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Abstract
Hyperglycemia strongly affects endothelial function and activation, which in turn increases the risk of atherosclerotic car-
diovascular disease. Among pharmacotherapies aimed at lowering blood glucose levels, glucagon-like peptide 1 receptor 
agonists (GLP-1RA) represent a class of drugs involved in the improvement of the endothelium damage and the progression 
of cardiovascular diseases. They show antihypertensive and antiatherosclerotic actions due at least in part to direct favorable 
actions on the coronary vascular endothelium, such as oxidative stress reduction and nitric oxide increase. However, cumula-
tive peripheral indirect actions could also contribute to the antiatherosclerotic functions of GLP-1/GLP-1R agonists, including 
metabolism and gut microbiome regulation. Therefore, further research is necessary to clarify the specific role of this drug 
class in the management of cardiovascular disease and to identify specific cellular targets involved in the protective signal 
transduction. In the present review, we provide an overview of the effects of GLP-1RAs treatment on cardiovascular disease 
with particular attention on potential molecular mechanisms involving endothelium function on formation and progression 
of atherosclerotic plaque.
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Introduction

The intuition that endothelial damage could contribute to the 
development of vascular pathologies causing an increase in 
morbidity and mortality dates back to many years ago; how-
ever, the study of the mechanisms underlying this process is 
much more recent and constantly evolving [1]. The endothe-
lial cell (EC) plays many important functions throughout the 
body and shows vascular-specific heterogeneity [2]. It is now 
clear that the endothelium, in addition to the barrier function 
and regulation of cell permeability, has autocrine, parac-
rine and endocrine functions, controlling blood flow and 

pressure, hemostasis and coagulation, immune and inflam-
matory responses, vasculogenesis and angiogenesis [3]. The 
functional alteration of the endothelium is closely linked to 
a reduction in nitric oxide (NO) bioavailability, but also to 
the modulation of platelet markers, proinflammatory factors 
and adhesion molecules. Therefore, in addition to functional 
measures of endothelial dysfunction, molecules including 
tumor necrosis factor alpha (TNF-α), intercellular adhesion 
molecule 1 (ICAM-1) and vascular cell adhesion molecule 
1 (VCAM-1) can also be considered surrogate markers of 
endothelial dysfunction and cardiovascular risk [4].

Cardiovascular risk factors, such as hyperglycemia, hyper-
cholesterolemia, hypertension, smoking and oxidative stress, 
are crucial mediators of endothelial dysfunction, defined as 
the decrease in synthesis, release and activity of the endothe-
lium derived NO, while proinflammatory cytokines, increased 
flow and advanced glycation endproducts (AGEs) are classical 
mediators of EC activation, defined by increased endothelial 
expression of cell surface adhesion molecules [5]. However, 
the reduction of NO leads to increased endothelial activation 
and, in parallel, the activation of ECs prompts endothelial dys-
function. Moreover, both endothelial dysfunction and activa-
tion lead to atherosclerosis and vascular disease by increasing 
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vasoconstriction, smooth muscle cells (SMC) proliferation, 
platelet aggregation, leukocyte adhesion, LDL oxidation and 
matrix metalloproteinases (MMP) activation [6].

