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Abstract
Major surgical procedures induce a systemic infl amma-
tory response syndrome (SIRS) characterized by the 
overproduction of proinfl ammatory cytokines, which 
induces excessive stress and may trigger postoperative 
complications. This has prompted the hypothesis that 
drugs which relieve SIRS might improve the postopera-
tive course of major surgery. One of the most promising 
targets for these drugs is high-mobility-group box chro-
mosomal protein 1 (HMGB1). In 1999, HMGB1 was 
found to be a key late mediator of sepsis. It is now 
known to be associated with various kinds of acute and 
chronic infl ammation, and is recognized as one of the 
most important danger signals in stress response. In this 
article, we present the latest information about HMGB1 
and discuss its promise as a novel target for modulating 
stress response.

Key words Stress response · High-mobility-group box 
chromosomal protein 1 · Systemic infl ammatory re-
sponse syndrome · Multiple organ dysfunction syn-
drome · Alarmin · Pathogen-associated molecular 
pattern

Introduction

Surgery is often essential to remove disease-causing 
lesions; however, it can provoke excessive systemic 
infl ammatory responses, leading to a disruption of 
homeostasis. In 1991, the American College of Chest 
Physicians/Society of Critical Care Medicine Consensus 
Conference Committee proposed a set of defi nitions for 
systemic infl ammatory response syndrome (SIRS).1,2 
Systemic infl ammatory response syndrome is defi ned as 

at least two of the following abnormalities: fever or 
hypothermia; tachycardia; tachypnea; and leukocytosis 
or leukopenia.1,2 Although SIRS includes diverse clini-
cal conditions such as infection, trauma, burns, and 
acute pancreatitis, the physiological background is con-
sistently characterized by the overproduction of chemi-
cal mediators such as cytokines, which can cause varying 
degrees of organ dysfunction.3–9 Because the kinetics 
and magnitude of cytokine release infl uence the devel-
opment of organ dysfunction, it is possible that modu-
lating cytokine response could prevent SIRS from 
developing into more critical conditions.10–15 However, 
the acute kinetics of most cytokines provides an 
extremely narrow therapeutic window for the effective 
use of specifi c cytokine inhibitors.3,16 High-mobility-
group box chromosomal protein 1 (HMGB1) was 
recently identifi ed as a late mediator of systemic infl am-
mation.17 The downstream or late action of HMGB1 
provides a wider time frame for clinical intervention 
against progressive infl ammatory disorders.16,18 This 
article analyzes the pathophysiological roles of HMGB1 
and discusses the potential of HMGB1 as a clinically 
useful therapeutic target.

HMGB1 as a Danger Signal

Molecular Characteristics

HMGB1, also referred to as amphoterin, was originally 
identifi ed as a nuclear DNA-binding protein.18 In 1973 
it was also identifi ed as a 30-kDa protein, which was fi rst 
copurifi ed from nuclei with histones, and termed “high 
mobility group 1” (HMG-1) protein because of its rapid 
mobility on electrophoresis gels.19,20 HMGB1 localizes 
to the nucleus and cytoplasm of most cells, to the cell 
membrane of neuronal (neuroblastoma) cells, and to 
the fi lopodia of the advancing plasma membrane of 
neurites, where it colocalizes and interacts with tissue 
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plasminogen activator.21,22 Membrane HMGB1 was 
termed “amphoterin” because it has marked dipolar 
charge properties.21

HMGB1 is produced by almost all cell types, and can 
migrate between the cytoplasm and nucleus in a cell-
cycle-dependent manner.23 The amino acid sequence of 
HMGB1 is highly preserved in different species, and 
contains a continuous stretch of negatively charged resi-
dues in the C-terminus and two internal repeats of posi-
tively charged domains known as the HMG A box and 
the HMG B box in the N-terminus.24 The HMG boxes 
provide a secondary structure specifi c for DNA binding 
and contribute to the potential role of HMGB1 in DNA 
recombination, repair, replication, and gene transcrip-
tion.25–30 HMGB1 bends DNA and facilitates the binding 
of various transcription factors to their cognate 
sequences, including the steroid/nuclear hormones.31 
The nuclear localization of HMGB1 and its affi nity for 
DNA are regulated through phosphorylation and acety-
lation, and it has been found to have a dynamic relation-
ship with chromatin.32–34 HMGB1-defi cient mice are 
viable only for a few hours after birth.35 The lack of 
chromosomal HMGB1 protein does not disrupt cell 
growth, but may affect the transcriptional regulation of 
certain genes such as those activated by the glucocorti-
coid receptor.35

