Skip to main content

Advertisement

Log in

Edible traditional Chinese medicines improve type 2 diabetes by modulating gut microbiotal metabolites

  • Review Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Type 2 diabetes mellitus (T2DM) is a metabolic disorder with intricate pathogenic mechanisms. Despite the availability of various oral medications for controlling the condition, reports of poor glycemic control in type 2 diabetes persist, possibly involving unknown pathogenic mechanisms. In recent years, the gut microbiota have emerged as a highly promising target for T2DM treatment, with the metabolites produced by gut microbiota serving as crucial intermediaries connecting gut microbiota and strongly related to T2DM. Increasingly, traditional Chinese medicine is being considered to target the gut microbiota for T2DM treatment, and many of them are edible. In studies conducted on animal models, edible traditional Chinese medicine have been shown to primarily alter three significant gut microbiotal metabolites: short-chain fatty acids, bile acids, and branched-chain amino acids. These metabolites play crucial roles in alleviating T2DM by improving glucose metabolism and reducing inflammation. This review primarily summarizes twelve edible traditional Chinese medicines that improve T2DM by modulating the aforementioned three gut microbiotal metabolites, along with potential underlying molecular mechanisms, and also incorporation of edible traditional Chinese medicines into the diets of T2DM patients and combined use with probiotics for treating T2DM are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

IDF:

International Diabetes Federation

T2DM:

Type 2 diabetes mellitus

SCFAs:

Short chain fatty acids

SBAs:

Secondary bile acids

BCAAs:

Branched chain amino acid

GLP:

Ganoderma lucidum Polysaccharides

FYGL:

Fudan-Yueyang-G. lucidum

AMP:

Astragalus membranaceus Polysaccharides

LBL:

Lycium barbarum L.

LBPs:

L. barbarum Polysaccharides

DOP:

Dendrobium officinale Polysaccharide

DNJ:

1-Deoxynojirimycin

MLE:

Mulberry Leaves extract

CS:

Coix seed

CSP:

Coix seed polysaccharides

GEB:

Gastrodia elata Blume

GEBE:

Gastrodia elata Blume Extract

LJF:

Laminaria japonica fucoidan

GPCR:

G protein-coupled receptors

References

  1. Magliano DJ, Boyko EJ, committee IDFDAtes. IDF Diabetes Atlas. Idf diabetes atlas. Brussels: International Diabetes Federation© International Diabetes Federation, 2021 (2021).

  2. Ahmad E, Lim S, Lamptey R, Webb DR, Davies MJ (2022) Type 2 diabetes. Lancet 400(10365):1803–1820

    Article  PubMed  Google Scholar 

  3. Boutari C, DeMarsilis A, Mantzoros CS (2023) Obesity and diabetes. Diabetes Res Clin Pract 202:110773

    Article  PubMed  Google Scholar 

  4. Li H, Wang L, Huang J, Li B, Qiu T (2022) The relationship between the knowledge of diabetes mellitus and the mental, psychological and emotional status of T2DM patients based on a structural equation model. Sci Rep 12(1):20714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Aschner P, Gagliardino JJ, Ilkova H, Lavalle F, Ramachandran A, Mbanya JC et al (2020) Persistent poor glycaemic control in individuals with type 2 diabetes in developing countries: 12 years of real-world evidence of the International Diabetes Management Practices Study (IDMPS). Diabetologia 63(4):711–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Khunti K, Wolden ML, Thorsted BL, Andersen M, Davies MJ (2013) Clinical inertia in people with type 2 diabetes: a retrospective cohort study of more than 80,000 people. Diabetes Care 36(11):3411–3417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Athanasopoulou K, Adamopoulos PG, Scorilas A (2003) Unveiling the human gastrointestinal tract microbiome: the past, present, and future of metagenomics. Biomedicines 511(3).

  8. Chen Y, Zhou J, Wang L (2021) Role and mechanism of gut microbiota in human disease. Front Cell Infect Microbiol 11:625913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhernakova A, Kurilshikov A, Bonder MJ, Tigchelaar EF, Schirmer M, Vatanen T et al (2016) Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352(6285):565–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sanna S, van Zuydam NR, Mahajan A, Kurilshikov A, Vich Vila A, Võsa U et al (2019) Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat Genet 51(4):600–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Reitmeier S, Kiessling S, Clavel T, List M, Almeida EL, Ghosh TS et al (2020) Arrhythmic gut microbiome signatures predict risk of Type 2 diabetes. Cell Host Microbe 28(2):258–72.e6

    Article  CAS  PubMed  Google Scholar 

  12. Perraudeau F, McMurdie P, Bullard J, Cheng A, Cutcliffe C, Deo A, et al. (2020) Improvements to postprandial glucose control in subjects with type 2 diabetes: a multicenter, double blind, randomized placebo-controlled trial of a novel probiotic formulation. BMJ Open Diabetes Res Care 8(1).

