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Abstract
Aim Exercise-induced muscle damage depends on exercise intensity and duration and on individual susceptibility. Mechanical 
and metabolic stress may disturb the intestinal microflora. The study evaluated selected muscle damage markers and zonulin 
concentration after maximum-intensity exercise in type 1 diabetes (T1D) men compared with healthy controls.
Methods The study involved 16 T1D participants and 28 controls matched by age (22.7 [21.3–25.1] vs. 22.6 [20.9–26.3] 
years), body mass index (24.2 ± 1.6 vs. 24.2 ± 1.9 kg/m2), and body fat percentage (16.1 ± 5.2 vs. 14.9 ± 4.6%). The T1D 
group had 11.3 ± 5.1 years of diabetes duration and a suboptimal mean glycated haemoglobin level of 7.2 ± 1.1%. The subjects 
underwent a graded running treadmill test until exhaustion. Lactate concentration was assessed in arterialized blood at 
baseline and 3 and 20 min after the test. Cortisol, testosterone, tumour necrosis factor α, myoglobin, lactate dehydrogenase, 
zonulin, and vitamin D levels were evaluated in cubital fossa vein blood before and 60 min after the test.
Results T1D patients presented higher baseline zonulin, myoglobin concentration, testosterone/cortisol ratio, and lower 
maximal oxygen uptake. On adjusting for the baseline values, the groups differed in zonulin, lactate dehydrogenase, and 
myoglobin levels, testosterone/cortisol ratio, and lactate concentration determined 20 min after exercise (P < 0.05).
Conclusion Maximum-intensity exercise increased muscle and intestinal damage in T1D participants. In patients with lower 
physical activity, very-high-intensity exercise should be recommended with caution. Observing the anabolic-catabolic index 
may help individualize effort intensity in T1D individuals.
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Introduction

People who are physically active-whether they are 
amateurs or professionals-are exposed to various ailments 
of the digestive, muscular, and respiratory systems 
[1, 2]. The energy crisis, as well as dehydration and 
hyperthermia are phenomena that increase mechanical and 
metabolic stress during physical activity. The hypothesis 
of mechanical stress that occurs during physical activity 
indicates that exercise-induced muscle damage (EIMD) 
results from physical stress on muscle fibres, while the 
metabolic stress model presents EIMD as a consequence 
of metabolic deficiencies [3]. Cell structure impairment 
leads to muscle fibre damage and pro-inflammatory 
cytokine release [3]. EIMD magnitude, time course, 
and impact on performance are variable and depend 
on the intensity and duration of the exercise and on the 
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individual’s susceptibility to the damaging stimulus [4]. 
Mechanical and metabolic stress, as well as a reduction in 
gastrointestinal blood flow in favour of increased activity 
of other organs may cause disturbances in the intestinal 
microflora [5]. Side effects affecting the stomach and 
intestines occur in many athletes and may make them 
avoid exercise [6].

Type 1 diabetes mellitus (T1D) is a chronic progressive 
disease that results in increased mortality [7]. Among the 
primary efforts to achieve metabolic control in T1D, the 
International Society for Pediatric and Adolescent Diabetes 
and the American Diabetes Association recommend taking 
at least 60 min of moderate to vigorous aerobic physical 
activity daily [8, 9]. Physical activity helps alleviate the 
increased risk of cardiovascular complications related to 
T1D [10]. The cardiovascular benefits provided by physical 
exercise are somewhat limited in insulin-treated patients, 
as exercise management can be challenging owing to the 
risk of hypoglycaemia. However, from the clinical point 
of view, it seems crucial to understand the mechanical 
and metabolic response to exercise of varying intensity in 
a T1D patient [11]. In the literature, there are few studies 
that describe muscle cell damage induced by exercise in 
T1D [12]. Increased damage of muscle cells, expressed 
by elevated biomarker levels, can often be a challenge 
in the context of maintaining normal blood glucose 
concentrations [12]. People with T1D, compared with 
non-diabetic individuals, exhibit different gut microbiota, 
which is associated with intestinal permeability changes, 
inflammation, and insulin resistance [13]. Therefore, it is 
essential to understand the influence of physical activity 
on the composition and structure of the gut microbiota in 
patients with T1D.

