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Abstract
Aims  The purpose of this review is to explore the interconnected pathways of the microbiota-gut-brain axis (MGBA), 
focusing on the roles of the vagus nerve and glucagon like peptide-1 in appetite control, and in the development of obesity 
and diabetes.
Methods  Type 2 diabetes mellitus (T2DM) and obesity are metabolic disorders whose prevalence has significantly increased 
in recent decades and is expected to increase every year, to pandemic proportions. These two pathologies often coexist 
and have substantial public health implications. The term “diabesity” defines the pathophysiological connection between 
overweight and T2DM. The gut microbiota affects many aspects of the host. Beyond the regulation of intestinal functions 
and the activation of immune responses, the gut microbiota plays a role in central nervous system functions (i.e., mood, and 
psychiatric conditions associated with stress and memory) and is a central regulator of metabolism and appetite.
Results  The MGBA involves pathways such as the autonomic and enteric nervous systems, the hypothalamic– pituitary–adre-
nal axis, the immune system, enteroendocrine cells, and microbial metabolites. Notably, the vagus nerve plays an essential 
role in eating behavior by modulating appetite and learning nutritional preferences.
Conclusions  Because of its enteroendocrine cell-mediated interaction with the gut microbiota, the vagus nerve may provide 
a potential pathway through which gut microorganisms influence host feeding behavior and metabolic control of physiologi-
cal and pathological conditions.
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Introduction

The connections among the central nervous system (CNS), 
the gut and the gut microbiota are central to microbiota-
host synergy and explain how the gut microbiota influences 
several aspects of host behavior [1]. These connections 
form the microbiota-gut-brain axis (MGBA). Over the past 
decade, a strong association between changes in microbiota 
composition (i.e., dysbiosis) and various host pathological 
conditions has been found [2]. Notably, the gut microbiome 
has emerged as a targetable organ influencing the develop-
ment of some metabolic diseases. This aspect is important, 

given the ever-increasing global prevalence of obesity and 
type 2 diabetes mellitus (T2DM). With their spread, obe-
sity and T2DM pose major economic and health burdens 
[3]. In 2016, the World Health Organization estimated that 
more than 650 million adults worldwide were obese [4]. 
In 2019, the International Diabetes Federation estimated 
that 463 million people worldwide have diabetes and pre-
dicted > 700 million cases by 2045 [3, 5]. These two diseases 
often occur together, and the term “diabesity” describes the 
pathophysiological link between them. The presence of 
diabesity increases the risk of developing cardiovascular 
disease, morbidity, and mortality [3].

Understanding the MGBA is important to clarify the ori-
gins of metabolic diseases.
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Microbiota‑gut‑brain axis: communication 
pathways

The MGBA acts through specific communication pathways 
in controlling gut functions (e.g., gut motility and secre-
tion), activating local immune responses, modulating CNS 
functions (e.g., mood, and psychiatric conditions associated 
with stress and memory), and controlling metabolism [6]. 
The most studied MGBA pathways include the autonomic 
nervous system (ANS), enteric nervous system (ENS), spi-
nal nerve pathways, hypothalamic–pituitary–adrenal (HPA) 
axis, immune system, enteroendocrine cells (EEC), and 
microbial metabolites (Fig. 1).

1.	 Autonomic nervous system

The ANS is a network of neurons from the CNS and the 
peripheral nervous system (PNS). It is divided into a sympa-
thetic and a parasympathetic branch. The vagus nerve (VN) 
is the major element of the parasympathetic component of 
the ANS. The function of ANS is to establish and regu-
late host physiological homeostasis, through modulation of 
endocrine, motor, autonomic, and behavioral responses [1]. 
Through the ANS, each component of the MGBA communi-
cates bidirectionally, through complex positive and negative 
feedback loops.