  13. Liu L, Zhang J, Cheng Y, Zhu M, Xiao Z, Ruan G et al (2022) Gut microbiota: a new target for T2DM prevention and treatment. Front Endocrinol (Lausanne) 13:958218

    Article  PubMed  Google Scholar 

  14. Croci S, D'Apolito LI, Gasperi V, Catani MV, Savini I (2021) Dietary Strategies for Management of Metabolic Syndrome: Role of Gut microbiota metabolites. Nutrients 13(5).

  15. Vallianou NG, Stratigou T, Tsagarakis S (2019) Metformin and gut microbiota: their interactions and their impact on diabetes. Hormones (Athens) 18(2):141–144

    Article  PubMed  Google Scholar 

  16. Tong X, Xu J, Lian F, Yu X, Zhao Y, Xu L et al (2018) Structural Alteration of gut microbiota during the amelioration of human Type 2 diabetes with hyperlipidemia by metformin and a traditional Chinese herbal formula: a multicenter, randomized, open label clinical trial. mBio 9(3).

  17. Ye J, Wu Z, Zhao Y, Zhang S, Liu W, Su Y (2022) Role of gut microbiota in the pathogenesis and treatment of diabetes mullites: advanced research-based review. Front Microbiol 13:1029890

    Article  PubMed  PubMed Central  Google Scholar 

  18. Magkos F, Hjorth MF, Astrup A (2020) Diet and exercise in the prevention and treatment of type 2 diabetes mellitus. Nat Rev Endocrinol 16(10):545–555

    Article  PubMed  Google Scholar 

  19. Xue H, Wang W, Bian J, Gao Y, Hao Z, Tan J (2022) Recent advances in medicinal and edible homologous polysaccharides: extraction, purification, structure, modification, and biological activities. Int J Biol Macromol 222(Pt A):1110–1126

    Article  CAS  PubMed  Google Scholar 

  20. Li X, He Y, Zeng P, Liu Y, Zhang M, Hao C et al (2019) Molecular basis for Poria cocos mushroom polysaccharide used as an antitumour drug in China. J Cell Mol Med 23(1):4–20

    Article  PubMed  Google Scholar 

  21. Zhang L (2019) Pharmacokinetics and drug delivery systems for puerarin, a bioactive flavone from traditional Chinese medicine. Drug Deliv 26(1):860–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen M, Xiao D, Liu W, Song Y, Zou B, Li L et al (2020) Intake of Ganoderma lucidum polysaccharides reverses the disturbed gut microbiota and metabolism in type 2 diabetic rats. Int J Biol Macromol 155:890–902

    Article  CAS  PubMed  Google Scholar 

  23. Song Q, Cheng SW, Li D, Cheng H, Lai YS, Han Q et al (2022) Gut microbiota mediated hypoglycemic effect of Astragalus membranaceus polysaccharides in db/db mice. Front Pharmacol 13:1043527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhou W, Yang T, Xu W, Huang Y, Ran L, Yan Y et al (2022)The polysaccharides from the fruits of Lycium barbarum L. confer anti-diabetic effect by regulating gut microbiota and intestinal barrier. Carbohydr Polym 291:119626.

  25. Zhang X, Shen D, Fang Z, Jie Z, Qiu X, Zhang C et al (2013) Human gut microbiota changes reveal the progression of glucose intolerance. PLoS ONE 8(8):e71108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Salamon D, Sroka-Oleksiak A, Kapusta P, Szopa M, Mrozińska S, Ludwig-Słomczyńska AH et al (2018) Characteristics of gut microbiota in adult patients with type 1 and type 2 diabetes based on next-generation sequencing of the 16S rRNA gene fragment. Pol Arch Intern Med 128(6):336–343

    PubMed  Google Scholar 

  27. Zhao L, Lou H, Peng Y, Chen S, Zhang Y, Li X (2019) Comprehensive relationships between gut microbiome and faecal metabolome in individuals with type 2 diabetes and its complications. Endocrine 66(3):526–537

    Article  CAS  PubMed  Google Scholar 

  28. Wang J, Li W, Wang C, Wang L, He T, Hu H et al (2020) Enterotype bacteroides is associated with a high risk in patients with diabetes: a pilot study. J Diabetes Res 2020:6047145

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hung WC, Hung WW, Tsai HJ, Chang CC, Chiu YW, Hwang SJ et al (2021) The association of targeted gut microbiota with body composition in Type 2 Diabetes mellitus. Int J Med Sci 18(2):511–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Larsen N, Vogensen FK, van den Berg FW, Nielsen DS, Andreasen AS, Pedersen BK et al (2010) Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS ONE 5(2):e9085

    Article  PubMed  PubMed Central  Google Scholar 

  31. Fassatoui M, Lopez-Siles M, Díaz-Rizzolo DA, Jmel H, Naouali C, Abdessalem G et al (2019) Gut microbiota imbalances in Tunisian participants with type 1 and type 2 diabetes mellitus. Biosci Rep 39(6).