Furthermore, T1D patients present a greater increase in 
lactate and cortisol levels after high-intensity intermittent 
exercise compared with moderate-intensity exercise [14]. 
Interestingly, EIMD can lead to transient insulin resistance 
(caused by inflammatory factors) also in healthy subjects 
[3].

The pleiotropic nature of vitamin D suggests the 
presence of vitamin D receptors in almost all human 
cell nuclei [15]. Calcitriol is responsible for a number 
of important functions in of the body, including bone 
mineralization, hormone production, and proper 
functioning of the nervous, immune, endocrine, 
cardiovascular, and muscular systems [16]. In the 
literature, there are many inconsistent scientific reports 
suggesting a relationship between plasma vitamin D 
concentration and the level of markers reflecting damage 
to muscle cells after exercise [17–19]. Moreover, these 
studies were conducted in healthy populations, and there 
are no scientific reports concerning T1D individuals.

The purpose of this study was to evaluate markers of 
damage to the intestines and muscles after a single session 
of exercise at a maximum intensity among men with T1D 
compared with healthy males.

Methods

Participants

The study involved 16 men with T1D (consecutive patients 
receiving medical care in the authors’ clinic were invited to 
participate) and 28 controls (all being university students 
from Krakow) matched by age and body composition. All 
individuals with T1D were treated with a personal insulin 
pump (there is a dedicated inpatient clinic at the authors’ 
centre that focuses on modern technologies, which is 
why most T1D patients receive pump treatment). The 
maximal aerobic capacity  (VO2max) in the T1D group was 
determined as described in earlier publications [20, 21]. 
It should be noted that 2 h prior to the test, the patients 
consumed a specified meal which consisted of 50 g of 
carbohydrates: 30 g of cereal yogurt (255 kcal) and 20 g 
of bananas (116 kcal). The patients had not been trained in 
this form of exercise. The same exercise test was applied 
to the control group. The participants underwent a graded 
running test on a mechanical treadmill until subjective 
feeling of maximum exhaustion. Muscle damage markers 
and zonulin concentration were assessed before and after 
the graded test.

The inclusion criteria for the study involved male sex, 
the presence of T1D, treatment with a personal insulin 
pump for at least 1 year, the latest glycated haemoglobin 
(HbA1c) level of < 75  mmol/mol (9%), a lack of 
advanced chronic complications, and signed written 
informed consent. The assessment of chronic diabetes 
complications was based on a combination of medical 
records, previous tests, and consultations conducted at 
different points of time. No further examinations were 
performed specifically for this study, apart from the initial 
eligibility visit. The exclusion criteria for this study were 
as follows: pre-proliferative or proliferative retinopathy, 
autonomic neuropathy, polyneuropathy, stage 3 or higher 
chronic kidney disease, severe hypoglycaemia or diabetic 
ketoacidosis within 7 days prior to the testing, significant 
locomotor disorders, body mass index of ≥ 35  kg/m2, 
resting electrocardiogram abnormalities, as well as 
ineligibility for examination by an internal medicine 
physician. The patients’ glucose levels were continuously 
monitored with the use of a blinded Dexcom G4, starting 
from 10 days before the maximum-intensity exercise test 
until the end of the exercise.
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Laboratory tests

The material for biochemical tests was blood collected 
from a cubital fossa vein (7  ml) by a laboratory 
diagnostician in accordance with the applicable standards. 
Blood was collected to Vacutainer EDTA tubes before 
the maximum-intensity exercise test and 60 min after its 
completion. It was allowed to clot at room temperature 
and then centrifuged. The resulting serum was aliquoted 
and frozen at −  80  °C for later analyses. Then, the 
levels of inflammation and muscle damage markers 
(cortisol, testosterone, tumour necrosis factor α [TNF-
α], myoglobin, lactate dehydrogenase [LDH], vitamin D) 
and zonulin concentration were determined. All indicators 
were evaluated with the enzyme-linked immunosorbent 
assay (ELISA) by using a DRG microplate reader (E-Liza 
Mat 3000, Medical Instruments GmbH, Germany).