2.	 Enteric nervous system

The ENS coordinates intestinal functions such as motil-
ity and fluid movement control. The ENS afferent fibers 
innervating the intestinal mucosa are derived mainly from 
primary intrinsic afferent neurons which form synapses 
with intestinal epithelial cells and EECs [7]. The informa-
tion obtained from the primary intrinsic afferent neurons 
follows spinal and vagal afferent pathways, and arrives at the 
sympathetic ganglia and subsequently the CNS. As conse-
quence, efferent pathways involving the ANS are activated. 
In this way, the ENS is directly associated with emotional 
arousal and central autonomic brain circuits, and vice versa 
[1]. Physiological and psychological stressors increase sym-
pathetic tone and decrease parasympathetic tone, thereby 
regulating ENS operation. ENS neurons in turn innervate 
visceral smooth muscle and mucosal epithelial cells, thus 
influencing intestinal motility and secretion, mucosal perme-
ability, immune cell functions, inflammatory reactions, and 
the microbiota [7].

3.	 Spinal nerve pathways

Two neuroanatomical pathways in MGBA signaling 
involve the pelvic nerve, which mediates non-pain functions 
(e. g. satiety, distention, and motility), like the VN, and the 

Fig. 1   The microbiota-gut-brain 
axis uses several pathways that 
include interactions between the 
microbiota and the autonomic 
nervous system (ANS), enteric 
nervous system (ENS), and 
spinal nerves. Enteroendocrine 
cells (EEC) and cells of the 
immune system (IS), mixed 
with epithelial cells (EC) of the 
intestinal mucosa, mediate this 
interaction. The hypothalamic–
pituitary–adrenal (HPA) axis is 
one of the major non-neuronal 
pathways used by the gut micro-
biota to communicate with the 
brain
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splanchnic innervation of the spinal cord, which carries sen-
sory pain stimuli [2].

The afferent nerves of the spinal cord receive information 
from the viscera through sensory endings in organ walls. 
These nerves express a wide range of chemical and mecha-
nosensitive receptors that are the main targets of intestinal 
peptides released by EECs. Like the VN, the spinal afferent 
nerves have collateral branches innervating the ENS. Con-
sequently, they can perceive microbiota signals indirectly 
through the interaction between EEC and the ENS and trans-
fer the corresponding intestinal information to the CNS [7].

4.	 Hypothalamic–pituitary–adrenal axis

The HPA axis is the neuroendocrine coordinator of the 
stress response. Its primary function is to prepare the body 
for the “fight or flight” response [1]. A potential link between 
the gut microbiota and the neuroendocrine system is sug-
gested by disorders such as depression and irritable bowel 
syndrome (IBS). Increased activation of the HPA axis has 
been observed in depression and in IBS [5]. Furthermore, 
in response to stress, male germ-free mice display a hyper 
reactive HPA axis, thus suggesting an important role of the 
microbiota in HPA regulation [8]. Patients with IBS have 
exaggerated ACTH and cortisol responses to corticotropin 
releasing hormone infusion, and show altered microbiota [9, 
10]. Thus, the microbiome is implicated in the regulation 
of the HPA axis, and vice versa. Long-term elevations in 
cortisol levels negatively affect gut microbiota function, by 
changing its composition and increasing gastrointestinal per-
meability. The resulting dysbiosis and bacterial translocation 
contribute to the chronic low-grade systemic inflammation 
of IBS and depression, thus inducing activation of the HPA 
axis [5]. Interestingly, the HPA axis interacts with the VN. 
In rodents, vagal stimulation increases corticotropin releas-
ing hormone mRNA expression in the hypothalamus [11].

5.	 Immune system

The immune system has a fundamental role in regulat-
ing the symbiotic relationship between the microbiota and 
the host. It allows for proper interaction between microbiota 
and intestinal mucosa through the recognition of micro-
bial proteins as self-antigens. In contrast, the gut micro-
biota responds by producing proinflammatory cytokines 
(e.g., IL-1, IL-6, or TNF alpha) that protect the host from 
pathogens [1, 12]. An innate immune signaling complex 
called the “inflammasome” is activated and assembled to 
protect against potentially pathogenic agents. Once acti-
vated, active pro-inflammatory cytokines (e.g., IL-18 
and IL-1b) are produced, which in turn induce cell death 
through various mechanisms, thus maintaining intestinal 
homeostasis. Inflammasome activation has been associated 

with neuroinflammatory conditions and appears to play an 
essential role in the progression of several neurological dis-
orders, such as multiple sclerosis, Alzheimer’s disease, and 
Parkinson’s disease [2].