  32. Xia F, Wen LP, Ge BC, Li YX, Li FP, Zhou BJ (2021) Gut microbiota as a target for prevention and treatment of type 2 diabetes: Mechanisms and dietary natural products. World J Diabetes 12(8):1146–1163

    Article  PubMed  PubMed Central  Google Scholar 

  33. Liu BN, Liu XT, Liang ZH, Wang JH (2021) Gut microbiota in obesity. World J Gastroenterol 27(25):3837–3850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Saad MJ, Santos A, Prada PO (2016) Linking gut microbiota and inflammation to obesity and insulin resistance. Physiology (Bethesda) 31(4):283–293

    CAS  PubMed  Google Scholar 

  35. Ichimura A, Kimura I (2015) Editorial: obesity and diabetes: energy regulation by free fatty acid receptors. Front Endocrinol (Lausanne) 6:178

    Article  PubMed  Google Scholar 

  36. Zhou Z, Sun B, Yu D, Zhu C (2022) Gut microbiota: an important player in Type 2 diabetes mellitus. Front Cell Infect Microbiol 12:834485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ren T, Liu F, Wang D, Li B, Jiang P, Li J et al (2023) Rhamnogalacturonan-I enriched pectin from steamed ginseng ameliorates lipid metabolism in type 2 diabetic rats via gut microbiota and AMPK pathway. J Ethnopharmacol 301:115862

    Article  CAS  PubMed  Google Scholar 

  38. Liu H, Xing Y, Wang Y, Ren X, Zhang D, Dai J et al (2023) Dendrobium officinale polysaccharide prevents diabetes via the regulation of gut microbiota in prediabetic mice. Foods 12(12).

  39. Xia T, Liu CS, Hu YN, Luo ZY, Chen FL, Yuan LX et al (2021) Coix seed polysaccharides alleviate type 2 diabetes mellitus via gut microbiota-derived short-chain fatty acids activation of IGF1/PI3K/AKT signaling. Food Res Int 150(Pt A):110717

    Article  CAS  PubMed  Google Scholar 

  40. Chen Y, Song S, Shu A, Liu L, Jiang J, Jiang M et al (2022) The Herb Pair Radix Rehmanniae and Cornus officinalis attenuated testicular damage in mice with diabetes mellitus through butyric acid/glucagon-like peptide-1/glucagon-like peptide-1 receptor pathway mediated by gut microbiota. Front Microbiol 13:831881

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hou D, Zhao Q, Chen B, Ren X, Yousaf L, Shen Q (2021) Dietary supplementation with mung bean coat alleviates the disorders in serum glucose and lipid profile and modulates gut microbiota in high-fat diet and streptozotocin-induced prediabetic mice. J Food Sci 86(9):4183–4196

    Article  CAS  PubMed  Google Scholar 

  42. Zhang C, Jia J, Zhang P, Zheng W, Guo X, Ai C et al (2022) Fucoidan from Laminaria japonica Ameliorates Type 2 Diabetes Mellitus in association with modulation of gut microbiota and metabolites in streptozocin-treated mice. Foods 12(1).

  43. Zhang Y, Peng Y, Zhao L, Zhou G, Li X (2021) Regulating the gut microbiota and SCFAs in the faeces of T2DM rats should be one of antidiabetic mechanisms of mogrosides in the fruits of Siraitia grosvenorii. J Ethnopharmacol 274:114033

    Article  CAS  PubMed  Google Scholar 

  44. Wang D, Wang JX, Yan C, Liu Y, Liu H, Li D et al (2022) Gastrodia elata Blume extract improves high-fat diet-induced type 2 diabetes by regulating gut microbiota and bile acid profile. Front Microbiol 13:1091712

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zheng XX, Li DX, Li YT, Chen YL, Zhao YL, Ji S et al (2023) Mulberry leaf water extract alleviates type 2 diabetes in mice via modulating gut microbiota-host co-metabolism of branched-chain amino acid. Phytother Res 37(8):3195–3210

    Article  CAS  PubMed  Google Scholar 

  46. He QL, Wang HC, Ma YK, Yang RL, Dai ZF, Yang JN et al (2023) Changes in the microbiota and their roles in patients with Type 2 diabetes mellitus. Curr Microbiol 80(4):132

    Article  CAS  PubMed  Google Scholar 

  47. Zhao L, Zhang F, Ding X, Wu G, Lam YY, Wang X et al (2018) Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 359(6380):1151–1156