Danger Signaling

In 1994, Matzinger proposed the concept of danger sig-
naling to account for the infl ammation that occurs in 
settings such as trauma and autoimmunity, which are 
void of infectious stimuli.36 In this model, the infl amma-
tory response is initiated in response to molecular pat-
terns, which are associated with pathogens and some 
normal cellular components released by damaged cells 
during both infectious and sterile processes.37 Molecular 

elements from pathogens that elicit an immune response, 
such as lipopolysaccharide (LPS), bacterial DNA, and 
viral RNA, are specifi c, generally invariant patterns 
termed pathogen-associated molecular patterns 
(PAMPs).38–40 The cellular receptors that recognize 
these patterns are evolutionarily conserved and are 
called pattern recognition receptors.40 This theory pro-
vides a plausible explanation as to why infl ammatory 
responses following sterile injury closely mimic those 
seen during infection, with similar cytokine and chemo-
kine production patterns.41,42

Release of HMGB1

HMGB1 is released passively during cellular necrosis 
by almost all cells that have a nucleus, and it signals 
to neighboring cells of ongoing damage.43 However, 
HMGB1 is also secreted actively by immune cells such 
as monocytes, macrophages, and dendritic cells17,44,45 
(Fig. 1). The stimuli for secretion of HMGB1 from 
immune cells are diverse. In addition to PAMPs, endog-
enous molecules, such as cytokines released during 
other states of injury, can result in the secretion of 
HMGB1. Although fi rst demonstrated with interferon-
γ, macrophages also release HMGB1 in response to 
stimulation with tumor necrosis factor (TNF)-α, inter-
leukin (IL)-1, and oxidative stress.46–50 Interestingly, the 
PAMP and cytokine stimuli for HMGB1 secretion from 
macrophages occur through distinct pathways.46

Receptors of HMGB1

Several important receptors have been implicated in 
HMGB1 signaling, including the receptor for advanced 
glycation end products (RAGE) and members of the 
Toll-like family of receptors (TLRs; Fig. 1).51–53 HMGB1 
signaling through RAGE promotes chemotaxis and the 

Fig. 1. High-mobility-group box chromo-
somal protein 1 (HMGB1) localizes to 
the nucleus and cytoplasm of most cells 
and to the cell membrane of neuronal 
cells. HMGB1 is released passively during 
cellular necrosis by almost all cells. 
HMGB1 is also secreted actively by 
immune cells such as monocytes, macro-
phages, and dendritic cells in response 
to stimulation with pathogen-associated 
molecular patterns and cytokines. 
HMGB1 shows not only proinfl ammatory 
functions but also restorative effects, 
leading to tissue repair and regeneration 
through receptor for advanced glycation 
end products (RAGE) and Toll-like 
receptors (TLR)
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production of cytokines in a process that involves the 
activation of the transcription factor nuclear factor-κB 
(NF-κB).54,55 Other RAGE-dependent effects of 
HMGB1 appear to involve the maturation and migra-
tion of immune cells, as well as the upregulation of cell 
surface receptors.48,56–65 TLR2, TLR4, and TLR9 have all 
been shown to be HMGB1 receptors. The HMGB1 
binding of TLR2 and TLR4 results in NF-κB activation; 
thus, it is likely that HMGB1 stimulation of these recep-
tors can lead to cytokine release.52,53

Pathophysiologic Effects of HMGB1: 
Proinfl ammatory Effects

HMGB1 as a Cytokine

Cytokines have been defi ned as proteins that can be 
released from activated immunocytes and mediate 
diverse metabolic and immunological responses in other 
cells.66 HMGB1 is actively released from activated 
immunocytes, such as macrophages, monocytes, and 
dendritic cells. Once released, HMGB1 can bind to cell-
surface receptors such as RAGE, TLR2, and TLR4, and 
mediate various cellular responses, including chemo-
taxis and release of proinfl ammatory cytokines, such as 
TNF and IL-1.52,67–69 Taken together, these observations 
characterize HMGB1 as a nonclassical, proinfl amma-
tory cytokine.

