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Abstract
Aim Diabetes health economic (HE) models play important roles in decision making. For most HE models of diabetes 2 
diabetes (T2D), the core model concerns the prediction of complications. However, reviews of HE models pay little attention 
to the incorporation of prediction models. The objective of the current review is to investigate how prediction models have 
been incorporated into HE models of T2D and to identify challenges and possible solutions.
Methods PubMed, Web of Science, Embase, and Cochrane were searched from January 1, 1997, to November 15, 2022, 
to identify published HE models for T2D. All models that participated in The Mount Hood Diabetes Simulation Modeling 
Database or previous challenges were manually searched. Data extraction was performed by two independent authors. Charac-
teristics of HE models, their underlying prediction models, and methods of incorporating prediction models were investigated.
Results The scoping review identified 34 HE models, including a continuous-time object-oriented model (n = 1), discrete-
time state transition models (n = 18), and discrete-time discrete event simulation models (n = 15). Published prediction models 
were often applied to simulate complication risks, such as the UKPDS (n = 20), Framingham (n = 7), BRAVO (n = 2), NDR 
(n = 2), and RECODe (n = 2). Four methods were identified to combine interdependent prediction models for different com-
plications, including random order evaluation (n = 12), simultaneous evaluation (n = 4), the ‘sunflower method’ (n = 3), and 
pre-defined order (n = 1). The remaining studies did not consider interdependency or reported unclearly.
Conclusions The methodology of integrating prediction models in HE models requires further attention, especially regarding 
how prediction models are selected, adjusted, and ordered.

Keywords Decision model · Health economic model · Prediction model · Scoping review · Type 2 diabetes

Introduction

Global healthcare expenditure for diabetes showed a more 
than threefold increase from $232 billion in 2007 to $727 
billion in 2017 for individuals aged 20–79 [1]. To help 
decision makers efficiently and explicitly allocate scarce 
resources across many interventions, health economic (HE) 
models, which evaluate the lifetime costs and benefits of 
interventions using a quantitative analysis framework, are 
widely used [2].

More than 90% of individuals with diabetes are diagnosed 
as type 2 diabetes (T2D) [3], and T2D affected nearly half 
a billion people worldwide in 2018 [4]. For T2D, several 
HE models exist and have been repeatedly applied in a wide 
range of settings to support decision making [5–7], such as 
the reimbursement of medications [8], prevention programs 
[9], and treatment strategies [10].
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To simulate complications, HE models usually incor-
porate prediction models that mathematically combine 
multiple predictors to estimate the risk of diabetes-related 
events. For example, the UK Prospective Diabetes Study 
(UKPDS) risk engine [11] formulated mathematical 
models, with covariates such as diabetes duration, age, 
gender, body mass index, and glycated hemoglobin A1c 
(HbA1c) to estimate the probability of macrovascular and 
microvascular complications, such as myocardial infarc-
tion (MI), stroke, and ulcer. T2D affects multiple organ 
systems, resulting in numerous interdependent complica-
tions in nearly 20% of individuals [12, 13]. For example, 
the risk of atrial fibrillation is substantially higher follow-
ing an MI [14], and a fourfold risk of stroke follows atrial 
fibrillation [15]. The common approach to considering this 
interdependency in simulations with HE models is to first 
properly estimate the prediction models one by one—for 
instance, stroke history is used as a covariate for MI—and 
then integrate the interdependent prediction models in the 
HE models, most often using random ordering of the pre-
diction models to reduce bias [11]. Despite the simplicity 
of random ordering, this approach might ignore the causal 
relations of T2D pathology and result in inaccuracy [16], 
so it is important to evaluate alternative approaches for the 
integration of multiple prediction models for complica-
tions within HE models.

Several systematic reviews focusing on HE models or 
prediction models in T2D have been published, but none 
of them investigated the methodology of ordering pre-
diction models. Those focused on the HE models mainly 
aimed to summarize [7], compare [17], and assess the 
available HE models [18–20]. Despite the availability of 
many prediction models [21–24], few have been applied in 
HE models. The most commonly used prediction models 
are the UKPDS [11, 25] and Framingham risk equations 
[26–28], but the selection criteria for prediction models 
remain unclear [29].