6.	 Enteroendocrine cells

EECs account for only 1% of the epithelial cells in the 
gastrointestinal tract, but they make the gut the largest endo-
crine organ in the body [13]. They originate from the same 
pluripotent stem cells as well as the other cell lines of the 
intestinal epithelium. Moreover, EECs are arranged between 
the other cell lines throughout the gastrointestinal epithelium 
[7].

ECCs in the stomach secrete the orexigenic hormone 
ghrelin, gastrin, histamine, and somatostatin which control 
their own secretion via feedback. The EECs in the distal 
intestine secrete glucagon-like peptide-1 (GLP-1), peptide 
YY (PYY), neurotensin (NTS), oxyntomodulin (OXM), and 
cholecystokinin (CCK), which are anorectics. They also pro-
duce glucose-dependent insulinotropic peptide (GIP), which 
has an incretin effect like that of GLP-1, the motility hor-
mones (motilin and serotonin), and other hormones such 
as secretin (SCT) and GLP-2, which regulate digestion and 
intestinal homeostasis [13]. Enteroendocrine L cells (ELs) 
and enterochromaffin cells (ECs) are the best-studied EECs 
[1]. ELs secrete GLP-1 and PYY in the postprandial phase. 
ECs produce most of the 5-HT in the body by using dietary 
tryptophan [7].

The hormones secreted by EECs engage their receptors in 
locally distributed cells, such as EECs, myofibroblasts and 
adjacent immune cells, but also interact with target organs 
and enteric and vagal afferent nerves. Thus, intestinal hor-
mones appear to have different mechanisms. First, they act 
through paracrine signaling, given the short half-lives of 
many gut hormones. However, GLP-1 and GIP also oper-
ate via a distant endocrine signaling pathway. In fact, their 
receptors are expressed on pancreatic beta cells and in some 
areas of the cortex regulating food intake [13]. Furthermore, 
a third signaling pathway has been hypothesized, which uses 
the direct synaptic connection between the EEC and intes-
tinal nerve afferent nerves. The intestinal afferent nerves 
of the CNS, ANS, and ENS cannot directly detect lumi-
nal chemicals. They form synaptic connections with EECs, 
thereby allowing sensory stimuli from the intestinal lumen to 
be transduced by neurotransmitters such as glutamate [14].

7.	 Microbial metabolites

The microbiota synthesizes several key neurotransmitters 
involved in regulating host mood, behavior, and cognitive 
function. It also produces branched chain amino acids, which 
participate in a variety of biochemical functions in the CNS 
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and PNS [1]. The influence of the gut microbiota on spe-
cific brain circuits can help to understand unclear aspects, 
such as the interindividual variability of motivation to per-
form physical activity in mouse models [15]. Microbiome-
dependent endocannabinoid production stimulates afferent 
sensory neuron activity and elevates dopamine levels in the 
ventral striatum during exercise improving performance. 
Conversely, alteration of the gut microbiota nullifies exercise 
capacity in the same manner as peripheral endocannabinoid 
receptor inhibition, ablation of spinal afferent neurons, or 
dopamine blockade [15].

Furthermore, bile acids (BAs) are intestinal microbial 
metabolites playing a major role in the MGBA. BAs facili-
tate the absorption of dietary lipids and fat-soluble vitamins 
from the intestinal lumen. BAs activate the nuclear farnesoid 
X receptor (FXR) and Takeda G protein-coupled receptor 
5 (TGR5), and regulate the systemic metabolism of lipids, 
cholesterol, and glucose, as well as energy and immune 
homeostasis [1].

The most examined intestinal microbial metabolites are 
short-chain fatty acids (SCFAs), more than 95% of which 
are acetate, propionate, and butyrate. The primary source of 
SCFAs is non-digestible host dietary fiber that is fermented 
by the gut microbiota. Once absorbed into the circulation, 
SCFAs serve as energy substrates, influence the maturation 
of microglia in the CNS, and act as CNS signaling molecules 
[12, 14].