Pathophysiologic Effects of HMGB1

The proinfl ammatory activity of HMGB1 causes infl am-
matory responses in various organs. HMGB1 was ini-
tially implicated as an important endogenous signaling 
molecule in 1999 by Wang et al.,17 who observed that 

serum concentrations of HMGB1 increased signifi cantly 
16–32 h after LPS administration in mice, and that the 
systemic administration of HMGB1 was lethal to 
wild-type mice.17 Although early studies demonstrated 
HMGB1 as a late mediator of sepsis, recent fi ndings 
indicate that HMGB1 plays an important role in models 
of noninfectious infl ammation, such as autoimmunity, 
cancer, trauma, and ischemia/reperfusion injury (IRI). 
HMGB1 has also been studied in a number of organ 
systems in various pathological settings (Table 1).

Systemic Infl ammatory Response

HMGB1 is associated with various infectious and non-
infectious conditions related to SIRS, such as sepsis, 
hemorrhagic shock, trauma, IRI, disseminated intravas-
cular coagulation (DIC), and major surgery. In relation 
to infectious conditions, HMGB1 is released systemi-
cally in murine models of endotoxemia and sepsis 
induced by cecal perforation16,70. Moreover, in one study, 
serum HMGB1 levels were signifi cantly higher in 25 
sepsis patients than in healthy volunteers, and were 
higher in patients who succumbed to disease than in 
survivors.17 In relation to noninfectious conditions, ele-
vated circulating levels of HMGB1 were described in a 
case report of hemorrhagic shock without evidence of 
infection.71 In this patient, the serum HMGB1 levels 
increased signifi cantly within 24 h after the onset of 
hemorrhagic shock and returned toward the baseline 
level as the clinical condition improved.71 HMGB1 neu-
tralizing antibodies ameliorate hemorrhage-induced 
acute lung injury as well as gut barrier dysfunction, ulti-
mately improving the chance of survival.72,73 HMGB1 
also plays a central role in the initiation and propaga-
tion of infl ammatory response following traumatic 
injury.74 Moreover, there is much confi rmatory evidence 

Table 1. Pathophysiologic effects of high-mobility-group box chromosomal protein 1 
(HMGB1)

• Systemic infl ammatory response
Sepsis, hemorrhagic shock, trauma, IRI, DIC, major surgery

• Respiratory system
ALI, VILI, occult lung injury

• Cardiovascular system
Myocardial infarction, atherosclerosis

• Musculoskeletal system
Arthritis

• Central nervous system
Sickness behavior (fever, anorexia, taste aversion, weight loss)
Brain infarction

• Gastrointestinal tract
Intestinal barrier function, infl ammatory bowel disease

• Pancreas
Pancreatitis

IRI, ischemia/reperfusion injury; DIC, disseminated intravascular coagulation; ALI, acute lung 
injury; VILI, ventilator-induced lung injury
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that HMGB1 is involved in the initiation of infl am-
matory response following ischemia/reperfusion in 
the liver, heart, kidney, and brain. TLR4 signaling plays 
a dominant role in mediating the organ damage in 
IRI.75–79 In addition, plasma HMGB1 levels are increased 
in patients with DIC, and HMGB1 in the systemic cir-
culation induces DIC in rats.80,81 Our previous clinical 
study on thoracic esophagectomy patients revealed a 
correlation between higher levels of HMGB1 in the 
immediate postoperative period as well as elevated pre-
operative serum HMGB1 concentrations and a compli-
cated clinical course, indicating that elevated HMGB1 
may play a role in the development of postoperative 
organ system dysfunction.82

Respiratory System

HMGB1 is associated with acute lung injury (ALI), 
ventilator-induced lung injury (VILI), and occult lung 
injury. Elevated HMGB1 levels are found in the plasma 
and lung epithelial lining fl uid of patients with ALI and 
in mice instilled with LPS.83 The intratracheal instilla-
tion of HMGB1 in mice causes ALI as manifested by 
neutrophil accumulation, lung edema, and increased 
pulmonary cytokine levels, including TNF, IL-1β, and 
MIP-2.45 Lastly, treatment with anti-HMGB1 antibodies 
in mice exposed to intratracheal LPS signifi cantly 
decreases lung edema and neutrophil accumulation 
but does not suppress LPS-induced pulmonary cyto-
kines, indicating an important downstream role of 
HMGB1 in ALI.45,83,84 Recently, HMGB1 was also sug-
gested to be one of the deteriorating factors in the 
development of VILI and to be involved in the patho-
genesis of occult lung injury in the residual lung after 
pneumonectomy.85,86