Lactate concentration was assessed in arterialized blood 
collected from a fingertip before the exercise test and 3 and 
20 min after its completion. The concentration of lactate in 
plasma was determined with the enzymatic method by using 
a Lactate PAP kit (BioMérieux, France) and a Spekol 11 
spectrophotometer (Carl Zeiss Jena, Germany).

Statistical analysis

To compare 2 independent variables, Student’s or Welch’s 
t-test was performed for normally distributed (Shapiro–Wilk 
test) continuous variables; otherwise, the Mann–Whitney 
U-test was applied. To test for the estimated difference in 
outcome between the groups, an ANCOVA was conducted, 
with adjustment for the group and baseline values. Once 
significant interactions were confirmed, they were included 
into a model, and the adjusted mean between-group 
difference was estimated.

The correlations between the biochemical parameters 
analysed were verified with the Pearson or Spearman 
correlation. The study results are presented as arithmetic 
means ± standard deviations. The results were considered 
significant at the significance level of P < 0.05. The analyses 
were performed with the R software, version 4.1.0, and 
R-Studio, version 1.3.959.

Results

The studied groups were matched by age, body mass index, 
and percentage of body fat. The T1D group presented 
diabetes duration of 11.3 ± 5.1  years and a suboptimal 
metabolic control: mean HbA1c level of 7.2 ± 1.1% and 
mean glucose concentration with continuous monitoring 

from 10 days before the test of 155 ± 69 mg/dl (with mean 
sleep duration of 7.4 h).

At baseline, the T1D patients were characterized by a 
higher zonulin and myoglobin level and testosterone/cortisol 
ratio, and lower  VO2max. Differences between the groups 
are shown in Table 1.

The correlation analysis revealed that a higher level 
of HbA1c was associated with a lower myoglobin 
concentration at baseline (r = − 0.60, P = 0.014) and after 
exercise (r = −  0.71, P = 0.002). A longer duration of 
diabetes was correlated with a lower level of testosterone 
before (r = − 0.57, P = 0.022) and after exercise (r = − 0.58, 
P = 0.020), as well as with a lower level of LDH (r = − 0.51, 
P = 0.043). There was also a positive correlation between 
testosterone and vitamin D levels (r = 0.60, P = 0.015) and 
a tendency towards a negative correlation between vitamin 
D and zonulin concentrations before exercise (r = − 0.47, 
P = 0.06). In healthy subjects, only the correlation between 
vitamin D and testosterone levels was confirmed (r = 0.50, 
P = 0.007).

The estimated differences in outcomes between the 
groups (with adjustment for baseline values) after exercise 
are presented in Table  2. After adjustment, the groups 
differed in zonulin, LDH, and myoglobin levels, testosterone/
cortisol ratio, and lactate concentration determined 20 min 
after exercise.

Discussion

This was the first study to comprehensively compare muscle 
damage markers and zonulin concentration after a physical 
capacity test in men with T1D and matched healthy controls.

Muscle damage

The main findings indicate that after a single short exercise 
of maximum intensity, the individuals with T1D compared 
with the control group (after adjustment for baseline values) 
presented significantly higher levels of myoglobin, LDH, 
and lactate determined 20 min after the test. No significant 
correlations were observed between vitamin D concentration 
and the levels of muscle damage markers after maximum 
exercise. The concentration of zonulin differed between 
the compared groups at baseline but no differences were 
observed after the exercise. When the differences after the 
exercise were adjusted for the baseline values, the zonulin 
level differed significantly between the groups.

The molecular and cellular mechanisms of skeletal 
muscle adaptation to exercise training are unclear. Owing 
to the mechanical, metabolic, and inflammatory processes 
that occur during and after physical activity, muscle cells 
become damaged [3]. In healthy individuals, the increase 
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in metabolite levels associated with muscle damage has 
no consequences for health. However, in patients with 
T1D, at an increased risk of renal complications related 
to diabetes pathophysiology, excessive amounts of 
intramuscular proteins may be released into the bloodstream 
and precipitated in the renal tubules, negatively affecting 
renal function [22]. Damage to muscle cells resulting 
from physical activity initiates a series of immune 
reactions, including cytokine production and systemic 
leukocyte release [23]. Therefore, deep muscle damage 
and inflammatory responses observed with maximum-
intensity exercise can influence glycaemic control in 
T1D subjects. LDH is the key enzyme that catalyses the 
interconversion of pyruvate and lactate, thus regulating the 
homeostasis of cellular pyruvate and lactate [24]. Higher 
LDH activity was shown to occur in healthy individuals 
after exercise because of changes in the permeability of 

