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Abstract We investigate quantum correlations in the ground state of the Moshinsky model formed by N
harmonically interacting particles confined in a harmonic potential. The model is solvable which allows an
exact determination of entanglement between the subset of p particles and the remaining N − p particles. We
study linear entropies and von Neumann entropies of the bipartitions and compare their behavior with that of
the relative correlation energy and of the statistical Kutzelnigg coefficient.

1 Introduction

In recent years there has been a growing interest in systems of interacting particles trapped in potential
wells because of their possible use in quantum information processing. Artificially fabricated objects, such
as atomic clusters or quantum dots, theoretically described as harmonically confined systems with adjustable
control parameters, are promising candidates for quantum computers. This gives the motivation to study their
quantum information properties. In this work we perform such a study for the Moshinsky model where the
interparticle interaction is harmonic. Being solvable, the model is useful for an approximate description of
realistic systems and as benchmark for many-body approximation methods [1]. Its entanglement properties
have been studied in the case of N = 2 [2] and N = 3 [3]. Here we consider the ground state (GS) entanglement
in the N -particle Moshinsky system.

After rescaling (x �→
√

h̄
mΩ x, E �→ h̄ΩE), the one-dimensional system of particles confined by V (x) =

mΩ2x2

2 and interacting via λ(xi − x j )
2 is described by the Schrödinger equation Hψ(r1, . . . , rN )

= Eψ(r1, . . . , rN ) with the Hamiltonian

H =
N∑

i=1

−1

2

d2

dx2
i

+ 1

2
x2

i +
∑

i< j

g(xi − x j )
2, (1)

where the parameter g = λ
mΩ2 represents the ratio of the interaction to the confinement strength. In Jacobi

coordinates: Y = x1+x2+...+xN√
N

, yi =
√

i−1
i

(
xi − 1

i−1

∑i−1
k=1 xk

)
, i = 2, . . . , N , the Hamiltonian separates

into H = HY + Hy = − 1
2

d2

dY 2 + 1
2 Y 2 + ∑N

i=2

(
− 1

2
d2

dy2
i

+ 1
2ω

2 y2
i

)
, where ω = √

1 + 2Ng. The exact
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expression for the GS wave function is obtained in the form Ψ (Y, y2, . . . , yN ) = (ω
π
)

N−1
4 e−wr2

2 ( 1
π
)

1
4 e− Y 2

2 ,

where r2 = ∑N
i=2 y2

i = ∑N
i=1 x2

i − Y 2, with the GS energy E = 1
2 (N − 1)ω + 1

2 .

2 Correlation Measures

Correlations in the system may be quantified by entropic, energetic or statistical measures.

2.1 Entropic Correlation Measures

From a quantum information viewpoint the entanglement in an N -particle stateΨ (x1, . . . , xN ) is described by
the correlations of p of the N particles with the remainig N − p ones. The p-particle reduced density matrix
(p-RDM)

ρ(p)(r1,. . . ,rp,r’1,. . . ,r’p) =
∫
Ψ (r1,. . . ,rp,rp+1,. . . ,rN )Ψ (r’1,. . ., r’p,rp+1,. . . ,rN )d

3rp+1 . . . d
3rN (2)

can be represented in the Schmidt form

ρ(p)(r1,. . . , rp, r’1,. . . , r’p) =
∑

λ
(p)
k uk(r1, . . . , rp)uk(r’1, . . . , r’p). (3)

The occupancies λ(p)k of the natural p-orbitals characterise the bipartite entanglement in the system. Its amount

can be quantified by the von Neumann entropy S(p) = −T r [ρ(p) log2 ρ
(p)] = − ∑∞

n=0 λ
(p)
n log2 λ

(p)
n , or the

linear entropy L(p) = 1−T r [ρ(p)]2 = 1−∑∞
n=0[λ(p)n ]2. In the Moshinsky model, the p-RDM can be obtained

analytically [4] and defining t = 1
N

√
N 2 − 2N p + 2p2 + 2p(gN+1)(N−p)

