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Abstract The light-front (LF) quantization is applied for the model of massive scalar field with self-interaction.
We check some of the LF postulates by considering the Wightman function for this model. The scale sym-
metry imposed only on the LF quantization hypersurface and the Lorentz symmetry assumed for all points in
Minkowski’s space-time lead to a strong constraint for the Wightman functions, which is satisfied only by a
free and massless scalar field. This result agrees with the recent Weinberg’s result for a scale-symmetric theory.
This means that one cannot expect the unitary equivalence of the Fock space for scalar fields with different
masses at the LF hypersurface.

1 Introduction

In this paper we analyze the consistency and consequences of some postulates which are commonly accepted
within the standard LF formulation. For this aim we consider the vacuum correlation function 〈0|φ(x) φ(y)|0〉,
which we will refer to as the 2-point Wightman function. This allows us to work mostly with the c-numbered
(generalized) functions instead of the quantum field operators. We focus our attention on the following LF
assumptions. First postulate—there are two generators of the Poincaré group, which have their spectra bounded
from below, (our notation is explained in Appendix)

P+ = P− ≥ 0, P− = P+ ≥ 0. (1)

Commonly it is argued that P+ is kinematical, thus it has no dependence on mass and interaction at the
LF hypersurface. Then P− = HL F is the LF Hamiltonian, which generates the temporal evolution. Second
postulate—at the LF hypersurface x+ = 0 the maximal number (7 out of 10) of the Poincaré generators are
kinematical: P+, Pi , J+−, J−i , Ji j . Third postulate—the fields with different masses are unitarily equivalent
at the LF hypersurface, thus after [1] a null plane field theory is dilatation invariant in the null plane even if it
has a mass, where a null plane is a synonym of a light-front.

2 LF 2-Point Wightman Function

Let us consider the massive scalar hermitian field φ(x) with a self-interaction defined by the Lagrangian density
in D = 1 + 3 dimensions
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L = 1

2
∂μφ∂μφ − m2

2
φ2 − λ

4
φ4. (2)

Starting from this Lagrangian, the LF canonical quantization leads to the LF commutator for the quantum
scalar field operator

[φ(0, x̄), φ(0, ȳ)] = − i

4
sgn(x− − y−) δ2(x⊥ − y⊥). (3)

Since this commutator is a c-number, thus one easily finds its vacuum expectation value

〈0| [φ(0, x̄), φ(0, ȳ)] |0〉 = − i

4
sgn(x− − y−) δ2(x⊥ − y⊥), (4)

which is the commutator function at the LF, or equivalently a relation for the 2-point Wightman function
(2-WF)

〈0|φ(0, x̄) φ(0, ȳ)|0〉 − 〈0|φ(0, ȳ) φ(0, x̄)|0〉 = − i

4
sgn(x− − y−) δ2(x⊥ − y⊥). (5)

Since the hermiticity condition gives 〈0|φ(0, ȳ) φ(0, x̄)|0〉 = 〈0|φ(0, x̄) φ(0, ȳ)|0〉∗, thus the canonical com-
mutator fixes only the imaginary part of 2-WF

�〈0|φ(0, x̄) φ(0, ȳ)|0〉 = −1

8
sgn(x− − y−) δ2(x⊥ − y⊥). (6)

We take the vacuum state |0〉 as a unique state of energy and momentum zero with the translational
invariance e−i P·x |0〉 = |0〉, where the energy-momentum operators Pμ are the generators of translations
φ(x) = ei P·x φ(0) e−i P·x . Thus, the 2-point Wightman function 〈0|φ(x) φ(y)|0〉 is translationally invariant

〈0|φ(x) φ(y)|0〉 = 〈0|φ(0) e−i P·(x−y) φ(0)|0〉 = 〈0|φ(x − y) φ(0)|0〉, (7)

and one may consider 〈0|φ(x) φ(0)|0〉 = W(2)(x) as a generic case. Further, the LF generators P− = P+ and
P+ = P− have non-negative spectra, which means that the 2-point LF Wightman function W(2)(x+, x̄) =
〈0|φ(x) φ(0)|0〉 is a boundary value of an analytic function of x+ and x− from a lower half plane. Thus after
acting with ∂− and then implementing the analyticity in x− coordinate we obtain