    Article  CAS  PubMed  Google Scholar 

  48. Tang R, Li L (2021) Modulation of short-chain fatty acids as potential therapy method for type 2 diabetes mellitus. Can J Infect Dis Med Microbiol 2021:6632266

    PubMed  PubMed Central  Google Scholar 

  49. Liu P, Wang Y, Yang G, Zhang Q, Meng L, Xin Y et al (2021) The role of short-chain fatty acids in intestinal barrier function, inflammation, oxidative stress, and colonic carcinogenesis. Pharmacol Res 165:105420

    Article  CAS  PubMed  Google Scholar 

  50. Morrison DJ, Preston T (2016) Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 7(3):189–200

    Article  PubMed  PubMed Central  Google Scholar 

  51. Sankanagoudar S, Shukla R, Shukla KK, Sharma P (2022) Positive association of branched-chain amino acids with triglyceride and glycated haemoglobin in Indian patients with type 2 diabetes mellitus. Diabetes Metab Syndr 16(4):102481

    Article  CAS  PubMed  Google Scholar 

  52. Völzke H, Alte D, Schmidt CO, Radke D, Lorbeer R, Friedrich N et al (2011) Cohort profile: the study of health in Pomerania. Int J Epidemiol 40(2):294–307

    Article  PubMed  Google Scholar 

  53. Neinast M, Murashige D, Arany Z (2019) Branched chain amino acids. Annu Rev Physiol 81:139–164

    Article  CAS  PubMed  Google Scholar 

  54. Ni Y, Lohinai Z, Heshiki Y, Dome B, Moldvay J, Dulka E et al (2021) Distinct composition and metabolic functions of human gut microbiota are associated with cachexia in lung cancer patients. Isme J 15(11):3207–3220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gao R, Meng X, Xue Y, Mao M, Liu Y, Tian X et al (2022) Bile acids-gut microbiota crosstalk contributes to the improvement of type 2 diabetes mellitus. Front Pharmacol 13:1027212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mantovani A, Dalbeni A, Peserico D, Cattazzo F, Bevilacqua M, Salvagno GL et al (2021) Plasma bile acid profile in patients with and without type 2 diabetes. Metabolites 11(7).

  57. Majait S, Nieuwdorp M, Kemper M, Soeters M (2023) The black box orchestra of gut bacteria and bile acids: who is the conductor? Int J Mol Sci 24(3).

  58. Archundia Herrera MC, Subhan FB, Chan CB (2017) Dietary patterns and cardiovascular disease risk in people with type 2 diabetes. Curr Obes Rep 6(4):405–413

    Article  PubMed  Google Scholar 

  59. Seto SW, Lam TY, Tam HL, Au AL, Chan SW, Wu JH et al (2009) Novel hypoglycemic effects of Ganoderma lucidum water-extract in obese/diabetic (+db/+db) mice. Phytomedicine 16(5):426–436

    Article  CAS  PubMed  Google Scholar 

  60. Teng BS, Wang CD, Zhang D, Wu JS, Pan D, Pan LF et al (2012) Hypoglycemic effect and mechanism of a proteoglycan from Ganoderma lucidum on streptozotocin-induced type 2 diabetic rats. Eur Rev Med Pharmacol Sci 16(2):166–175

    CAS  PubMed  Google Scholar 

  61. Liang H, Pan Y, Teng Y, Yuan S, Wu X, Yang H et al (2020) A proteoglycan extract from Ganoderma lucidum protects pancreatic beta-cells against STZ-induced apoptosis. Biosci Biotechnol Biochem 84(12):2491–2498

    Article  CAS  PubMed  Google Scholar 

  62. Zhang Y, Li X, Ruan J, Wang T, Dong Y, Hao J et al (2016) Oleanane type saponins from the stems of Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao. Fitoterapia. 2016;109:99–105.

  63. Mao XQ, Yu F, Wang N, Wu Y, Zou F, Wu K et al (2009) Hypoglycemic effect of polysaccharide enriched extract of Astragalus membranaceus in diet induced insulin resistant C57BL/6J mice and its potential mechanism. Phytomedicine 16(5):416–425

    Article  CAS  PubMed  Google Scholar 

  64. Zhu Y, Su Y, Zhang J, Zhang Y, Li Y, Han Y et al (2021) Astragaloside IV alleviates liver injury in type 2 diabetes due to promotion of AMPK/mTOR‑mediated autophagy. Mol Med Rep 23(6).

