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Abstract
Aims High glucose levels and Glucose-6-Phosphate Dehydrogenase deficiency (G6PDd) have both tissue inflammatory 
effects. Here we determined whether G6PDd accelerates arterial aging (information linked stiffening) in diabetes.
Methods Plasma glucose, interleukin 6 (IL6), and arterial stiffness (indexed as carotid-femoral Pulse Wave Velocity, PWV) 
and red blood cell G6PD activity were assessed in a large (4448) Sardinian population.
Results Although high plasma glucose in diabetics, did not differ by G6DP status (178.2 ± 55.1 vs 169.0 ± 50.1 mg/dl) in 
G6DPd versus non-G6PDd subjects, respectively, IL6, and PWV (adjusted for age and glucose) were significantly increased in 
G6PDd vs non-G6PDd subjects (PWV, 8.0 ± 0.4 vs 7.2 ± 0.2 m/sec) and (IL6, 6.9 ± 5.0 vs 4.2 ± 3.0 pg/ml). In non-diabetics, 
neither fasting plasma glucose, nor IL6, nor PWV were impacted by G6PDd.
Conclusion G6PDd in diabetics is associated with increased inflammatory markers and accelerated arterial aging.

Keywords Aging · Arterial stiffness · Diabetes · Glucose 5 phosphate dehydrogenase · Interleukin 6 · Pulse wave velocity

Introduction

High glucose levels in diabetics are associated with reduced 
glucose-6-phosphate dehydrogenase (G6PD) activity [1–3], 
decreased levels of the reduced form of nicotinamide ade-
nine dinucleotide phosphate (NADPH) cellular levels and 
increased pro-inflammatory markers, and accelerated arterial 
aging due to stiffening of large arteries [4].

Cytosolic NADP + /NADPH ratio which in fact is reg-
ulated by G6PD activity impacts on glucose metabolism, 
nucleotide and aromatic amino acid synthesis [5], and also 
regulates the level of Reactive Oxygen Species (ROS): 
G6PD-deficient cells are sensitive to oxidizing stimuli and 
more easily succumb to oxidative stress than non-G6DP 
deficient cells [6]. Exposure to high glucose levels decreases 
G6PD activity, triggering an insufficient NADPH supply and 
accumulation of ROS in different tissues [1–3], which acti-
vate proinflammatory pathways in G6PD deficiency [7].

Arterial aging can be evaluated as arterial stiffness 
(indexed as carotid-femoral Pulse Wave Velocity—PWV) 
[8], which captures the continuum from the early (accel-
erated) vascular aging to the “lower than average” arterial 
aging, i.e. Healthy Vascular Aging [9]; is associated with CV 
mortality and disability independently of conventional CV 
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risk factors [10–12]. Additionally, we firstly reported and, 
then, confirmed that specific clusters of metabolic alterations 
are selectively associated with arterial aging [4, 13].

The island of Sardinia is characterized by the highest 
prevalence (~ 8–15%) in G6PD deficiency, worldwide [14]. 
The aim of the present study was to investigate the impact of 
diabetes mellitus on plasma inflammatory markers and arte-
rial stiffness in subjects with and without G6PD deficiency 
in a large Sardinian population.

Research design and methods

Red blood cell G6PD activity was determined using a quan-
titative assay in a 4448 (1879 men and 2569 women) partici-
pants of the SardiNIA Study aged 30 + years [15].

Blood pressure, anthropometry, metabolic risk factors, 
and cytokine levels were measured as previously described 
[4]. G6PD deficiency was defined as G6PD activity < 0.8 
UI/g Hb.

Diabetes was defined according to American Diabetic 
Association definition [16]. Arterial Stiffness was measured 
as carotid-femoral Pulse Wave Velocity (PWV) [15]. Given 
that PWV is a highly age-associated trait, Healthy Vascu-
lar Ageing (HVA) and Early Vascular Ageing (EVA) were 
defined, respectively, and as a PWV value below the age-
quintile specific 10th percentile, and as a PWV value above 
the age-quintile specific 90th percentile [9].

Using SAS University, ANCOVA analysis -including 
age and glucose levels as covariates- tested for interaction 
between diabetes mellitus and G6PD deficiency.

Results

Diabetes was associated with greater levels of glucose and 
PWV (Table 1), in non-diabetics, glucose levels and PWV 
did not differ with those subjects with normal or deficient 
levels of G6PD activity. In diabetics G6PD deficient subjects 
had significantly greater IL6 levels, and PWV compared to 
diabetic subjects without G6PD deficiency. The significant 
(p < 0.05) interaction of Diabetes withG6PD deficiency 
for all the three variables mentioned above indicated that 
the impact of G6PD deficiency on glucose levels, arterial 
stiffness, and IL6 levels significantly differed according to 
the presence of diabetes. Of note, although HVA was more 

common in non-diabetics with G6PD deficiency, a signifi-
cantly greater proportion of subjects with stiffer arteries 
(EVA, a PWV value above the age-quintile specific 90th 
percentile) was observed in diabetic subjects with G6PD 
deficiency.4 

Although, PWV increases with both age and higher glu-
cose levels, after adjustment for age and glucose, differences 
in PWV and IL6 in diabetics with and without G6PD defi-
ciency remained significant.

Conclusions

This is the first study to demonstrate that G6PD deficiency 
in diabetics, but not non-diabetics, is associated with higher 
plasma IL6 levels and stiff arteries.