�∂−W(2)(0, x̄) = −1

4
δ(x−) δ2(x⊥) ⇒ ∂−W(2)(0, x̄) = −δ2(x⊥)

4π

1

x− − i 0
, (8)

where we denote the distribution S ′(R) in x− as 1/(x− − i 0) = limε→0+ 1/(x− − i ε). We stress that this
expression for ∂−W(2)(0, x̄) is a non-perturbative exact result. It has no dependence on mass and interaction,
thus in some sense it may suggest an agreement with the standard LF formulation, where at the LF one introduces
the mass independent Fock representation for φ(0, x̄). However we stress that our result is fundamentally
different since here we do not implement any explicit representation for φ(0, x̄).

3 Lorentz Symmetry

The proper Lorentz transformation x ′μ = �
μ
νxν is imposed in the quantum field theory by the unitary operator

UL(�). Thus a scalar field operator transforms as

UL(�) φ(x) U−1
L (�) = φ(x ′) ≈ φ(x) + 1

2
ωμν(xν∂μ − xμ∂ν)φ(x) (9)

where for an infinitesimal transformation we take �μν = gμν +ωμν with an arbitrary parameter ωμν = −ωνμ.
The vacuum state is Lorentz invariant |0〉 = UL(�)|0〉, which leads to the Lorentz transformation law for the
Wightman function 〈0|φ(x ′) φ(0)|0〉 = 〈0|φ(x) φ(0)|0〉 for arbitrary �

μ
ν . Then for an infinitesimal proper

Lorentz transformation this leads to the differential equations for 2-WF

(xν∂μ − xμ∂ν)〈0|φ(x) φ(0)|0〉 = 0. (10)
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The Lorentz transformations generated by J−i , J+i , J+− and Ji j lead to the differential conditions on 2-WF
in the LC coordinates,

x+∂i W(2)(x+, x̄) + xi∂−W(2)(x+, x̄) = 0, (11a)

x−∂i W(2)(x+, x̄) + xi∂+W(2)(x+, x̄) = 0, (11b)

x+∂+W(2)(x+, x̄) − x−∂−W(2)(x+, x̄) = 0, (11c)

εi j x i∂ j W(2)(x+, x̄) = 0, (11d)

respectively. We have already found ∂−W(2)(0, x̄) in (8) using other arguments, thus it is worthy to insert it
into above equations. Then (11c) leads to the nontrivial LF limits

lim
x+→0

x+∂+W(2)(x+, x̄) = lim
x+→0

x−∂−W(2)(x+, x̄) = x−∂−W(2)(0, x̄) = − 1

4π
δ2(x⊥) �= 0. (12)

This means that for x+ ∼ 0, the Wightman function W(2)(x+, x̄) has a logarithmic dependence on x+ and x−
along a light-like direction. As a consequence the generator J+−, which is defined canonically by

J+− = x+ P− −
∫

d3 x̄ T ++x−, (13)

is not a kinematic operator at the LF limit

lim
x+→0

J+− �= −
∫

d3 x̄ T ++x−. (14)

This means that the LF limit taken as a strong condition for an operator may be misleading, thus rather one
should consider limit in a weak sense—when J+− appears inside the vacuum expectation value.