cell membranes and cell necrosis [25]. The major role is 
attributed to increased cell membrane permeability due to 
changes in potassium, glucose, and albumin concentrations 
in the extracellular fluid, tissue hypoxia, and temporary 
modifications of the metabolic path [25]. These phenomena 
are typical in patients with T1D. Some authors suggest that 
an increase of LDH activity in serum occurs after prolonged 
exercise [25]. Numerous tests performed in smaller and 
more athletic groups of people, as well as in animals have 
revealed a higher increase in the activity of this enzyme in 
untrained groups [25]. Since the release of enzymes from 
cells is conditioned by energy supply, it can be assumed 
that working muscles deplete more quickly in less physically 
fit individuals [25]. In the presented study,  VO2max was 
lower in T1D patients than in healthy controls. Studies by 
Fernando et al. [26] and Sandler et al. [27] revealed that 
the glycosylation of collagen fibres that occurs in diabetics, 

Table 1  Comparison of the 
T1D and matched control 
groups with respect to general 
characteristics, as well as 
muscle damage markers and 
zonulin concentration

T1D type 1 diabetes, BMI body mass index, VO2max maximal aerobic capacity, LDH lactate 
dehydrogenase, TNF-α tumour necrosis factor α
a Parametric test was used

Variable T1D group (n = 16) Control group (n = 28) p-value

Age (years) 22.7 (21.3–25.1) 22.6 (20.9–26.3) 0.779
BMI (kg/m2) 24.2 ± 1.6 24.2 ± 1.9 0.971a

Body fat (%) 16.1 ± 5.2 14.9 ± 4.6 0.448a

VO2max/kg of body mass (l/min/kg) 45.0 (40.9–46.1) 49.5 (47.4–54.3) < 0.001
Lactate, baseline (mmol/l) 1.6 ± 0.2 1.6 ± 0.2 0.959a

Lactate, 3 min post-exercise (mmol/l) 13.7 ± 3.4 12.9 ± 2.9 0.406a

Lactate, 20 min post-exercise (mmol/l) 7.6 (5.2–10.5) 5.8 (5.0–7.3) 0.062
Vitamin D (ng/ml) 29.3 ± 18.0 32.4 ± 12.6 0.511a

Zonulin, baseline (ng/ml) 12.4 (10.3–15.0) 10.0 (9–11.2) 0.015
Zonulin, post-exercise (ng/ml) 12.5 (11.5–16.7) 13.8 (9.8–19.0) 0.800
Δ Zonulin (ng/ml) 1.4 (0.5–1.9) 2.3 (0.7–8.6) 0.111
LDH, baseline (U/l) 169.1 (155.0–206.8) 156.0 (136.4–182.3) 0.116
LDH, post-exercise (U/l) 250.5 (216.1–300.5) 171.0 (151.6–205.4) < 0.001
Δ LDH (U/l) 86.7 (55.0–108.9) 21.5 (3.9–45.0) < 0.001
TNF-α, baseline (pg/ml) 2.94 (2.22–4.02) 2.81 (1.84–3.75) 0.538
TNF-α, post-exercise (pg/ml) 4.77 (3.77–7.44) 5.16 (2.98–6.96) 0.461
Δ TNF-α (pg/ml) 2.5 (1.3–3.3) 1.1 (0.3–3.9) 0.281
Cortisol, baseline (ng/ml) 174.2 ± 52.4 198.5 ± 47.5 0.123a

Cortisol, post-exercise (ng/ml) 268.5 ± 65.6 276.6 ± 64.2 0.694a

Δ Cortisol (ng/ml) 94.9 (54.3–130.9) 68.7 (45.1–97.2) 0.290
Testosterone, baseline (ng/ml) 4.5 ± 1.1 4.9 ± 1.1 0.269a