SCFAs bind G protein-coupled receptors, the most stud-
ied of which are free fatty acid receptors 2 (FFAR2, also 
known as GPR43) and 3 (FFAR3, also known as GPR41). 
FFAR2 is expressed in adipocytes and skeletal muscle, 
and FFAR3 is expressed in the PNS, blood brain barrier, 
the colon, immune cells, and the heart [1]. Butyrate also 
activates the olfactory receptor of family 51 subfamily E 
member 1 (OR51E1). Acetate and propionate activate the 
olfactory receptor family subfamily 2 member 51 (OR51E2), 
which have been detected in the brains of rodents but not in 
humans [16].

SCFAs have many effects, among which the best known 
are epigenetic. Notably, all have histone deacetylase inhibi-
tory effects, but butyrate is the most potent inhibitor of class 
I and IIa histone deacetylase. Furthermore, acetate can be 
converted to acetyl-CoA, thus increasing histone acetylation 
[1]. FFAR2, FFAR3, and OR51E1 are expressed by colonic 
ELs. Their activation causes the secretion of GLP-1 and 
PYY. SCFAs also stimulate the secretion of insulin, ghrelin, 
leptin, and amylin [12]. Thus, they slow gastric emptying 
and intestinal transit by increasing energy absorption and 
glucose-dependent insulin release. Furthermore, SCFAs 
indirectly affect appetite and food intake via systemic circu-
lation and vagal afferent nerves, stimulate ECs to produce 
serotonin, and additionally affect intestinal motility [17].

Roles of MGBA in regulating appetite 
and glucose homeostasis

The role of MGBA as a central regulator of metabolism 
and appetite is increasingly evident. The main players in 
the appetite control pathway are the intestinal hormones 
produced by the EECs, the VN, the hypothalamus, and 
the brainstem. The brain receives hormonal and vagal sig-
nals, which carry information from the periphery and the 
intestinal lumen components, including the microbiota 
[18]. Because of its EEC-mediated interaction with the gut 
microbiota, the VN is a potential pathway through which 
gut microorganisms influence host feeding behavior [19] 
(Fig. 2).

1.	 Intestinal hormones

Before ingestion of food, gastric EECs produce the hor-
mone orexigenic ghrelin, which uses a vagal circuit involv-
ing the hindbrain and the hypothalamic arcuate nucleus 
(ARC) to increase appetite [13]. Afterward, nutrients 
absorbed across the duodenal epithelium bind ECC recep-
tors and stimulate them to secrete several hormones, includ-
ing CCK, GIP, and SCT. CCK receptors are expressed by 
vagal afferent nerves. Once activated, they transfer informa-
tion to the nucleus of the solitary tract, thereby contributing 
to satiety. Furthermore, CCK acts on the vagal endings by 
inducing contraction of the pyloric sphincter and slowing 
gastric emptying. GIP promotes insulin secretion by acti-
vating specific receptors on beta cells and induces satiety 
by acting on the hypothalamus. SCT promotes the secretion 
of pancreatic enzymes, but its role in brain signaling is not 
fully clarified [13].

After transitioning from the duodenum to the jejunum, 
nutrients and bile acids activate intestinal EECs to secrete 
GLP-1, PYY, NTS, CCK, GIP, and SCT. The receptors of 
these hormones, except for that of GIP, are found on the 
vagal afferent nerves. Furthermore, GLP-1, PYY, and CCK 
receptors are localized in the ENS terminals. GLP-1, GIP, 
PYY, and NTS receptors are also located in the central feed-
ing centers. The activation of all receptors contributes to 
satiety [13].

2.	 GLP-1

GLP-1 is a 30 amino acid peptide derived from prepro-
glucagon. Two bioactive forms of GLP-1 exist, GLP-17e37 
and GLP-17e36 amide, which are secreted by Els in response 
to an oral glucose load [20]. In the large intestine, the gut 
microbiota uses undigested dietary nutrients, fiber, and bile 
acids to produce metabolites such as SCFAs, indoles, and 
BAs, which induce further secretion of GLP-1 from ELs 
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[13]. In the proximal gut, luminal nutrients induce the post-
prandial peak of GLP-1 and PYY; in the distal gut, their 
release is activated almost exclusively by the gut microbiota 
via its membrane components such as lipopolysaccharide or 
metabolites [7], thus sustaining the secretion of GLP-1 and 
PYY for many hours after a meal [1].

