (more details
in [7]). The finite matching coefficient (hard part) is:

H = |CH |2 = σ
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virt −

[
f̃ g/A1 f̃ g/B1

](1)
virt

= 1 + αS
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4
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This is a byproduct of the factorization theorem and it is fundamental for phenomenology.
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Fig. 2 ηb production from unpolarized proton collisions at AFTER@LHC. The graph shows the cross section in the TMD
factorization regime, namely where the transverse momentum is small compared to the hard scale (we restricted qT ≤ Mh/2).
Nonperturbative parameters are fixed: λQ = 0.5, λ f,h = 0.5 GeV2. The thick line represents the choice described in Sect. 3 for
the factorization scale μ f and the rapidity scale ζ f . The band comes from variations of μ f and ζ f by a factor of 2

The second matching step in (7) consists in expanding the TMD PDFs onto a basis of collinear PDFs with
perturbative coefficients:

T̃g(x, bT ;μ, ζ ) =
{ ∑

j=q,q̄,g

C̃T
g/j (x, bT ; μ, ζ ) ⊗ t j (x;μ)

}
T̃NP
g (x, bT , Q; {λ}), (15)

where the summation runs over quarks, antiquarks and gluons, T̃g is a generic gluon TMD PDF in bT -space, t
is its collinear counterpart and C̃T

g/j are the calculableWilson coefficients whichmatch the TMD T̃g onto PDFs.
The expansion is only valid at low values of bT , corresponding to high values of partonic transversemomentum.
At low transversemomentum (high bT ), due to the divergence of the coupling constant, a nonperturbative factor
T̃NP
g is needed: it depends on the kinematic variables and on a set of parameters {λ} to be fixed on experimental

data.
In the following we focus on collisions of unpolarized protons, involving TMD PDFs for unpolarized

gluons ( f g1 ) and linearly polarized gluons (h⊥g
1 ). Their Wilson coefficients are available in [2].

3 Phenomenology

Knowing the hard part of the process (14) and the Wilson coefficients for the TMDs in unpolarized protons,
we can predict the qT -spectrum of σUU (10) for ηb (1S

(1)
0 ) production at AFTER@LHC [11]. Substituting (1)

in both the correlators in (10), we get:

dσUU

dyd2qT
∼ H

∫
d2bT
(2π)2

[
f g/A1 (xa, bT ; μ, ζa) f

g/B
1 (xb, bT ; μ, ζb) − h⊥g/A

1 (xa, bT ; μ, ζa)h
⊥g/B
1 (xb, bT ;μ, ζb)

]
.

(16)
We implement (15) for f g1 and h⊥g

1 at NNLL+NLO, consistently with (14), and we fix the value of the radial
wavefunction from [12]. We choose a Gaussian model to describe the high bT behavior of f g1 :

f gNP1 (bT , Q; {λ}) = exp[−b2T (λ f + λQ lnM2)]. (17)

We use the same model for h⊥gNP
1 , with λ f replaced by λh . 4λ f/h represent the average square intrinsic

transverse momenta, whereas λQ accounts for emission of soft gluons. The values of λ f/h and λQ are not well
known yet. Experimental data at low qT are needed to better constrain them.
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Because of themediumvalue of itsmass (9.39GeV), ηb production is an ideal process to extract information
about the nonperturbative part of twist-2 gluon TMDs. The latter plays here a relatively clean role, because
the energy is high enough to safely neglect higher twist and factorization breaking effects and, at the same
time, it is low enough to avoid that the perturbative effects dominate the nonperturbative (which happens,
e.g., in Higgs production). We choose the initial scales ζi = μ2

i = μ2
b̂
, where μb̂ is defined through the b∗

prescription [3]. The final scales are ζ f = μ2
f = M2. The cross section sketched in (16) (without Y term) is

displayed in Fig. 2.

4 Conclusions

In this work we discussed TMD factorization at NLO for the qT -spectrum of color singlet quarkonium produc-
tion in terms of gluon TMDs, using for the first time the effective field theory (SCET and NRQCD) approach.
With the tools available from the factorization theorem, we can make accurate predictions for (un)polarized
cross sections at AFTER@LHC. Once experimental data are available at low qT , this formalism will allow the
extraction of the nonperturbative part of the involved gluon TMD PDFs. The distribution of linearly polarized
gluons in unpolarized protons (h⊥g

1 ) will be especially relevant in forthcoming studies at hadron colliders [13].
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