Cardiovascular System

HMGB1 is associated with myocardial infarction and 
atherosclerosis. In patients with myocardial infarction, 
a higher peak serum HMGB1 level is associated with 
pump failure, cardiac rupture, and in-hospital cardiac 
death.87 HMGB1 is present in much larger quantities in 
atherosclerotic plaques than in normal arterial walls, 
and is associated with neointimal hyperplasia and in-
stent restenosis.88

Musculoskeletal System

Biopsy samples from rheumatoid arthritis patients show 
elevated HMGB1 levels in synovial fl uid.89,90 Accord-
ingly, high levels of HMGB1 have been observed in rats 
with adjuvant arthritis.90 Immunostaining of synovial 
tissues from adjuvant-induced arthritis rats show that 
HMGB1 is abundantly expressed as a nuclear, cytoplas-

mic, and extracellular component when compared with 
specimens from normal rats, in which HMGB1 is pri-
marily confi ned to the nucleus.90 The intra-articular 
administration of HMGB1 induces the onset of arthritis 
in mice, suggesting an important role of HMGB1 in the 
pathogenesis of arthritis.91–93

Central Nervous System

The intracerebrocentricular administration of HMGB1 
in mice increases their brain TNF, IL-1, and IL-6 expres-
sion, and induces symptoms such as fever, anorexia, 
taste aversion, and weight loss.94,95 HMGB1 also plays a 
critical role in brain infarction through the amplifi cation 
of plural infl ammatory responses in the ischemic region. 
This effect could be attenuated by the intravenous injec-
tion of neutralizing anti-HMGB1 antibody in rats.96

Gastrointestinal Tract

HMGB1 and B-box impair intestinal barrier function in 
mice, and increase ileal mucosa permeability and bacte-
rial translocation to the mesenteric lymph nodes. This 
impairment is via a mechanism that depends on nitric 
oxide formation.97 In mice with chemically induced 
colitis, serum HMGB1 levels increase and the inhibition 
of HMGB1 by the anti-HMGB1 antibody reduces 
infl ammation in the colon.98 These facts suggest that 
HMGB1 is potentially a useful target for the treatment 
of infl ammatory bowel disease.

Pancreas

Serum HMGB1 levels increase signifi cantly in patients 
with severe acute pancreatitis and correlate with disease 
severity.99 This indicates that HMGB1 may act as a key 
mediator for infl ammation and organ failure in severe 
acute pancreatitis.

Benefi cial Roles of HMGB1: Role of HMGB1 in 
Tissue Repair and Preconditioning

Dual Role of  HMGB1

In contrast to the proinfl ammatory functions of HMGB1, 
there is much evidence that this molecule also has 
restorative effects, promoting tissue repair and regen-
eration (Table 2).100 HMGB1 induces a concentration-
dependent activity that varies from benefi cial to 
pathological.18 Similar to other proinfl ammatory cyto-
kines, excessive levels of HMGB1 result in an uncon-
trolled infl am matory response that can be more 
dangerous than the original insult, inducing tissue injury 
and organ failure.43,44,93 However, moderate amounts of 
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HMGB1 induce a benefi cial immune response to confi ne 
infection or tissue damage and promote wound healing 
and tissue regeneration.18 Structural characteristics par-
tially account for this dual nature of HMGB1. Several 
studies have identifi ed the B-box domain as important 
for many of the proinfl ammatory properties of HMGB1, 
including cytokine release.56,101 Conversely, the A-box 
does not possess proinfl ammatory properties and 
instead competes with HMGB1 for binding sites, leading 
to attenuation of the infl ammatory cascade.16

HMGB1 in Tissue Regeneration and Repair

In 2001, HMGB1 was fi rst shown to function as a che-
moattractant, when cytoskeleton reorganization and 
cell migration were induced in rat vascular smooth 
muscle cells.102 In 2004, another study highlighted the 
use of HMGB1 in promoting migration and prolifera-
tion of regenerative cells to the sites of infl ammation 
and injury.103 Cell proliferation with HMGB1 stimula-
tion was noted to increase in a dose-dependent manner, 
and in vitro and in vivo experiments showed that the 
migration of mesoangioblasts functioned in a dose-
dependent manner through interactions with the RAGE 
receptor. More recent evidence suggests that the 
HMGB1 activation of homing of endothelial progenitor 
cell to ischemic tissues, to increase neovascularization, 
involves an integrin-dependent mechanism.104