The observation of increased IL6 levels deserves further 
comment. Adipose tissue inflammation has more and more 
emerged as a critical path with complex regulation [17, 18] 
leading to adipose tissue and, then, to systemic insulin resist-
ance—a key step in the onset of type 2 diabetes mellitus 
[19]. The hypothesized time-dependent alterations start with 
adipocyte hypertrophy, followed by increased levels of mac-
rophage stimulating factor and eventually with higher IL-6 
levels in plasma [19, 20]. Therefore, IL6 circulating levels 
are a facet of mechanistically relevant alteration occurring 
at adipose tissue level.

Notably, genetic loci recently identified are associated 
with insulin resistance at a lower level of adiposity [21] and 
promote endothelium-specific insulin resistance [22].

Endothelial insulin-resistance may trigger alteration in 
vascular extracellular matrix composition and increased oxi-
dative stress of its components [23]. Alteration in vascular 
extracellular matrix composition is emerging as key deter-
minant of greater arterial stiffness and accelerated arterial 
aging [24].

Of note, G6PD deficiency is further reduced by nonen-
zymatic glycation in states of hyperglycemia, creating a 
self-reinforcing loop [25], reducing endothelial nitric oxide 
bioavailability [26, 27] and increasing oxidative stress with 
activation of proinflammatory pathways in G6PD [7], even-
tually resulting in arterial stiffening and remodelling [28].

Future studies are needed to clarify tissue-specific G6PD 
contribution to arterial stiffening in diabetic subjects, and 
its possible role for the development of new therapeutic 
agents able to reduce the cardiovascular burden of diabetes 
mellitus.
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Table 1  Effect of G6PD deficiency and presence of diabetes mellitus on cardiometabolic risk profile and arterial stiffness (means ± SD)

*Least square means ± Standard error

Controls Diabetes ANCOVA after adjustment for age

G6PD deficit 
NO
(n = 3818)

G6PD deficit 
YES
(n = 384)

G6PD deficit 
NO
(n = 228)

G6PD deficit 
YES
(n = 18)

Diabetes
main 
effect

G6PD
main 
effect

Interaction tern

Age (years) 50.1 ± 13.5 50.1 ± 8.6 62.3 ± 11.4 64.7 ± 11.1 – – –
Men (%) 41.8 39.3 52.6 33.3
G6PD activity 1.2 ± 0.4 0.3 ± 0.3 1.2 ± 0.4 0.3 ± 0.3 – .0001 –
BMI (Kg/m2) 23.9 ± 8.2 23.4 ± 7.3 27.4 ± 9.5 29.3 ± 8.4 .001 0.56 0.26
Waist circumference (cm) 87.2 ± 12.5 85.5 ± 11.9 99.5 ± 11.5 98.4 ± 12.4 .001 0.21 0.91
SBP (mmHg) 128.6 ± 19.0 127.7 ± 19.0 138.6 ± 18.4 144.2 ± 21.8 .05 0.51 0.22
DBP (mmHg) 79.7 ± 10.6 78.0 ± 10.1 82.5 ± 11.5 82.3 ± 10.4 0.71 0.33 0.74
HR (bpm) 66.7 ± 10.9 66.8 ± 10.7 69.5 ± 11.6 68.7 ± 13.9 0.07 0.81 0.75
Fasting glucose (mg/dl) 88.3 ± 11.1 87.0 ± 10.1 169.0 ± 50.1 178.2 ± 55.1 .001 .05 .01
LDL cholesterol (mg/dl) 135.3 ± 33.8 129.2 ± 33.1 131.2 ± 38.2 130.3 ± 33.6 0.13 0.37 0.61
HDL cholesterol (mg/dl) 65.4 ± 15.0 64.4 ± 14.8 61.1 ± 14.5 59.4 ± 12.6 .01 0.43 0.81
Triglycerides (mg/dl) 90.7 ± 54.2 84.7 ± 50.7 122.4 ± 65.7 120.8 ± 71.9 .001 0.55 0.8
Serum creatinine (mg/dl) 0.82 ± 0.22 0.82 ± 0.23 0.85 ± 0.26 0.80 ± 0.23 0.59 0.26 0.28
Hemoglobin (g/dl) 13.8 ± 1.5 13.5 ± 1.5 14.1 ± 1.4 13.5 ± 1.4 0.68 .05 0.47
AntiHT drugs (%) 11.9 14.1 39.5 38.9 .001 0.94 0.53
Anti diabetic drugs(%) – – 44.3 55.6 – – –
Lipid-lowering drugs (%) 2.9 2.3 10.5 11.1 .01 0.91 0.89
PWV (m/sec)
Crude 7.2 ± 2.2 7.1 ± 2.0 9.2 ± 2.8 10.3 ± 2.7 001 0.16 .005
Age- and Glucose- adjusted* 7.3 ± 0.03 7.2 ± 0.1 7.2 ± 0.2 8.0 ± 0.4 0.19 0.22 .04
PWV/MBP 7.5 ± 2.1 7.4 ± 1.8 9..2 ± 2.7 10.1 ± 2.9 .001 0.16 .05
Arterial aging (%)
HVA 5.0 5.7 1.8 0 .001 0.19 .05
Control 90.1 91.4 87.3 77.8
EVA 4.9 2.9 10.9 22.2
Adiponectin (mg/dl) 2.8 ± 2.0 2.9 ± 2.1 2.5 ± 1.8 2.8 ± 1.6 .05 0.55 0.78
Leptin (ng/ml) 8332 ± 8210 7269 ± 7012 10,553 ± 9974 11,532 ± 9745 .05 0.89 0.37
HsCRP (mg/ml) 2.6 ± 3.6 2.7 ± 3.7 4.1 ± 5.0 5.7 ± 6.1 .001 0.11 0.13
IL 6 (pg/ml) 3.1 ± 2.5 3.1 ± 2.5 4.2 ± 3.0 6.9 ± 5.0 .001 .001 .001
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included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.
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