ω
, its eigenvalues are given by

λ
(p)
n = 2(t − 1)n

(t + 1)n+1 , (4)

leading to exact expressions for the von Neumann entropy

S(p) = 1

2
log2[(t + 1)t+1(t − 1)1−t ] − 1, (5)

and the linear entropy

L(p) = 1 − 1

t
. (6)

2.2 Energetic Correlation Measure

The correlation in the GS is measured with respect to the mean field (MF) approximation to its energy
EM F = 〈ΨM F |H |ΨM F 〉. The MF wave function is a product ΨM F (x1, x2, . . . , xN ) = ∏N

i=1 ψM F (xi ), where

ΨM F fulfills − 1
2

d2ψM F (x)
dx2 + 1

2 x2ψM F (x) + g(N − 1)ψM F (x)
∫ ∞
−∞ ψ2

M F (x1)(x − x1)
2dx1 = εψM F (x).

The energetic correlation measure is defined [5] as the relative error of the MF energy ΔE = EM F −Eexact
Eexact

. In

the Moshinsky model, ψM F (x) = 8√2g(N−1)+1e− 1
2 x2√

2g(N−1)+1

4√π , GS energy EM F = 1
2 N

√
2g(N − 1)+ 1 and

the relative correlation energy takes a form

ΔE = N
√
ω2 − 2g

(N − 1)ω + 1
− 1. (7)
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Fig. 1 The bipartite entanglement between a subset of p particles and the remaining ones for N = 4, 10, 50 as functions of ln g.
Top linear entropies, bottom von Neumann entropies
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Fig. 2 (a) von Neumann entropy S(1), (b) relative correlation energyΔE and (c) the Kutzelnigg coefficient τ as functions of ln g
for N = 4, 10, 50

2.3 Statistical Correlation Coefficient

Quantum correlations of a many-body system can be also measured by the Kutzelnigg coefficient [6]

τ = 〈x1x2〉−〈x〉2

〈x2〉−〈x〉2 , where the averages are defined as 〈 f (x)〉 = ∫
f (x)|ψ(x, x2, x3, . . . , xN )|2dxdx2 . . . dxN ,

and 〈x1x2〉 = ∫
x1x2|ψ(x1, x2, x3, . . . , xN )|2dx1dx2 . . . dxN . In the Moshinski model, it takes a form

τ = ω − 1

ω + N − 1
. (8)

3 Results

The linear entropies L(p) and von Neumann entropies S(p) are presented in Fig. 1 for all possible bipartitions
p = 1, . . . , [N/2] of the Moshinsky systems with various numbers of particles N . Both entropies increase
with the number of extracted particles p. The entropies L(p) are bounded, whereas S(p) are not, but at all
p they show a similar, monotonically increasing behaviour, reflecting the fact that the number of noticeably
occupied p−orbitals increases with g.

The Fig. 2 compares the one-particle entanglement S(1) with the relative correlation energy ΔE and the
Kutzelnigg coefficient τ as functions of g. All the measures show a monotonic increase with g. A similar
comparison but in function of N is made in Fig. 3 for three different values of g. We observe the decrease to
zero for large N , which is monotonic only for the relative correlation energy and for the Kutzelnigg coefficient.
Interestingly enough, the entropic measure S(1) displays a maximum at Nmax , suggesting that entanglement
is maximal when the number of particles of the Moshinsky system N = Nmax .
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Fig. 3 (a) von Neumann entropy S(1), (b) relative correlation energy ΔE and (c) the Kutzelnigg coefficient τ as functions of N
for g = 0.1, 1, 100

4 Conclusion

In the Moshinsky model, the bipartite entropies L(p) and S(p) monotonically increase with g for all p. The
entropies show a maximum at some number of particles N = Nmax , which does not happen for the correlation
energy or the Kutzelnigg coefficient.
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