GLP-1 acts on insulin secretion and satiety: it increases 
insulin and decreases glucagon secretion, thereby block-
ing the endogenous production of glucose and decreasing 
glycemia after a meal. GLP-1 also delays gastric empty-
ing [20] and increases pyloric contraction, thus decreasing 
the flow of food into the small intestine [13]. Furthermore, 
GLP-1 receptors (GLP-1Rs) are centrally expressed in the 
hindbrain, hypothalamus, hippocampus, and mesolim-
bic system, and contribute to appetite regulation. Indeed, 
administering GLP-1R agonists into the fourth ventricle in 
mice decreases food intake and body weight [21, 22], and 
GLP-1R knockdown in NTS neurons increases food intake 
[23, 23]. In adipose and muscle tissue, GLP-1 and GLP-
1R agonists (i.e., exenatide) have an insulin-like effect by 
stimulating intracellular glucose transport via phosphoryla-
tion of AMP-activated protein Kinase (AMPK) and the sub-
sequent translocation of glucose transporter 4 (Glut-4) into 
the plasma membrane [24]. GLP-1R agonists also exhibit 
cytoprotective and proliferative effects on beta, alpha and 
delta cells. Chronic administration of exenatide increases 
cell replication, reduces apoptosis and cellular stress, and 

increases insulin sensitivity in a nonhuman primate [25]. 
Exenatide may promote differentiation of pancreatic ductal 
cells to a beta-cell phenotype in baboons without inducing 
pancreatitis, accumulation of parenchymal or periductal 
inflammatory cells, ductal hyperplasia, dysplastic lesions, 
or pancreatic intraepithelial neoplasia [26].

However, endogenous GLP-1 is rapidly degraded by 
dipeptidyl peptidase-4 (DPP-4). Thus, an additional mech-
anism exists through which the GLP1 signal is transmitted 
from the periphery to the center. The VN and the brain-
stem VN have been hypothesized to mediate this commu-
nication [20]. Peripheral administration of GLP-1 activates 
brainstem neurons in rats [27], but the anorectic effects 
of GLP-1 disappear after vagotomy in rodents [27, 28]. 
A study in patients with bilateral total subdiaphragmatic 
vagotomy and pyloroplasty has demonstrated that, even in 
humans, an intact VN is required for intravenously admin-
istered GLP-1 to have anorectic effects [29]. Studies on 
subdiaphragmatic vagal deafferentation, which spares 
approximately 50% of vagal afferent nerves, have also con-
firmed the roles of vagal afferent nerves in mediating the 
effects of GLP-1 [30, 31], as confirmed in a mouse model 
with GLP-1R knockdown in vagal afferent nerves [32]. In 
conclusion, GLP-1 exerts its anorectic effect by activating 
vagal GLP-1Rs.

VN and GLP-1 are also linked through another type of 
interaction called the neuroincretin effect. The incretin effect 

Fig. 2   GLP-1 secretion stimu-
lated by meal and gut micro-
biota. GLP-1 binds specific 
receptors on gastrointestinal and 
hepatic vagal afferents transmit-
ting information to the nucleus 
of the solitary tract (NST) of 
the brainstem and higher brain 
centers. From here, the vagal 
efferents depart to innervate 
stomach and pancreas. This 
circuit allows to control gastric 
emptying and food intake, rein-
forcing the direct incretin effect 
of GLP-1 on the pancreas
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of GLP-1 is largely due to its direct actions on pancreatic 
beta and delta cells, but another vagal signaling pathway 
may exist that enhances incretin effects [33]. Activation of 
vagal afferent nerves has been observed after GLP-1 admin-
istration [34], whereas GLP-1 administration has been found 
not to suppress postprandial insulin secretion in patients with 
bilateral total subdiaphragmatic vagotomy and pyloroplasty 
[29]. Furthermore, glucose uptake from the gastrointestinal 
tract is impaired in patients with bilateral total subdiaphrag-
matic vagotomy and pyloroplasty [35], thus suggesting a role 
of vagal mediation in GLP-1’s incretin effect.