Testosterone, post-exercise (ng/ml) 3.7 (3.1–4.4) 4.7 (3.7–5.2) 0.049
Δ Testosterone (ng/ml) − 0.6 (− 1.1 to − 0.2) − 0.4 (− 0.8 to − 0.01) 0.292
Testosterone/cortisol, baseline 2.8 (2.1–3.1) 2.5 (2.1–3.3) 0.015
Testosterone/cortisol, post-exercise 1.5 (1.1–1.9) 1.5 (1.4–2.1) 0.116
Δ Testosterone/cortisol − 0.5 (− 1.0 to − 0.3) − 0.6 (− 1.6 to 0.1) 0.537
Myoglobin, baseline (ng/ml) 24.2 (15.5–32.9) 14.9 (10.1–22) 0.034
Myoglobin, post-exercise (ng/ml) 40.5 (28.0–99.3) 24.5 (19.2–32.9) 0.032
Δ Myoglobin (ng/ml) 18.6 (9.3–54.3) 10.3 (7.4–15.4) 0.052
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limiting joint mobility, can also arise in the lungs and heart. 
These changes may lead to decreased lung function test 
results. It can therefore be speculated that collagen fibre 
glycosylation in T1D patients may have contributed to the 
reduced  VO2max levels that were observed in the present 
study. In addition, the decreased aerobic capacity in T1D 
may be due to reduced mitochondrial oxidative capacity 
[28]. The same results were reported in other papers [29, 
30]. After adjusting the ANCOVA model for the  VO2max 
variable, the differences between the groups remained 
significant (P < 0.001). These findings may confirm a higher 
permeability of cell membranes in people with T1D.

The study implied a higher lactate concentration 
20 min after completion of maximum-intensity exercise 
in the T1D group compared with the control. The higher 
concentration of lactate may contribute to the accompanying 
hyperglycaemia. Lactate may act as a potential alternative 
substrate for glucose [31] and provide gluconeogenic 
precursors for hepatic glucose production [32]. Moreover, 
higher levels of lactate may sharply inhibit the insulin 
impact on peripheral glucose uptake, which is an action 
similar to that of counterregulatory hormones [33]. Peri-
exercise lactate monitoring in T1D may provide additional 
information to optimize physical activity [34]. Myoglobin 
is a protein responsible for the storage of oxygen in striated 
muscle tissue. Only myoglobin released from damaged 
muscle cells, both of the heart and of skeletal muscles, enters 
the bloodstream and sometimes also the urine. The study 
showed that high-intensity exercise increased the level of 
myoglobin in healthy people [35]. On the basis of model 

simulations, the contribution of myoglobin oxygenation 
to total heme oxygenation can be significantly different 
under pathophysiological conditions, such as diabetes and 
peripheral arterial disorder [36]. In the present study, at 
baseline and after exercise, patients with T1D exhibited 
higher myoglobin values than the healthy controls. The 
higher concentration of myoglobin after maximum-
intensity exercise may result from a reduced ability of 
T1D individuals to tolerate exercise and, at the same time, 
which is characteristic of this population, impaired exercise 
tolerance [37]. Furthermore, an inverse correlation between 
HbA1c and myoglobin level was observed in the T1D group. 
Although there was a difference between the groups, all 
results were in the normal range.

The analyses did not reveal differences in vitamin D 
concentration between the T1D subjects and the healthy 
controls. There was only a positive correlation between 
vitamin D and testosterone level in both groups and a 
borderline-negative correlation with zonulin concentration 
prior to exercise. The optimal level of 25(OH)D in blood 
plasma supports the muscular system during and after 
physical activity, helping maintain the correct concentrations 
of pro- and anti-inflammatory cytokines (mainly TNF-α) and 
therefore inhibiting inflammatory responses that arise [38]. 
Plasma deficiency of this vitamin can lead to impaired motor 
coordination and increases the risk of muscle damage [15]. 
Skeletal muscle histology showed an association between 
fast-twitch fibre atrophy and a suboptimal 25(OH)D level, 
which confirms the importance of vitamin D for normal 
muscle function [39]. In the literature, there are studies 

Table 2  Estimated difference after exercise between the T1D and matched control groups

T1D type 1 diabetes, LDH lactate dehydrogenase, TNF-α tumour necrosis factor α, VO2max maximal aerobic capacity
a With significant interaction included
After adding the  VO2max variable to the model, group differences remained significant for zonulin (P = 0.018), LDH (P < 0.001), and 
testosterone/cortisol indicator (indicator of anabolic-catabolic balance) (P = 0.008), as well as borderline-significant for myoglobin (P = 0.058)