Prolonged hyperglycemia as well as transient acute hyper-
glycemia impairs endothelial function. Therefore, phar-
macotherapies aimed at reducing blood glucose levels are 
supposed to be able to reduce the endothelium damage and 
the progression of cardiovascular diseases. However, not all 
agents used to treat diabetes have been shown to reduce the 
risk of cardiovascular disease, despite the effective lower-
ing of blood glucose [7]. Intestinal L cell-derived GLP-1 is 
a postprandial peptide that plays a critical role in the con-
trol of blood glucose level by increasing insulin secretion 
in pancreatic β cells and suppressing glucagon release [8]. 
Endogenous GLP-1 has a very short elimination half-life 
of < 1.5 min after intravenous administration due to rapid 
degradation by the enzyme dipeptidyl peptidase (DPP4) [9]. 
This evidence has driven the development of DPP4-resistant 
GLP-1 analogs. The GLP-1RAs currently available can be 
broadly classified as analogues of human GLP-1 with vari-
ous structural modifications that prolong its half-life, such 
as modifications of amino acids (which confer resistance 
to the action of DPP4) or the addition of a chain of fatty 
acids (liraglutide), albumin (albiglutide) or immunoglobu-
lin (dulaglutide). Alternatively, there are exendin-based 
therapies being exendin-4 a synthetic GLP-1RA that shares 
53% sequence homology with native GLP-1 [10]. GLP-1RA 
clinical trials with cardiovascular outcome (CVOT) reported 
significant reductions in major cardiovascular adverse events 
(MACE) compared to placebo in five out of seven CVOTs, 
even regardless of their ability to control blood glucose [11]. 
However, the main mechanism remains enigmatic. Based on 
the results of recent CV outcome studies, GLP-1RA drugs 
compared with sodium–glucose cotransporter 2 (SGLT2) 
inhibitors have shown, in addition to some common favora-
ble CV effects, several class-specific effects (GLP-1RA: 
benefits for the risk of atherosclerotic outcomes, inhibi-
tors SGLT2: benefits for the risk of heart failure outcomes) 
contributing to the overall improvement of CV. The most 
evident reduction appears to be associated with atheroscle-
rotic pathways suggesting anti-atherogenic properties of 
GLP-1RA [12, 13]. How this effect is due to a direct vas-
cular action or to the metabolic improvement or whether a 
protection of the endothelial function is involved remains 
to be clarified.

Role of GLP‑1RAs in ECs: direct or indirect 
effects?

Type 2 diabetes (T2D) patients treated with subcutaneous 
exenatide show that it exerts a protective GLP-1R-depend-
ent effect on postprandial endothelial function, compared 

to placebo, suggesting direct action on the endothelium 
[14]. Indeed, there are at least four evidences suggesting the 
hypothesis that endothelium may represent a direct target 
of GLP-1RAs: 1. GLP-1R acts in many pathways involved 
in the regulation of endothelial function [15]; 2. GLP-1R 
is expressed in several cells involved in the pathogenesis 
of atherosclerosis, including endothelium and macrophages 
[16, 17]; 3. The EC represents a direct GLP-1 target [18]; 
4. In several in vitro studies, the GLP-1RA treatment exerts 
protective action in ECs. In fact, GLP-1RAs exert protective 
effects on the endothelium vascular tone and inflammation, 
by inducing the activation of nitric oxide synthase, endothe-
lial (eNOS), and NO production in ECs in vitro through 
the protein kinase AMP-activated catalytic subunit alpha 
(AMPK)/Akt pathway [14] and suppressing the expression 
of proinflammatory cytokines, chemokines and adhesion 
molecules induced by hyperglycemia, inflammatory stimuli 
or oxidative stress [19–21]. Moreover, GLP-1RAs show anti-
adhesive properties by reducing the adhesion of monocytes 
to ECs at least in part through the regulation of Kruppel-
like factor 2 (KLF2), a transcription factor that plays an 
important protective role in regulating the inflammatory 
response during atherosclerosis and other cardiovascular 
diseases [21, 22]. Both in ECs and endothelial progenitor 
cells (EPCs), GLP-1RA treatment is able to increase SirT6 
expression, thus reducing inflammatory pathways induced 
by high glucose. The relevance of the obtained results is 
confirmed by the evidence that compared with non-GLP-1 
therapy-treated plaques, GLP-1 therapy-treated plaques pre-
sented greater SIRT6 expression and collagen content, and 
less inflammation and oxidative stress, indicating a more 
stable plaque phenotype [23]. Furthermore, in ECs, incretin 
treatment has been shown to be involved in the regulation 
of adiponectin/APPL1 signaling pathway, thus preventing 
atherosclerosis progression or plaque vulnerability in type 
2 diabetes patients [24]. The trans-differentiation of ECs 
into mesenchymal cells (EndMT) plays a vital role in car-
diovascular diseases, including atherosclerosis [25]. Recent 
studies have revealed that inflammation and diabetic condi-
tions trigger EndMT [26, 27]. GLP-1RAs inhibits EndMT 
markers expression induced by glucose or IL-1b in ECs via 
regulation of AMPK [28]. Epigenetics mechanisms, through 
DNA methylation, histone modifications and non-coding 
RNA regulation, have been shown to play a key role in the 
pathophysiological mechanism of diabetes and progres-
sion of CVD [29]. Recent data indicate that in ECs, treat-
ment with GLP-1 agonists prevented high glucose-induced 
demethylation in the promoter region of nuclear factor-kB 
(NF-kB) and superoxide dismutase 2 (SOD2), avoiding 
their detrimental expression, suggesting a potential role of 
GLP-1 and GLP-1R agonists on epigenetic machinery to 
prevent the vascular diabetic complications. Accordingly, 
diabetic patients showed a decrease in DNA methylation 
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of these genes compared to non-diabetic patients [30]. In 
summary, available evidence suggests a role for GLP-1RAs 
in reversing endothelial dysfunction; however, it should be 
considered that in vitro treatments are performed with higher 
GLP-1RAs dose compared to physiological levels of GLP-1 
observed after nutrient ingestion indicating that the reported 
results could potentially be artifacts due to promiscuous 
actions on related receptors. Therefore, further evidence is 
needed to confirm the in vitro observations.