  65. Chen X, Chen C, Fu X (2022) Hypoglycemic effect of the polysaccharides from Astragalus membranaceus on type 2 diabetic mice based on the “gut microbiota-mucosal barrier.” Food Funct 13(19):10121–10133

    Article  CAS  PubMed  Google Scholar 

  66. Chen X, Chen C, Fu X (2022) Hypoglycemic activity in vitro and vivo of a water-soluble polysaccharide from Astragalus membranaceus. Food Funct 13(21):11210–11222

    Article  CAS  PubMed  Google Scholar 

  67. Wang WK, Fan L, Ge F, Li Z, Zhu J, Yin K et al (2022) Effects of Danggui Buxue decoction on host gut microbiota and metabolism in GK rats with type 2 diabetes. Front Microbiol 13:1029409

    Article  PubMed  PubMed Central  Google Scholar 

  68. Sun Y, Rukeya J, Tao W, Sun P, Ye X (2017) Bioactive compounds and antioxidant activity of wolfberry infusion. Sci Rep 7:40605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Retraction: Polysaccharide IV from Lycium barbarum L. improves lipid profiles of gestational diabetes mellitus of pregnancy by upregulating ABCA1 and downregulating sterol regulatory element-binding transcription 1 via miR-33. Front Endocrinol (Lausanne). 13:1130062 (2022).

  70. Yang S, Li F, Lu S, Ren L, Bian S, Liu M et al (2022) Ginseng root extract attenuates inflammation by inhibiting the MAPK/NF-κB signaling pathway and activating autophagy and p62-Nrf2-Keap1 signaling in vitro and in vivo. J Ethnopharmacol 283:114739

    Article  CAS  PubMed  Google Scholar 

  71. Jiang L, Fu Q, Wang S, Chen Y, Li J, Xiao Y et al (2022) Effect of RG (Coptis root and ginseng) formula in patients with type 2 diabetes mellitus: a study protocol for a randomized controlled and double-blinding trial. Trials 23(1):305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Li J, Qiang FU, Shidong W, Jinxi Z, Yu C, Jiayue LI et al (2023) Effects of Shenlian formula on microbiota and inflammatory cytokines in adults with type 2 diabetes: a double-blind randomized clinical trial. J Tradit Chin Med 43(4):760–769

    PubMed  PubMed Central  Google Scholar 

  73. Wang Y, Tong Y, Adejobi OI, Wang Y, Liu A (2021) Research advances in multi-omics on the traditional Chinese herb Dendrobium officinale. Front Plant Sci 12:808228

    Article  PubMed  Google Scholar 

  74. Peng D, Tian W, An M, Chen Y, Zeng W, Zhu S et al (2023) Characterization of antidiabetic effects of Dendrobium officinale derivatives in a mouse model of type 2 diabetes mellitus. Food Chem 399:133974

    Article  CAS  PubMed  Google Scholar 

  75. Chen X, Chen C, Fu X (2023) Dendrobium officinale polysaccharide alleviates type 2 diabetes mellitus by restoring gut microbiota and repairing intestinal barrier via the LPS/TLR4/TRIF/NF-kB Axis. J Agric Food Chem 71(31):11929–11940

    Article  CAS  PubMed  Google Scholar 

  76. Long XS, Liao ST, Li EN, Pang DR, Li Q, Liu SC et al (2021) The hypoglycemic effect of freeze-dried fermented mulberry mixed with soybean on type 2 diabetes mellitus. Food Sci Nutr 9(7):3641–3654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hu B, Yin T, Zhang J, Liu M, Yun H, Wang J et al (2023) Effect of “maccog” TCM tea on improving glucolipid metabolism and gut microbiota in patients with type 2 diabetes in community. Front Endocrinol (Lausanne) 14:1134877

    Article  PubMed  Google Scholar 

  78. Ren X, Xing Y, He L, Xiu Z, Yang L, Han A et al (2022) Effect of 1-Deoxynojirimycin on insulin resistance in prediabetic mice based on next-generation sequencing and intestinal microbiota study. J Ethnopharmacol 289:115029

    Article  CAS  PubMed  Google Scholar 

  79. Zhou Q, Yu R, Liu T, Li Y, Zhong J, Zhang T et al (2021) Coix seed diet ameliorates immune function disorders in experimental colitis mice. Nutrients 14(1).