This aspect can be extended to the entire MGBA. In 
a recent study, mice fed a high-fat diet were exposed to 
butyrate, intragastrically or via intravenous injection. Intra-
gastric butyrate decreased food intake, whereas intravenous 
injection did not lead to any changes. These findings suggest 
that the effect of butyrate on feeding behavior is mediated by 
a mechanism involving gut-brain neural circuits [36]. Sup-
porting this hypothesis, a study has demonstrated that modi-
fying the composition of the gut microbiome with prebiotics 
affects portal GLP-1 levels, which in turn affects food intake 
[37]. Furthermore, in GLP-1R knockout mice, prebiotic 
treatment does not elicit the same beneficial effects [38–40].

3.	 Vagus nerve

The VN is the tenth cranial nerve. It has an afferent sen-
sory branch (80% fibers) and an efferent motor component 
(20% fibers). The intestinal vagal innervation is divided 
into two branches: the hepatic branch, which innervates the 
hepatoportal bed, and the celiac branch [1]. The VN toni-
cally transmits crucial information from gastrointestinal, res-
piratory, and cardiovascular systems, and provides feedback 
responses [1].

Given their expression of a large variety of recep-
tors, vagal afferent nerves can respond to a wide variety 
of mechanical, chemical, or hormonal signals [1]. Some 
intestinal vagal afferent nerves are intraganglionic laminar 
endings and act as mechanoreceptors detecting intestinal 
distension [13]. The rest of th vagal afferent nerves reach 
the mucosal layer and the myenteric layer near the EEC, 
mucosal immune cells, and ENS neurons. These nerves act 
like chemoreceptors and do not come into direct contact with 
the intestinal endoluminal substances. Thus, they form syn-
apses with the intestinal epithelial cells and the EECs [1]. 
In fact, evidence suggests that synaptic structures connect 
vagal chemoreceptors and a basolateral cytoplasmic process 
of the ECCs called the neuropod [13]. Synapses rapidly 
transduce signals from the intestinal lumen to vagal neurons 
across glutamatergic and serotonergic signals [41]. Vagal 
chemoreceptors appear to modulate the relationship between 
the microbiota and the brain. The activation of vagal affer-
ent nerves by microorganisms has been demonstrated by 

injection of colonies of Lactobacillus johnsonii into the 
duodenum, thus resulting in improvement in gastric vagal 
activity [42]. Furthermore, activation of the NTS has been 
observed after oral administration of Campylobacter jejuni 
in mice [43].

As described before, beyond the synaptic structure, 
vagal afferent nerves receive information through paracrine 
and endocrine signaling pathways [13]. In fact, GLP-1Rs 
are expressed on both the hepatic and the intestinal vagal 
branches [33]. Thus, the effects of intestinal GLP-1 may be 
mediated by GLP-1R activation on hepatoportal vagal fib-
ers (through the endocrine pathway) or on intestinal vagal 
afferent nerves (through paracrine stimulation).

The cell bodies of vagal afferent nerves are found in 
the nodose ganglia. From there, vagal fibers project to the 
nucleus of the solitary tract, and to the area postrema and 
dorsal motor nucleus [1].

4.	 Hypothalamus and brainstem

The hypothalamic ARC plays a crucial role in regulat-
ing appetite. It consists of two populations of neurons with 
opposing effects. Orexigenic neurons secrete neuropeptide 
Y and agouti-associated protein. Anorexigenic neurons 
produce pro-opiomelanocortin-derived alpha-melanocyte 
stimulating hormone and cocaine-amphetamine regulated 
peptide. The ARC is supplied by fenestrated capillaries, 
through which the intestinal hormones directly act on the 
neurons of the ARC. In turn, the ARC projects to several 
extra-hypothalamic and intra-hypothalamic regions, includ-
ing the paraventricular hypothalamic nucleus, where effer-
ent pathways that regulate energy expenditure begin [20]. 
Furthermore, the NTS receives information from intestinal 
mechanoreceptive and chemoreceptive vagal afferent nerves 
and sends fibers to the hypothalamus [20].