4 Scale Transformation

The scale transformation (dilatation) x ′ = lx for a classical scalar field is φ(x) → φ′(x ′) = l−dφ(x), where
the scaling dimensionality is d = D/2 − 1. In the D = 1 + 3 space-time dimension d = 1 and the unitary
operator US(l) generates the scale (dilatation) transformation for a quantum scalar field

US(l) φ(x) US
−1(l) = ldφ(lx) ≈ φ(x) + ε(1 + xμ∂μ)φ(x) (15)

where for an infinitesimal transformation l = 1 + ε. Then the scale invariant vacuum state |0〉 = US
−1(l)|0〉

leads to the scale transformation of 2-WF 〈0|φ(x)φ(0)|0〉 = l2〈0|φ(lx)φ(0)|0〉. Thus for an infinitesimal scale
transformation one obtains

(2 + xμ∂μ)〈0|φ(x)φ(0)|0〉 = 0, (16)

which in the LC coordinates looks as

(2 + x−∂− + x+∂+ + xi∂i )〈0|φ(x)φ(0)|0〉 = 0. (17)

The combination of partial derivatives, which appears in this equation x−∂− + x+∂+ is quite similar to that
which appears in the Lorentz transformation generated by J+−

(x−∂− − x+∂+)〈0|φ(x)φ(0)|0〉 = 0. (18)

Evidently if one imposes both the scale symmetry and the Lorentz symmetry, then one effectively arrives at
the equation which does not contain the LF temporal derivative ∂+

(2 + 2x−∂− + xi∂i )〈0|φ(x)φ(0)|0〉 = 0 (19)

or after a simple rearrangement

2x−∂−〈0|φ(x)φ(0)|0〉 + ∂i

[
xi 〈0|φ(x)φ(0)|0〉

]
= 0. (20)
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This is a truly kinematical relation, which must hold at every fixed value of x+ irrespective of the equa-
tion of motion for the scalar field. Thus it forms a nonperturbative constraint for 2-WF. We observe that
xi 〈0|φ(x)φ(0)|0〉 has a regular LF limit, since it has no contribution from points lying on a light-like line, thus
at the LF x+ = 0 we write

2x−∂−W(2)(0, x̄) + ∂i

[
xi W(2)(0, x̄)

]
= 0. (21)

Further, using (12) we arrive at the inhomogeneous partial differential equation for xi W(2)(0, x̄)

∂i

[
xi W(2)(0, x̄)

]
= 1

2π
δ2(x⊥). (22)

Moreover for the Lorentz transformation conditions we may impose the LF limits which produce further
equations for xi W(2)(0, x̄)

0 = lim
x+→0

x+∂i W(2)(x+, x̄) = − lim
x+→0

∂−
[
xi W(2)(x+, x̄)

]
= −∂−

[
xi W(2)(0, x̄)

]
= 0 (23a)

0 = lim
x+→0

εi j x i∂ j W(2)(x+, x̄) = εi j∂ j lim
x+→0

[
xi W(2)(x+, x̄)

]
= εi j∂ j

[
xi W(2)(0, x̄)

]
= 0, (23b)

where we take limx+→0 x+W(2)(x+, x̄) = 0, because for x+ ∼ 0 the singular part of 2-WF behaves as ln |x+|.
These three equations xi W(2)(0, x̄) can be solved as follows. From (23a) we see that there is no x−-dependence
of xi W(2)(0, x̄), while (22) and (23b) are the divergence and rotation in R

2-space of x⊥. The solution is unique
in the sense of distributions S ′(R2)

xi W(2)(0, x̄) = 1

4π2

xi

x2⊥
. (24)

Thus if one imposes the scale symmetry at the LF hypersurface for the Lorentz-invariant scalar field model,
then one finds both parts of 2-WF, which have regular LF limits, xi W(2)(0, x̄) and x−∂−W(2)(0, x̄). Moreover
these expressions satisfy the partial differential equation

�⊥[xi W(2)(0, x̄)] + 2x−∂−∂i W(2)(0, x̄) = 0, (25)

which will be useful in our further analysis. Evidently xi W(2)(0, x̄) and x−∂−W(2)(0, x̄) are mass-independent,
but this property does not necessarily mean that at the LF hypersurface one has the equivalence between fields
with different masses. Here we stress that the scale symmetry at the LF hypersurface leads to a very strong
constraint on the LF Wightman function.