  80. Liu S, Li F, Zhang X (2019) Structural modulation of gut microbiota reveals Coix seed contributes to weight loss in mice. Appl Microbiol Biotechnol 103(13):5311–5321

    Article  CAS  PubMed  Google Scholar 

  81. Ferretti R, Moura EG, Dos Santos VC, Caldeira EJ, Conte M, Matsumura CY et al (2018) High-fat diet suppresses the positive effect of creatine supplementation on skeletal muscle function by reducing protein expression of IGF-PI3K-AKT-mTOR pathway. PLoS ONE 13(10):e0199728

    Article  PubMed  PubMed Central  Google Scholar 

  82. Zhan HD, Zhou HY, Sui YP, Du XL, Wang WH, Dai L et al (2016) The rhizome of Gastrodia elata Blume—an ethnopharmacological review. J Ethnopharmacol 189:361–385

    Article  CAS  PubMed  Google Scholar 

  83. Bai Y, Mo K, Wang G, Chen W, Zhang W, Guo Y et al (2021) Intervention of Gastrodin in type 2 diabetes mellitus and its mechanism. Front Pharmacol 12:710722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yang HJ, Kim MJ, Kwon DY, Kim DS, Lee YH, Kim JE et al (2016) Anti-diabetic activities of Gastrodia elata blume water extracts are mediated mainly by potentiating glucose-stimulated insulin secretion and increasing β-cell mass in non-obese type 2 diabetic animals. Nutrients 8(3):161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ye T, Meng X, Zhai Y, Xie W, Wang R, Sun G et al (2018) Gastrodin ameliorates cognitive dysfunction in diabetes rat model via the suppression of endoplasmic reticulum stress and NLRP3 inflammasome activation. Front Pharmacol 9:1346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gao X, Liu Y, An Z, Ni J (2021) Active components and pharmacological effects of Cornus officinalis: literature review. Front Pharmacol 12:633447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Peng ZC, He J, Pan XG, Zhang J, Wang YM, Ye XS et al (2021) Secoiridoid dimers and their biogenetic precursors from the fruits of Cornus officinalis with potential therapeutic effects on type 2 diabetes. Bioorg Chem 117:105399

    Article  CAS  PubMed  Google Scholar 

  88. Hou D, Yousaf L, Xue Y, Hu J, Wu J, Hu X et al (2019) Mung bean (Vigna radiata L.): bioactive polyphenols, polysaccharides, peptides, and health benefits. Nutrients 11(6).

  89. Mayachiew P, Charunuch C, Devahastin S (2015) Physicochemical and thermal properties of extruded instant functional rice porridge powder as affected by the addition of soybean or mung bean. J Food Sci 80(12):E2782–E2791

    Article  CAS  PubMed  Google Scholar 

  90. Saeting O, Chandarajoti K, Phongphisutthinan A, Hongsprabhas P, Sae-Tan S (2021) Water extract of mungbean (Vigna radiata L.) inhibits protein tyrosine phosphatase-1B in insulin-resistant HepG2 cells. Molecules 26(5).

  91. Charoensiddhi S, Chanput WP, Sae-Tan S (2022) Gut microbiota modulation, anti-diabetic and anti-inflammatory properties of polyphenol extract from mung bean seed coat (Vigna radiata L.). Nutrients 14(11).

  92. Li HY, Yi YL, Guo S, Zhang F, Yan H, Zhan ZL et al (2022) Isolation, structural characterization and bioactivities of polysaccharides from Laminaria japonica: a review. Food Chem 370:131010

    Article  CAS  PubMed  Google Scholar 

  93. Wang X, Zhang L, Qin L, Wang Y, Chen F, Qu C et al (2022) Physicochemical properties of the soluble dietary fiber from Laminaria japonica and its role in the regulation of Type 2 diabetes mice. Nutrients 14(2).

  94. Wu N, Jin W, Zhao Y, Wang H, He S, Zhang W et al (2022) Sulfated Fucogalactan from Laminaria japonica Ameliorates β-cell failure by attenuating mitochondrial dysfunction via SIRT1-PGC1-α signaling pathway activation. Front Endocrinol (Lausanne) 13:881256

    Article  PubMed  Google Scholar 

  95. Gong X, Chen N, Ren K, Jia J, Wei K, Zhang L et al (2019) The fruits of Siraitia grosvenorii: a review of a Chinese food-medicine. Front Pharmacol 10:1400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Li C, Lin LM, Sui F, Wang ZM, Huo HR, Dai L et al (2014) Chemistry and pharmacology of Siraitia grosvenorii: a review. Chin J Nat Med 12(2):89–102

    CAS  PubMed  Google Scholar 

  97. Zhou G, Zhang Y, Li Y, Wang M, Li X (2018) The metabolism of a natural product mogroside V, in healthy and type 2 diabetic rats. J Chromatogr B Analyt Technol Biomed Life Sci 1079:25–33

    Article  CAS  PubMed  Google Scholar 

  98. Liu H, Qi X, Yu K, Lu A, Lin K, Zhu J et al (2019) AMPK activation is involved in hypoglycemic and hypolipidemic activities of mogroside-rich extract from Siraitia grosvenorii (Swingle) fruits on high-fat diet/streptozotocin-induced diabetic mice. Food Funct 10(1):151–162