In a model of myocardial infarction, exogenous 
HMGB1 was shown to be benefi cial in promoting left 
ventricular function and myocyte regeneration.105 More-
over, HMGB1 blockade with systemic administration of 
anti-HMGB1 antibody in a rat myocardial infarction 
model aggravated left ventricular remodeling, suggest-
ing that endogenous HMGB1 may play an essential role 
in the healing process after cardiac infarction.87

HMGB1 levels are reduced in the skin of diabetic 
humans and mice. Moreover, topical application of 
HMGB1 to murine diabetic skin wounds promotes 
wound closure, and the effect could be impaired if 
HMGB1 A-box is used to inhibit endogenous HMGB1.106

HMGB1 and Preconditioning

Preconditioning is a phenomenon whereby the delivery 
of a minor insult prepares the body to better withstand 

a more severe insult.107 HMGB1 has a preconditioning 
ability. For instance, HMGB1 administration 1 h prior 
to the onset of injury results in dose-dependent protec-
tion, as evidenced by decreased circulating biochemical 
markers of liver damage and decreased serum TNF-α 
and IL-6 levels.108 This effect seems to be mediated 
through the inhibition of the TLR4 signaling pathway.108 
Using HMGB1 as a preconditioning stimulus could be 
a benefi cial application of HMGB1 in the injury state.

HMGB1 and Cancer

There are many reports that HMGB1 plays a role in 
cancer development and metastasis, with RAGE-
HMGB1 signaling promoting the spread of most tumor 
types, including breast, colon, melanoma, prostate, 
pancreatic, and lung cancer.109 This suggests that all 
options inhibiting HMGB1 could work as anticancer 
treatments.

HMGB1 as a Prognostic Marker

We reported that the preoperative serum concentra-
tions of HMGB1 in patients who underwent thoracic 
esophagectomy were signifi cantly correlated with the 
postoperative duration of SIRS, of mechanical ventila-
tion, and of intensive care unit stay.82 Hatada et al. 
reported that plasma HMGB1 levels in patients with 
suspected DIC correlated with the DIC score and sep-
sis-related organ failure assessment score.80 These facts 
suggest the potential of HMGB1 as a prognostic marker 
of critically ill patients.

HMGB1 as a Therapeutic Target

Theoretic Strategies for HMGB1 Modulation

As mentioned earlier, HMGB1 induces a concentra-
tion-dependent activity that varies from benefi cial to 
pathological. Therefore, the basic strategy for modulat-
ing HMGB1 dynamics should be to reduce HMGB1 
when HMGB1 is excessive for the patient and to restore 
HMGB1 when HMGB1 is insuffi cient for the patient. 

Table 2. Benefi cial effects of HMGB1

• Tissue repair and regeneration
Chemoattractant
Promotion of migration and proliferation of regenerative cells
Healing process after cardiac infarction
Promotion of wound healing in diabetic skin

• Preconditioning
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In the critical setting, severe local infl ammation pro-
motes overproduction of HMGB1 and induces its 
spillage into the systemic circulation, resulting in the 
“metastasis” of infl ammation to other organs. However, 
thrombomodulin prevents not only local coagulation 
but also local infl ammation, from being systemic by 
binding to HMGB1;110,111 therefore, inhibiting HMGB1 
in the systemic circulation could be a promising therapy 
for critically ill patients (Table 3).

Inhibitors of HMGB1: Biological Agents

HMGB1-specifi c antibodies have been shown to protect 
mice against endotoxin and sepsis lethality.16,17 Similar 
protective effects were observed with HMGB1 A-box 
peptide, a competitive antagonist of HMGB1 cytokine 
activity.16 Antibodies against HMGB1 or recombinant 
A-box peptide have also been found to ameliorate the 
symptoms of collagen-induced arthritis.92 Humanized 
anti-HMGB1 monoclonal antibodies could therefore 
fi nd applications in both acute and chronic infl am-
matory diseases. Blockage of the RAGE signaling 
pathways could also result in attenuation of the pro-
infl ammatory effects of HMGB1. Several strategies, 
such as the administration of soluble forms of RAGE 
or the blocking of the Fab fragment derived from 
anti-RAGE and/or anti-HMGB1 IgG, have been 
reported.112,113