Since the Lorentz symmetry holds for different LF times, we may differentiate the Lorentz transformation
condition

(
x+∂i + xi∂−

)
W(2)(x) = 0, with respect to x+, which gives(

x+∂+∂i + ∂i + xi∂−∂+
)

W(2)(x) = 0. (26)

Then by rearranging terms, we arrive at the equation at arbitrary x+

�⊥[xi W(2)(x)] + 2x+∂+∂i W(2)(x) + xi [
2∂−∂+ − �⊥

]
W(2)(x) = 0. (27)

Taking the restriction to the LF hypersurface x+ = 0 we get

�⊥[xi W(2)(0, x̄)] + 2x−∂−∂i W(2)(0, x̄) + xi lim
x+→0

[
2∂−∂+ − �⊥

]
W(2)(x) = 0 (28)

thus due to (25) we find

xi lim
x+→0

�W(2)(x) = 0 � = 2∂−∂+ − �⊥. (29)

Moreover we check the sequence of limits

lim
x+→0

x+�W(2)(x)= 2∂− lim
x+→0

x+∂+W(2)(x+, x̄)−�⊥ lim
x+→0

x+W(2)(x+, x̄) = − 1

2π
∂−δ2(x⊥) = 0. (30)

Finally we may collect these equations into one relation

lim
x+→0

(2x+x− − x2⊥)W(2)(x+, x̄) = 0, (31)

which is the LF restriction of Weinberg’s equation [2] x2�W(2)(x) = 0.
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5 General Scalar Field

Starting from assumptions for our scalar field model we may introduce the Källén–Lehmann [3,4] spectral
representation for 2-WF

〈0|φ(x) φ(0)|0〉 =
∞∫

0

dσ 2 ρ(σ 2)�+(x; σ), (32)

where the spectral density, defined as

ρ(q) = (2π)3
∑

n

δ4(pn − q) |〈0|φ(0)|n〉|2 , (33)

is a non-negative real valued function, while |n〉 are the eigenstates of 4-momenta operators Pμ|n〉 = pμ
n |n〉.

From the Lorentz symmetry, the spectral density ρ(q) is non-vanishing only for momenta in a forward light-
cone q2 ≥ 0

ρ(q) = ρ(q2)θ(q0) ≥ 0. (34)

The Lorentz invariant singular function �+(x; σ), defined as

�+(x; σ) = 1

(2π)3

∫

R4

d4k e−ik·x �(k0) δ(k2 − σ 2), (35)

satisfies the Lorentz covariance relations (xν∂μ − xμ∂ν)�+(x; σ) = 0 and near x+ ∼ 0 it behaves like [5]

�+(x; σ) = − 1

4π

[
ln(σ 2|x+x−|) + γE + i

π

2

(
sgn(x+) + sgn(x−)

)]

δ2(x⊥) − 1

4π2 Di

[
xi

x2⊥
K0(σ x⊥)

]
+ 0(x+x−), (36)

where γE is the Euler–Mascheroni constant, Di is a distributional partial derivative and K0(z) is the modified
Bessel function. This function has a logarithmic singularity at the LF hypersurface along lines with x⊥ = 0,
which connect points with a light-like separation. But its partial derivative ∂− has a regular LF limit

lim
x+→0

∂−�+(x) = ∂−�+(0, x̄) = − 1

4π

[
P

1

x− + iπδ(x−)

]
δ2(x⊥) = − 1

4π

δ2(x⊥)

x− − i 0
, (37)

where P denotes the Cauchy principal prescription. Thus ∂−�+(0, x̄) is mass-independent at x+ and the
spectral representation gives

∂−〈0|φ(0, x̄) φ(0)|0〉 =
∞∫

0

dσ 2 ρ(σ 2)∂−�+(0, x̄; σ) = − 1

4π

δ2(x⊥)

x− − i 0

∞∫

0

dσ 2 ρ(σ 2). (38)