The intestinal microbiota influences hypothalamic activ-
ity and the brainstem. The increased diversity of the gut 
microbiota significantly correlates with the sparing of the 
hypothalamic microstructure in obese and non-obese indi-
viduals [44] Furthermore, in animal models, the gut microbi-
ota modulates hypothalamic gene expression, neuropeptide 
secretion, neurotransmitter levels, and neuronal activity [45, 
46]. SCFA administration decreases energy intake in mice 
and humans, both directly, by affecting central neurons, and 
indirectly, through peripheral circuits innervating the hypo-
thalamus [47–49].

The VN provides a potential link between the gut micro-
biota and the brainstem, by modulating NTS function and 
downstream projection sites. A high fat diet alters the micro-
bial composition and causes microglial activation and vagal 
afferent reorganization in the NTS [50, 51].
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Roles of the MGBA in the development 
of obesity and diabetes

Obesity and T2DM are metabolic disorders whose preva-
lence has significantly increased in recent decades. These 
pathologies have important public health implications affect-
ing both industrialized countries and developing continents 
such as Africa and Asia. It also occurs in the European coun-
tries that rapidly transitioned from a totalitarian regime to a 
free and oriented economy [52]. In this scenario, the classic 
risk factors are joined by others linked to the evolution of 
economic pressure and consumer demand. For instance, shift 
work increases the risk of several chronic disturbances, such 
as T2D and cardiovascular disease [53].

The term “diabesity” defines the pathophysiological 
connection between overweight and T2DM [54]. MGBA, 
through the gut microbiota, VN and GLP-1, has been 
hypothesized to have a key pathophysiological role in the 
development of metabolic disorders and neurological pathol-
ogies and represents a connection between them [55].

Insulin resistance (IR), the basis of the pathophysiology 
of diabesity, has a genetic basis which is involved in CVD 
risk [56]. Several variants of genes involved in the modula-
tion of insulin action have been described. Among them, 
single nucleotide polymorphisms (SNPs) of rs1044498 
(i.e., ENPP1 K121Q), rs1801278 (i.e., IRS1 G972R) and 
rs2295490 (TRIB3 Q84R) genes showed a combined effect 
on major CVDs in high-risk individuals, through their ability 
to influence the IR both whole body and at the endothelial 
level [56]. Endothelial IR is implicated in the progression 
of atherosclerosis. Thus, defective insulin signaling appears 
to be the molecular basis of the pathogenic role played by 
IR on CVD [56].

The effect of IR occurs at two levels: peripheral and cen-
tral. At the peripheral level, a lack of response of liver, skel-
etal muscle, and adipose tissue to the hormones released 
after increased glycemia is observed. At the central level, 
disturbances in cerebral mitochondrial function and cellular 
insulin signaling are observed. In particular, the phospho-
inositide-3 kinase (PI3K-PKB)/Akt pathway and the Ras/
mitogen-activated kinase (MAPK) are involved [54, 57], 
thus affecting cell survival, energy metabolism, synaptic 
plasticity, and memory and learning processes.

Furthermore, insulin controls hepatic glucose production 
and glucose homeostasis through binding specific hepatic 
and brain receptors. In the liver, insulin activates STAT3 
transcription factors in hepatocytes that suppress the gene 
expression of gluconeogenic enzymes, thereby decreasing 
hepatic glucose production. In the hypothalamus, STAT3 
binds specific receptors on the ARC, thus inducing hyperpo-
larization of hypothalamic neurons by stimulation of the VN 
[58]. The VN is indispensable in the central action of insulin 

on the control of hepatic glucose production. If the hepatic 
branch of the VN is excised, the insulin-induced suppression 
of hepatic glucose production is attenuated [59]. Moreover, 
nerve activity is enhanced by an increase in blood sugar 
and is decreased by an increase in plasma insulin concentra-
tion [60]. Furthermore, mice develop insulin resistance after 
vagotomy [61].

The MGBA may be implicated in IR through not only 
the VN but also the close association of IR with the gut 
microbiota. In humans, as also observed in mouse models, 
transplantation of the gut microbiome of healthy people 
into patients with metabolic syndrome increases the insulin 
sensitivity of the recipients [62]. Furthermore, endotoxemia 
produced by intestinal dysbiosis may trigger the low-grade 
inflammation observed in obesity and IR [63].