    Article  CAS  PubMed  Google Scholar 

  99. Baker RG, Hayden MS, Ghosh S (2011) NF-κB, inflammation, and metabolic disease. Cell Metab 13(1):11–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lawrence T (2009) The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol 1(6):a001651

    Article  PubMed  PubMed Central  Google Scholar 

  101. Malko P, Jia X, Wood I, Jiang LH (2023) Piezo1 channel-mediated Ca(2+) signaling inhibits lipopolysaccharide-induced activation of the NF-κB inflammatory signaling pathway and generation of TNF-α and IL-6 in microglial cells. Glia 71(4):848–865

    Article  CAS  PubMed  Google Scholar 

  102. Tedelind S, Westberg F, Kjerrulf M, Vidal A (2007) Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: a study with relevance to inflammatory bowel disease. World J Gastroenterol 13(20):2826–2832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ulven T (2012) Short-chain free fatty acid receptors FFA2/GPR43 and FFA3/GPR41 as new potential therapeutic targets. Front Endocrinol (Lausanne) 3:111

    Article  PubMed  Google Scholar 

  104. Bindels LB, Dewulf EM, Delzenne NM (2013) GPR43/FFA2: physiopathological relevance and therapeutic prospects. Trends Pharmacol Sci 34(4):226–232

    Article  CAS  PubMed  Google Scholar 

  105. Lee SU, In HJ, Kwon MS, Park BO, Jo M, Kim MO et al (2013) β-Arrestin 2 mediates G protein-coupled receptor 43 signals to nuclear factor-κB. Biol Pharm Bull 36(11):1754–1759

    Article  CAS  PubMed  Google Scholar 

  106. Gao H, Sun Y, Wu Y, Luan B, Wang Y, Qu B et al (2004) Identification of beta-arrestin2 as a G protein-coupled receptor-stimulated regulator of NF-kappaB pathways. Mol Cell 14(3):303–317

    Article  CAS  PubMed  Google Scholar 

  107. Sinha SR, Haileselassie Y, Nguyen LP, Tropini C, Wang M, Becker LS et al (2020) Dysbiosis-induced secondary bile acid deficiency promotes intestinal inflammation. Cell Host Microbe 27(4):659–70.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hu J, Wang C, Huang X, Yi S, Pan S, Zhang Y et al (2021) Gut microbiota-mediated secondary bile acids regulate dendritic cells to attenuate autoimmune uveitis through TGR5 signaling. Cell Rep 36(12):109726

    Article  CAS  PubMed  Google Scholar 

  109. Xiao H, Sun X, Liu R, Chen Z, Lin Z, Yang Y et al (2020) Gentiopicroside activates the bile acid receptor Gpbar1 (TGR5) to repress NF-kappaB pathway and ameliorate diabetic nephropathy. Pharmacol Res 151:104559

    Article  CAS  PubMed  Google Scholar 

  110. Liu H, Wang J, Ding Y, Shi X, Ren H (2022) Antibiotic pretreatment attenuates liver ischemia-reperfusion injury by Farnesoid X receptor activation. Cell Death Dis 13(5):484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Yu JH, Zheng JB, Qi J, Yang K, Wu YH, Wang K et al (2019) Bile acids promote gastric intestinal metaplasia by upregulating CDX2 and MUC2 expression via the FXR/NF-κB signalling pathway. Int J Oncol 54(3):879–892

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Dalile B, Van Oudenhove L, Vervliet B, Verbeke K (2019) The role of short-chain fatty acids in microbiota-gut-brain communication. Nat Rev Gastroenterol Hepatol 16(8):461–478

    Article  PubMed  Google Scholar 

  113. Jorsal T, Rhee NA, Pedersen J, Wahlgren CD, Mortensen B, Jepsen SL et al (2018) Enteroendocrine K and L cells in healthy and type 2 diabetic individuals. Diabetologia 61(2):284–294

    Article  CAS  PubMed  Google Scholar 

  114. Christiansen CB, Gabe MBN, Svendsen B, Dragsted LO, Rosenkilde MM, Holst JJ (2018) The impact of short-chain fatty acids on GLP-1 and PYY secretion from the isolated perfused rat colon. Am J Physiol Gastrointest Liver Physiol 315(1):G53-g65

    Article  CAS  PubMed  Google Scholar 

  115. Zheng X, Chen T, Jiang R, Zhao A, Wu Q, Kuang J et al (2021) Hyocholic acid species improve glucose homeostasis through a distinct TGR5 and FXR signaling mechanism. Cell Metab 33(4):791-803.e7

    Article  CAS  PubMed  Google Scholar 

  116. Drucker DJ (2018) Mechanisms of action and therapeutic application of glucagon-like peptide-1. Cell Metab 27(4):740–756

    Article  CAS  PubMed  Google Scholar 

  117. Maneschi E, Vignozzi L, Morelli A, Mello T, Filippi S, Cellai I et al (2013) FXR activation normalizes insulin sensitivity in visceral preadipocytes of a rabbit model of MetS. J Endocrinol 218(2):215–231

    Article  CAS  PubMed  Google Scholar 

  118. Dimou A, Tsimihodimos V, Bairaktari E (2022) The critical role of the branched chain amino acids (BCAAs) catabolism-regulating enzymes, branched-chain aminotransferase (BCAT) and branched-chain α-keto acid dehydrogenase (BCKD), in human pathophysiology. Int J Mol Sci 23(7).