Thus from (8) we obtain the integral condition for the spectral amplitude

∞∫

0

dσ 2 ρ(σ 2) = 1, (39)

which agrees with the analysis in other formulations (like the equal-time approach). Further, also xi�+(x)
has a finite LF limit, for x⊥ > 0

lim
x+→0

xi�+(x) = − xi

4π2

1

x⊥
d

dx⊥
K0(σ x⊥) = xi

4π2

σ

x⊥
K1(σ x⊥), (40)
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so the spectral representation for x⊥ > 0 gives

xi 〈0|φ(0, x̄) φ(0)|0〉 =
∞∫

0

dσ 2 ρ(σ 2)xi�+(0, x̄; σ) =
∞∫

0

dσ 2 ρ(σ 2)
xi

4π2x⊥
σ K1(σ x⊥). (41)

Thus the scaling symmetry at the LF hypersurface leads to another integral condition for the spectral density

1

x⊥
=

∞∫

0

dσ 2 ρ(σ 2)σ K1(σ x⊥), (42)

which must be satisfied for arbitrary x⊥ > 0. One may take the Bessel transform of this relation by integrating
its both sides with x⊥ J1(αx⊥), keeping α > 0,

∞∫

0

dx⊥ J1(αx⊥) =
∞∫

0

dσ 2 ρ(σ 2)σ

∞∫

0

dx⊥x⊥ J1(αx⊥)K1(σ x⊥). (43)

From the integrals

∞∫

0

dx⊥ J1(αx⊥) = 1

α
,

∞∫

0

dx⊥x⊥ J1(αx⊥)K1(σ x⊥) = α

σ(α2 + σ 2)
, (44)

the Bessel transformation leads to a simple form of the integral condition

1

α
=

∞∫

0

dσ 2 ρ(σ 2)
α

α2 + σ 2 , ⇒
∞∫

0

dσ 2 ρ(σ 2)
σ 2

α2 + σ 2 = 0, (45)

where we have used (39). Thus the spectral density is uniquely determined as ρ(σ 2) = 2δ(σ 2), which means
that there is only a free massless mode.

6 Conclusions and Prospects

Our analysis agrees with Weinberg’s result, that the scaling and Lorentz symmetries allow only for a free
and massless field. While Weinberg discusses fields with arbitrary spin, then we consider here only a scalar
field case. Another difference is that we assume the scaling symmetry only at the LF hypersurface, while
Weinberg imposes it for all points in Minkowski’s space-time. Our analysis is intended for the LF canonical
formulation and it falsifies one of the commonly accepted postulate of the unitary equivalence of scalar fields
with different masses at the LF hypersurface. We point out that the scaling symmetry is necessary for the mass-
independence, thus our result means that one cannot build a Fock space which is mass-independent at the fixed
LF hypersurface. We also find that the LF restriction for a quantum operator may lead to an inconsistency, as
for J+− at the LF hypersurface x+ = 0.

We plan to extend our analysis for fields with higher spins, specially for fermions. This would allow to
study the Yukawa model at the LF hypersurface. Much more interesting cases of QED and QCD are eventually
our next aim, but we are aware that the Lorentz and scaling transformations would be non-trivial for gauge
fields.
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Appendix: Notation

We define the light-cone (LC) coordinates as x+ = (x0 + x3)/
√

2, x− = (x0 − x3)/
√

2, xi⊥ =
(x1, x2), i ∈ {1, 2}, x⊥ = |x⊥|. The non-vanishing metric components are g+− = g−+ = 1, gi j = −δi j

and the partial derivatives for LC coordinates are ∂+ = ∂− = ∂/∂x+, ∂− = ∂+ = ∂/∂x−, ∂i = −∂ i =
∂/∂xi . The 2-dimensional tensor εi j is normalized as ε12 = 1. The LF hypersurface is described by a fixed
x+ coordinate and we consider the canonical quantization hypersurface with the LC coordinates x+ = 0 and
x̄ = (x−, x⊥). The LF evolution develops with x+ being the LF temporal parameter.
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