Thrombomodulin has recently been shown to bind to 
HMGB1 so that thrombin–thrombomodulin complexes 
can effectively degrade HMGB1 into a less proinfl am-
matory form.110,111,114 This means that recombinant 
thrombomodulin can promote the degradation of 
HMGB1 and suppress the proinfl ammatory effects of 
HMGB1.114 Thrombomodulin can also suppress coagu-
latory responses; therefore, recombinant thrombomod-
ulin should be a promising therapeutic option against 
DIC or sepsis.114

Inhibitors of HMGB1: Small-Molecule Chemical 
Compounds

Several small-molecule chemical compounds have been 
used to inhibit HMGB1 proinfl ammatory activities in 
vivo. These pharmacological agents belong to the 
class of cytokine-release inhibitory drugs (CRIDs) and 
include ethyl pyruvate, the cholinergic agonists nicotine 
and acetylcholine, stearoyl lysophosphatidylcholine, 
and steroid-like pigment tanshinone IIA.115–118 These 
agents were found to interfere specifi cally with HMGB1 
release from the nucleus into the extracellular space, 
without affecting HMGB1 mRNA or protein levels.115,116 
In contrast, many other steroidal drugs and nonsteroidal 
anti-infl ammatory drugs failed to signifi cantly inhibit 
HMGB1 extracellular release.118 The HMGB1 CRIDs 
have shown impressive effi cacy in animal models of 
lethal endotoxemia and sepsis, with protective effects at 
therapeutically achievable, safe doses, supporting the 
therapeutic potential of these inhibitors in HMGB1-
mediated human infl ammatory diseases.115–118

Another molecule, glycyrrhizin, inhibits the chemo-
tactic and mitogenic activities of HMGB1.119 Unlike 
CRIDs, glycyrrhizin does not interfere with the release 
of HMGB1, but directly inhibits its extracellular cyto-
kine activities.119 This means that glycyrrhizin can inhibit 
not only actively released HMGB1 but also passively 
released HMGB1. However, the affi nity of glycyrrhizin 
for HMGB1 is relatively modest and will need to be 
improved for any therapeutic application.119

Several other commercially available drugs, such as 
sivelestat, nafamostat, antithrombin III, and γ-globulin, 
have also been suggested to modulate infl ammatory 
response through HMGB1-related mechanisms.120–124

Others

It has been suggested that direct hemoperfusion using 
a polymyxin B-immobilized fi ber column reduces 
HMGB1 levels in septic patients.125

Alarmin: A New Concept in Danger Signals

A new awareness of the close relationship between 
trauma- and pathogen-evoked responses emerged from 
the EMBO Workshop on Innate Danger Signals and 
HMGB1, which was held in February 2006 in Milan, 
Italy.38,126 At the end of the meeting, the term “alarmin” 
was proposed to differentiate the endogenous mole-
cules that signal tissue and cell damage (Table 4).38 The 
exogenous PAMPs and endogenous alarmins are sub-
groups of the larger category of danger signals termed 
damage-associated molecular patterns (DAMPs) (Table 
5).38,126 The molecule that fi ts all of the criteria for alarm-

Table 3. Potential HMGB1 eradication therapies

• Biological agents
Anti-HMGB1 antibody
HMGB1 A box peptide
Soluble RAGE, anti-RAGE antibody
Thrombomodulin

• Small-molecule chemical compounds
Ethyl pyruvate
Cholinergic agonists (nicotine, acetylcholine)
Stearoyl lysophosphatidylcholine
Steroidlike pigment tanshinone IIA
Glycyrrhizin
Sivelestat, nafamostat, antithrombin III, γ-globulin

• Others
Hemoperfusion

RAGE, receptor for advanced glycation end products
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ins exemplarily is HMGB1. Because alarmins are a 
diverse group of ubiquitous molecules implicated in 
nearly all infl ammatory states, understanding and ulti-
mately modulating their activity may allow us to control 
the infl ammatory process.

Summary

A growing number of reports describe the specifi c func-
tions of HMGB1 on cells of the immune system and its 
role in important disease states. Not only HMGB1, but 
other alarmins seem to be promising targets for various 
acute and chronic diseases including cancer, although 
few human-subject studies have been conducted. Inter-
estingly, in addition to their proinfl ammatory roles, 
alarmins have several benefi cial effects that promote 
tissue regeneration and repair. Understanding alarmins 
and their complex effects on the immune system may 
lead to the development of novel strategies to attenuate 
infl ammation and promote tissue regeneration and 
repair in various clinical states. Further investigation of 
the effects of alarmins on humans is warranted.
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