Category T1D group Control group Estimated difference 
(T1D–control group)

95% confidence 
interval

p-value

Before exercise After exercise Before exercise After exercise

Zonulin (ng/ml) 13.6 ± 5.6 15.2 ± 7.1 10.5 ± 2.7 14.5 ± 5.1 − 3.0 − 5.5; − 0.6 0.017
LDH (U/l) 191.1 ± 65.9 278.8 ± 86.8 170.5 ± 63.1 184.5 ± 56.1 74.3a 42.7; 106.0 < 0.001
TNF-α (pg/ml) 3.3 ± 1.9 6.0 ± 3.0 3.0 ± 1.8 5.1 ± 2.4 0.7 − 0.8; 2.1 0.351
Cortisol (ng/ml) 174.2 ± 52.4 268.5 ± 65.6 193.9 ± 41.0 274.6 ± 54.9 13.4 − 18.2; 45.0 0.398
Testosterone (ng/ml) 4.5 ± 1.1 3.9 ± 1.2 4.9 ± 1.1 4.8 ± 1.5 − 0.6 − 1.4; 0.1 0.107
Myoglobin (ng/ml) 40.2 ± 60.3 74.6 ± 88 16.5 ± 10.0 27.8 ± 12.5 12.2 0.7; 23.8 0.039
Testosterone/cortisol 

indicator
2.8 ± 1.2 1.5 ± 0.6 2.7 ± 0.8 1.9 ± 0.8 − 0.4 − 0.8; − 0.1 0.020

Lactate, baseline vs. 
3 min post-exercise 
(mmol/l)

1.6 ± 0.2 13.7 ± 3.4 1.6 ± 0.2 12.9 ± 2.9 0.8 − 1.1; 2.76 0.411

Lactate, baseline 
vs. 20 min post-
exercise (mmol/l)

1.6 ± 0.2 7.9 ± 2.8 1.6 ± 0.2 6.2 ± 1.9 1.7 0.3; 3.0 0.081
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describing the effect of vitamin D supplementation on the 
level of muscle damage under the influence of exercise 
[19, 40]; however, there is no such research in patients 
with T1D. Furthermore, epidemiological data suggest a 
possible relationship between vitamin D deficiency and 
the worldwide occurrence of T1D [41, 42]. The presented 
results are in line with a recent meta-analysis which cannot 
conclude that vitamin D supplementation exerts an effect 
on post-exercise muscle recovery. Most likely, the anti-
inflammatory action of vitamin D is faster than the recovery 
of tissue structure and function [43].

Zonulin concentration

Nowadays, the role of the gut microbiota and physical 
activity is gaining more and more attention. Regular and 
moderate physical activity brings about many beneficial 
functional changes in gastrointestinal diseases; however, as 
the intensity of physical activity rises, the risk of intestinal 
microflora disorders increases [44].

Zonulin concentration is elevated in patients with T1D 
and in animal models of T1D, in both the prediabetic and 
diabetic stages [45–47]. Elevated zonulin levels are found in 
the plasma of 75% of patients with T1D [45]. The presented 
results confirm this finding. Men with T1D exhibited 
higher zonulin concentrations before and after exercise 
than controls (Table 1). Increased intestinal permeability, 
commonly referred to as ‘leaky gut,’ is associated with T1D 
and has been widely described in the literature [48]. Taking 
into account the presence of resting zonulin concentration in 
T1D and its level variation after physical activity, it seems 
advisable to conduct more studies examining patterns 
of zonulin concentration changes in T1D in response to 
physical activity of varying intensity. Feng et al. implied 
that an exercise program in adults resulted in a relative 
improvement in a biomarker of intestinal barrier integrity, 
indicating a potential mechanism by which longer-term 
exercise might improve this integrity [49]. This is another 
reason why the healthy control group with higher physical 
capacity exposed a lower zonulin level. It is believed that 
muscle unaccustomedness to high-intensity eccentric 
exercise, and not eccentric exercise per se, is the trigger for 
muscle damage, as reflected by muscle damage biomarkers 
[50]. One should emphasize the importance of optimal 
vitamin D concentration, which was shown in our study to 
be associated (with borderline significance) with the baseline 
level of zonulin. The link between diabetes development 
and intestinal permeability strongly suggests that increased 
intestinal permeability is a causal factor in T1D.