  119. Saxton RA, Sabatini DM (2017) mTOR signaling in growth, metabolism, and disease. Cell 168(6):960–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Chen J, Ou Y, Luo R, Wang J, Wang D, Guan J et al (2021) SAR1B senses leucine levels to regulate mTORC1 signalling. Nature 596(7871):281–284

    Article  CAS  PubMed  Google Scholar 

  121. Marafie SK, Al-Shawaf EM, Abubaker J, Arefanian H (2019) Palmitic acid-induced lipotoxicity promotes a novel interplay between Akt-mTOR, IRS-1, and FFAR1 signaling in pancreatic β-cells. Biol Res 52(1):44

    Article  PubMed  PubMed Central  Google Scholar 

  122. Rivera ME, Rivera CN, Vaughan RA (2022) Excess branched-chain amino acids alter myotube metabolism and substrate preference which is worsened by concurrent insulin resistance. Endocrine 76(1):18–28

    Article  CAS  PubMed  Google Scholar 

  123. Jing T, Zhang S, Bai M, Chen Z, Gao S, Li S et al (2021) Effect of dietary approaches on glycemic control in patients with Type 2 diabetes: a systematic review with network meta-analysis of randomized trials. Nutrients 15(14).

  124. Liu Y, Wang J, Wu C (2021) Modulation of gut microbiota and immune system by probiotics, pre-biotics, and post-biotics. Front Nutr 8:634897

    Article  PubMed  Google Scholar 

  125. Salgaço MK, Oliveira LGS, Costa GN, Bianchi F, Sivieri K (2019) Relationship between gut microbiota, probiotics, and type 2 diabetes mellitus. Appl Microbiol Biotechnol 103(23–24):9229–9238

    Article  PubMed  Google Scholar 

  126. Slavin J (2013) Fiber and prebiotics: mechanisms and health benefits. Nutrients 5(4):1417–1435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Petersen A, Julienne H, Hyötyläinen T, Sen P, Fan Y, Pedersen HK et al (2021) Conjugated C-6 hydroxylated bile acids in serum relate to human metabolic health and gut Clostridia species. Sci Rep 11(1):13252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wang Z, Du H, Peng W, Yang S, Feng Y, Ouyang H et al (2022) Efficacy and mechanism of Pueraria lobata and Pueraria thomsonii polysaccharides in the treatment of type 2 diabetes. Nutrients 14(19).

  129. Xu F, Yang J, Negishi H, Sun Y, Li D, Zhang X et al (2018) Silibinin decreases hepatic glucose production through the activation of gut-brain-liver axis in diabetic rats. Food Funct 9(9):4926–4935

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

None.

Funding

This work was supported by the Jiangxi Provincial Natural Science Foundation Key Project (20224ACB206010); Key Project of Jiangxi Province Science and Technology Key R&D Plan (20201BBG71006); and Jiangxi Provincial Science and Technology Innovation Base Plan (2020BCG74001 and 20221ZDG02011).

Author information

Authors and Affiliations

Authors

Contributions

SC, YJ and YH contributed equally to this work. SC, JZ, WC and JX conceived the idea and designed the study. SC and YH drafted the original manuscript. YD, JW and SH reviewed and edited the manuscript. YZ formatted the manuscript according to journal guidelines. JX and WC obtained the funding. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Wei Cai or Jixiong Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and Animal Rights disclosure

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the topical collection Gut Microbiome and Metabolic Disorders, managed by Massimo Federici.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 KB)

592_2023_2217_MOESM2_ESM.jpg

Figure S1 Illustrates the relationship between obesity and insulin resistance. Gut microbiota act as mediators. Obesity may change the metabolites of gut microbiota, which in turn leads to insulin resistance in the body, and ultimately lead to T2DM. Drawn using the software Adobe Illustrator 2023.

Supplementary file2 (JPG 53KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Jiao, Y., Han, Y. et al. Edible traditional Chinese medicines improve type 2 diabetes by modulating gut microbiotal metabolites. Acta Diabetol 61, 393–411 (2024). https://doi.org/10.1007/s00592-023-02217-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-023-02217-6

Keywords

Navigation