GLP‑1RAs and atherosclerosis: which 
is the target?

Ex vivo studies using isolated aortic rings obtained from 
high-fat diet ApoE-/- mice treated with liraglutide showed 
significant improvement in endothelial function, increased 
eNOS expression and reduction of ICAM-1, indicating that 
these drugs may reverse endothelial dysfunction in GLP-
R-dependent manner [20]. To facilitate the analysis of sys-
temic independent effects and focus on the direct role of 
GLP-1RAs in atherosclerotic cells, GLP-1RA doses should 
be specifically designed to have minimal impact on weight 
and metabolism. In both, ApoE-/- mice and LDLr-/- mice 
models of atherosclerosis, liraglutide treatment significantly 
attenuated atherosclerotic plaque development partly inde-
pendently of body weight and cholesterol reduction, and 
transcriptomic analysis showed a reduction of proinflam-
matory pathways in aortic atherosclerotic tissue, suggesting 
a direct action on plaque independently of metabolic effects 
[31].

Other data, obtained from ApoE-/- mice, suggest that 
exendin-4 could have beneficial effects against atheroscle-
rosis without affecting metabolism and could potentially pre-
vent the progression of atherosclerosis by its direct action 
on cells involved in atherosclerosis. The data suggest that 
exendin-4 markedly reduced monocyte/macrophage accu-
mulation in the vascular wall at least in part by suppressing 
the inflammatory response in macrophages through activa-
tion of the cAMP/PKA pathway [32]. Therefore, in addition 
to the effect of GLP-1RAs on ECs, their effect on mono-
cytes/macrophages may also have a strong impact on the 
attenuation of atherosclerosis. Moreover, in ApoE-/- mice 
low liraglutide dose promotes an MΦ2 macrophage pheno-
type. These changes in the macrophage phenotype reduce 
deleterious changes in the vascular wall and promote favora-
ble stabilization of atherosclerotic lesions [33]. This obser-
vation further suggests the ability of GLP-1RAs to modulate 
harmful immune responses that drive plaque formation.

Recently, a novel plaque-targeted nano-GLP-1RA 
(GlpNP) drug has been designed, synthesized and injected 
at very low doses twice a week for six weeks in ApoE-/- 
mice to allow decoupling of systemic effects in effort to 

understand the impact of direct plaque delivery on ath-
erosclerosis. Collectively, the obtained data indicated that 
GlpNP can selectively deliver into atherosclerotic plaque, 
where it appears to accumulate in vascular smooth muscle 
cell (VSMC)-like cells. Moreover, it favorably modulates 
atherosclerosis with pancreatic or central nervous system-
independent effects and without significant changes in meta-
bolic parameters, suggesting a direct action of GLP-1 ana-
logues on atherosclerosis, involving cholesterol efflux and 
inflammation, especially in the context of SMC inflamma-
tion [34]. In mice with experimental arterial hypertension, 
liraglutide reduced the angiotensin II-induced inflammatory 
cascade and oxidative stress in the vascular wall and thus 
restoring NO bioavailability and protecting from angiotensin 
II-induced endothelial dysfunction. Interestingly, the vascu-
lar protective effects were abolished in global Glp1r-/- mice 
and in mice with selective disruption of GLP-1R expres-
sion in EC but not in the myeloid lineage, indicating that 
endothelial GLP-1R mediates cardiovascular protection by 
the GLP-1RA liraglutide-independent glycemic control [35]. 
In summary, these findings indicate that GLP-1RAs have, 
at least in part, a direct effect on cardiovascular protection 
through the involvement of multiple pathways in different 
cell types.