The finding of lower testosterone concentrations in T1D 
patients compared with the control group reported in this 
research is consistent with observations by other authors 

[51–56]. The decrease in testosterone levels in T1D men 
is explained by the presence of features of a complex of 
metabolic diseases [53, 54], iatrogenic hyperinsulinemia 
and insulin resistance [55]. On the other hand, some 
studies revealed higher testosterone concentrations in T1D 
individuals [52]. This may be caused by the fact that patients 
with T1D need more insulin to control glucose than healthy 
people with normal beta cells. Exogenous hyperinsulinemia 
in T1D patients can stimulate testosterone production and 
induce high serum testosterone levels.

The literature seems to be deficient in studies in which 
observation of changes in testosterone and cortisol levels 
would be applied to monitor fatigue and overtraining 
in T1D. Monitoring the anabolic-catabolic balance 
in T1D may contribute to a better understanding of 
recommendations regarding the intensity and duration of 
physical activity in this group of patients. In the presented 
research, significant changes were found in this indicator 
in T1D patients compared with the control group after a 
single effort of maximum intensity. Observation of changes 
in the testosterone/cortisol ratio is commonly used in the 
practice of sports physiology in healthy people [57, 58]. 
An increase in cortisol concentration and a decrease in 
testosterone concentration can further intensify the catabolic 
environment at the tissue level, thereby reducing muscle 
strength and overall performance [59].

The study revealed a correlation between serum vitamin 
D and testosterone level in both studied groups. A meta-
analysis of 10 human randomized controlled trials provided 
evidence of an effect of vitamin D on total testosterone [60]. 
The same findings concerned males with type 2 diabetes 
[61]. To date, no studies on this issue have been conducted 
among patients with T1D.

Another finding was a higher lactate level 20 min after 
exercise in T1D individuals than in the healthy controls 
(Table 2). This was probably related to the lower physical 
capacity of the T1D group. In patients with T1D, the 
increase in blood lactate concentrations after physical 
exercise was shown to be larger in older subjects and did 
not depend on gender, insulin administration method, or 
training in a sports club vs. recreational play [62]. Compared 
with aerobic exercise, a cardiopulmonary exercise test was 
associated with higher lactate levels in adult men with T1D 
[34].

One may be concerned about a higher level of muscle 
damage markers and zonulin concentration in the context 
of renal function in patients with T1D. Recent studies have 
shown that even prolonged intense exercise resulting in 
elevated muscle damage and inflammatory biomarkers do 
not affect renal function [12]. However, a study on eccentric 
exercise in men with moderately controlled T1D indicated 
skeletal muscle alterations after damaging exercise, 
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suggesting that longer recovery might be necessary after 
intense effort [63].

Limitations

The study has some limitations. First, the diet was not 
analysed. In other studies, supplementation of protein 
was shown to inf luence exercise-induced muscle 
stress responses by changing cellular metabolism and 
inflammatory pathways. The supply of essential amino 
acids is critically related to muscle protein synthesis and 
can promote skeletal muscle hypertrophy in response to 
chronic resistance training [64]. Intake of branched chain 
amino acids favours post-exercise muscle recovery and 
may improve muscle function [65]. However, the evidence 
linking protein intake with a benefit in endurance sports 
has not been clearly established [64]. Other nutritional 
products, such as polyphenols, omega-3 acids, vitamin 
D, or vitamin C, could also play an important role in 
alleviating EIMD [4].

Muscle damage markers and inflammatory conditions 
can occur hours after exercise is over, which could 
constitute another limitation of the present investigation. 
In addition, the study only included male participants and 
patients using personal insulin pumps.

Conclusions

Maximum-intensity exercise increased the levels of muscle 
damage markers and zonulin concentration in men with 
T1D. In patients with a lower level of physical activity, 
very-high-intensity exercise should be recommended with 
caution. Observation of changes in the anabolic-catabolic 
index may help individualize the intensity of physical 
activity undertaken by patients with T1D.
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