Dysregulation of membrane proteolysis of IR-linked 
pro-inflammatory Tumor Necrosis Factor Alpha (TNF-α) 
by TNF-α converting enzyme (TACE)/metalloproteinase 3 
(TIMP3) system has been proposed as a common feature of 
glucose intolerance and vascular inflammation [64]. Het-
erozygosity for the insulin receptor null allele (Insr + /–) 
causes down-regulation of Timp3 that results in uncontrolled 
protease activity of TACE, thereby increasing circulating 
soluble TNF-α levels. The resulting uncontrolled inflam-
matory state interacts with the haploinsufficiency of Insr, 
leading to glucose intolerance and vascular inflammation 
[65]. Moreover, defects in glucose and fatty acid metabolism 
result in intracellular accumulation of fatty acids and glyco-
lytic intermediates. As a result, interferences with insulin 
signaling begin such as impairment of mitochondrial func-
tion and muscle oxidative capacity, and activation of molec-
ular inflammatory pathways (i.e., protein kinase C, nuclear 
factor kB, and toll-like receptor 4 (TLR4) networks) [66]. 
Changes in the gut microbiota may reduce the integrity of 
the intestinal barrier leading to increased leakage of lipopol-
ysaccharides and fatty acids that act on TLR4 to activate 
systemic inflammation. Fatty acids can also trigger endo-
plasmic reticulum stress, which can be further stimulated by 
cross talk with active TLR4 [67]. Studies have shown that 
antidiabetic drugs such as pioglitazone significantly reduce 
the enzyme activity of skeletal muscle TNF-α and TACE 
and improve the mitochondrial proteomic profile of skeletal 
muscle in subjects with T2D [68].

Obese people have lower microbial diversity than people 
of normal weight, thus resulting in a different pool of micro-
bial metabolites with different influences on energy homeo-
stasis and GLP-1 secretion [69]. In obese mice, microbiota 
imbalance decreases the expression of GLP-1Rs. Although 
the use of GLP-1R agonists effectively decreases HbA1c, 
not all patients respond to treatment, and a drug-resistant 
state may occur. The mechanisms responsible for the unre-
sponsiveness to GLP-1 may be associated with alterations 
in the MGBA. A high-fat diet has been shown to alter the 
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gut microbiota composition and to induce GLP-1 resistance 
by impairing nitric oxide production in enteric neurons and 
consequently attenuating gut-brain signaling [70]. Notably, 
liraglutide treatment and bariatric surgery change the gut 
microbial composition to a profile similar to that observed in 
lean mice [70, 72]. In humans, prebiotic treatment increases 
microbiome diversity, and consequently GLP-1 levels and 
satiety [73, 74].

In addition, VN responsiveness appears to be impaired 
in obesity. Vagal neurocircuits have a plasticity that allows 
them to generate various phenotypes in different conditions 
[75, 76]. During fasting, when circulating CCK levels are 
low, the density of cannabinoid and melanin concentration 
hormone receptors on vagal afferent nerves increases. This 
“orexigenic phenotype” is associated with an increased 
sense of hunger. After food intake, circulating CCK levels 
and neuropeptide Y receptor expression in vagal afferent 
nerves increase, whereas the level of cannabinoid receptors 
decreases. This “anorexigenic phenotype” is associated with 
a decrease in hunger. In obesity, vagal afferent nerves appear 
to show an orexigenic phenotype regardless of feeding status 
[75].

Conclusion

The roles of gut hormones, the VN and the MGBA in appe-
tite regulation and metabolic control are receiving increasing 
interest. Obesity and T2DM have had strong economic and 
socio-health effects in recent years [77]. Common patho-
physiological mechanisms link these pathologies and may 
be based on impaired insulin signaling and MGBA integrity. 
Thus, the MGBA may serve as a potential target for specific 
antidiabetic therapies. Specifically, the VN, the pathway 
through which gut microorganisms influence host feeding 
behavior, warrants further investigation.
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