GLP‑1R dependent or independent 
pathways in cardiovascular disease: this 
is the question

As already mentioned, the native GLP-1, 7-36a, has a short 
half-life (1–2 min) due to rapid enzymatic degradation by 
DPP4 and other enzymes [36]. The form of GLP-1, 9-36a, 
cleaved with DPP4, is the predominant circulating form [37]. 
It was previously perceived as an inactive GLP-1 derivative, 
due to the evidence that 9-36a did not show any significant 
insulin-stimulating effects and a weak affinity for the GLP-
1R [38]. However, several studies demonstrated that 9-36a 
may have direct effects on the cardiovascular system [39]. 
Accumulating evidence from in vivo, ex vivo and in vitro 
studies indicates that GLP-1(7–36) amide degradation 
products may exert their own CV protective effects inde-
pendent of those known to affect the GLP-1R [17]. Both 
native GLP-1 and its metabolite GLP-1(9–36) amide have a 
vasodilatory action and still induce vasodilation in arteries 
from GLP-1R knockout mice, which strongly support the 
evidence of a vasodilator signaling mechanism not mediated 
by canonical GLP-1R [16]. GLP-1(9–36) amide enhanced 
human aortic EC viability in response to hypoxia injury and 
hydrogen peroxide treatment via a NO and mitochondrial-
dependent mechanism [40]. Moreover, the evidence that 
native GLP-1, as well as its metabolites, had comparable 
anti-atherosclerotic effects implies that this cardiovascular 
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benefit is mediated by both GLP-1R dependent and inde-
pendent pathways [41]. This evidence may explain the 
effects on cells and tissues in which expression of a func-
tional GLP-1R is questionable; on the other hand, it raises 
the question of whether there is a second, probably yet unex-
plored GLP-1R. However, the relevance of GLP-1 degra-
dation products to the beneficial effects of GLP-1RAs in 
clinical trials is questionable and needs further research as 
they are only minimally degradable.

Endothelial progenitor cells: new players 
involved in GLP‑1RAs‑dependent 
cardiovascular protection?

EPCs are bone marrow-derived or tissue-resident cells that 
play a vital role in maintaining vascular integrity and repair-
ing endothelial damage [42]. Systemic oxidative stress and 
inflammation alter the potential of vascular regenerative cells 
in the bone marrow by impairing blood vessel repair [43]; a 
reduction in the number of circulating EPCs has been linked 
to an increased risk of cardiovascular disease [44]. Recently, 
the investigation of possible direct and indirect effects of 
GLP-1R activation on the differentiation and maturation of 
vascular progenitor cells demonstrated that, in EPCs stim-
ulated with high glucose, GLP-1R expression is reduced. 
GLP-1R knockdown is associated with increased EPC apop-
tosis and reduced EPC migration, adhesion and angiogenic-
ity capabilities [45]. Additionally, treatment with exendin-4 
improved EPCs function after high-glucose stimulation [46]. 

Thus, GLP-1R expression appears to play important roles in 
regulating EPC dysfunction in hyperglycemia.

GLP‑1RA effect on endothelial metabolism: 
a new avenue to explore in cardiovascular 
disease

Metabolic pathways have emerged as key regulators of many 
EC functions, including angiogenesis, inflammation and bar-
rier function, processes that are deregulated during athero-
genesis [47]. In particular, limiting glycolysis or stimulating 
FAO in ECs may represent a therapeutic strategy against 
atherosclerosis [48]. In fact, proinflammatory cytokines 
increase glucose uptake and glycolysis in ECs leading to 
NF-κB activation, whereas fatty acid oxidation (FAO main-
tains) is involved in reduction of FA-induced EC dysfunc-
tion and apoptosis [49, 50], in the protection of EC barrier 
function [51] and in the EndMT inhibition [52], suggesting 
that endothelial FAO may reduce atherosclerosis develop-
ment. Interestingly, several studies in other cells indicate 
that GLP-1 might be a good candidate able to induce fatty 
acid oxidation at the expense of reduced glucose utilization 
(Fig. 1).

GLP-1 inhibits glucose uptake and promotes β-oxidation 
in cultured astrocytes [53]. GLP-1RAs treatment reduces 
adiposity by promoting lipolysis, fatty acid oxidation and 
mitochondrial biogenesis in the WAT, liver, muscle and 
BAT of obese mice and in 3T3-L1 adipocytes and shows 
amelioration of liver steatosis by promoting mitochon-
drial fatty acid β-oxidation and inhibiting lipogenesis 

Fig. 1  Schematic diagram illustrating the hypothesis for GLP-1RAs effects on endothelial metabolism
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in vivo and in vitro [54, 55]. Moreover, exposure to GLP-1 
increases energy expenditure in muscle at least in part 
through the upregulation of fat oxidation [56]. Recently, 
disruption of the gut microbiota has been associated with 
a reduction of eNOS activity in cerebral ECs highlight-
ing the potential of the microbiota as a target to reverse 
endothelial dysfunction [57]. There is evidence that GLP-1 
may play a role in the function of the intestinal epithelium, 
correlating these effects with changes in gut microbiota. 
In a recent work, we have found that a fixed combination 
of insulin degludec and liraglutide ameliorates quality of 
life and depression [58] significantly impacting on both 
gastrointestinal microbes and cognitive function in elderly 
T2D individuals [59]. In particular, our results revealed a 
significant increase in gut Gram-negative Alistipes con-
tent associated directly with cognitive improvement and 
inversely with TNF-α levels suggesting that the entangle-
ment between gut microbiomes modulation and neuro-
inflammation needs to be further investigated.

Conclusions

GLP-1RAs are a new class of drugs used for the treatment 
of T2DM. They are not only able to improve the hyper-
glycemia in diabetic patients but also to modulate other 
significant risk factors for CVD such as high blood pres-
sure, dyslipidemia or obesity. These properties explain, at 
least in part, the positive results of CV outcome studies. 
GLP-1RAs appear to elicit CV protection both directly in 
the vasculature and indirectly in the periphery (Table 1).

However, what is not clear is the proportion of this CV 
protective mechanism that is driven by local GLP-1R stim-
ulation versus the cumulative peripheral effects that may 
indirectly improve vascular function and atherosclerosis 
(Fig. 2). Furthermore, although the GLP-1R-dependent 
effects of these compounds are at least partially character-
ized, the presence of any GLP-1R-independent, pleiotropic 

Table 1  A summary of the major mechanisms of action of the GLP-1RAs in cardiovascular disease and metabolic pathways

Model GLP-1RA Effects Ref

Direct or indirect effects in ECs
ECs Exenatide eNOS activation 14
ECs Liraglutide

Dulaglutide
Reduced inflammatory markers and adhesion molecules 19–24

ECs Liraglutide Reduced monocytes adhesion to endothelial cells 22
ECs Liraglutide Inhibition of EndMT markers 28
ECs Liraglutide Epigenetic regulation 30
GLP-1RAs and atherosclerosis
ApoE-/- mice Liraglutide Improvement of endothelial dysfunction 20
ApoE-/- mice and LDLr-/- mice Liraglutide Reduced inflammation pathway in atherosclerotic plaques 31
ApoE-/- mice Exendin-4 Reduced inflammatory response in macrophages 32
ApoE-/- mice Liraglutide Induced MΦ2 macrophage phenotype 33
ApoE-/- mice plaque-targeted nano-GLP-1RA Reduced atherosclerosis and VSMC inflammation 34
Experimental arterial hypertension Liraglutide Endothelial GLP-1R mediates cardiovascular protection 35
GLP-1R dependent or independent pathways
Glp1r − / − mice GLP-1(9–36) Induced vasodilation in arteries 16
ECs GLP-1(9–36) Protection from ischemia reperfusion injury 40
ApoE-/- mice GLP-1(9–37) and GLP-1(28–37) Stabilization of atherosclerotic lesions 41
Endothelial progenitor cells
EPCs GLP-1R expression is reduced with HG 45
EPCs Exendin-4 Improved cell functions during HG treatment 46
Metabolism
Astrocytes GLP-1 glucose uptake inhibition and promotion of β-oxidation 53
HFD mice Exenatide Promotion of fatty acid oxidation and mitochondrial biogenesis 54
HFD mice Liraglutide Enhanced fatty acid β-oxidation 55
Elderly T2D individuals Insulin Degludec and Liraglutide Cognitive improvement and increase in gut Gram-negative 

Alistipes
59
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effects on the CV system requires much more investiga-
tion, particularly regarding their signal pathways.
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