Therefore, the objective of this study is to assess how 
prediction models are incorporated into HE models for T2D 
and answer research questions regarding the selection and 
integration of prediction models in HE models. As a scop-
ing review, we do not aim to identify and compare all HE 
models or prediction models for T2D or to declare one as 
the best. Instead, our goal is to understand how and why 
existing HE models incorporate prediction models as they 
do and to discuss challenges and possible solutions in the 
application of prediction models. This will inform existing 
and future HE models by providing insight into possible 
further improvements to incorporating prediction models.

Methods

This study was conducted and reported following the Pre-
ferred Reporting Items for Systematic Reviews and Meta-
Analyses extension for Scoping Reviews (PRISMA-ScR) 
[30–32] (Table S1) and registered with the Open Science 
Framework (https:// osf. io/ 8bmjc).

Literature search

A literature search was performed in PubMed, Web of 
Science, Embase, and Cochrane to identify published HE 
models for T2D since January 1, 1997 (the publication 
year of the model by Eastman et al. [33]). The last search 
was performed on November 15, 2022. The search strategy 
(Appendix S1) combined three elements indicating T2D, 
HE models and prediction models. In addition, the Diabetes 
Simulation Modeling Database [34] was screened to include 
its registered models, and all models participating in one or 
more past Mount Hood challenges were included based on 
challenge reports (Table S2).

Inclusion and exclusion criteria

Studies were included if they described HE models that 
estimated future health outcomes for individuals with T2D 
by applying prediction models. Evidence-based transition 
probabilities were recognized as prediction models when 
there was at least one independent variable as a predictor, 
e.g., diabetes duration or HbA1c, otherwise the paper was 
excluded. Papers that re-applied existing HE models without 
adjustment were excluded. Additionally, papers concerning 
other types or stages of diabetes (e.g., type 1 diabetes or 
pre-diabetes), particular complications of diabetes (e.g., 
neuropathy), or a subgroup of individuals (e.g., overweight 
individuals) were excluded. Finally, papers were excluded if 
they were not in English or their full texts were not publicly 
accessible. The same screening criteria were used for title, 
abstract, and full text.

Extracted information

A data extraction form including three key themes was con-
structed to collect and summarize information in a consist-
ent and standardized format (Table S3). The three themes 
consist of:

1) Main HE models structure: Basic model structure, 
time horizon, cycle length, and taxonomy [35] based on (a) 
cohort- or individual-level, (b) continuous- or discrete-time, 
and (c) discrete event simulation or state transition model or 
otherwise, were summarized.

https://osf.io/8bmjc
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2) Complications and mortality: Health states or events, 
prediction models applied for each macrovascular and 
microvascular complication and mortality were extracted, 
including their characteristics, as well as the selection crite-
ria used for the choice of prediction models, if any.

3) Methods of integrating prediction models: No tax-
onomy exists to categorize the methods used to integrate 
prediction models, so we considered the following key 
question when summarizing approaches: are the prediction 
models interdependent? If so, were prediction models run 
(a) simultaneously; (b) in a specific predetermined order or 
(c) in some other combination?

Additionally, we extracted information describing the 
various prediction models that were identified in the HE 
models, including their statistical model structure (e.g., 
Cox-regression or parametric regression), follow-up time, 
population, predictors, outcomes and methods for modeling 
treatment effects (Table S4).

Two reviewers (X.L. and F.L.) independently extracted 
and summarized information. Disagreements were resolved 
through discussion or consultation with a third reviewer 
(A.G.).

Results

The selection process yielded 1923 citations from PubMed, 
Embase, Cochrane, and Web of science, and 34 citations 
from the Mount Hood Diabetes Simulation Modeling Data-
base or challenges. After removing duplicates, screening 
based on title, abstract, and full text was performed and we 
identified 42 papers reporting on 34 key HE models (Fig. 1 
and Table 1). Some models required more than one paper to 
understand and fully extract their information. All extracted 
information can be found in Table S3 and is summarized in 
Tables 2–4.

Fig. 1  PRISMA flow chart for the literature review. Abbreviations: HE, Health economic
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Table 1  Overview of models included in this study

Model (Abbreviation) with reference Full name

Health economic models
Archimedes [72, 73] Archimedes model
BRAVO [74] Building, relating, assessing, and validating outcomes diabetes microsimulation model
Cardiff [75] The Cardiff diabetes model
Caro [76, 77] NA: An economic evaluation model published by Caro et al
CDC [78–80] NA: An economic evaluation model published by the CDC diabetes cost-effectiveness group
CHIME [81] Chinese Hong Kong integrated modeling and evaluation
COMT [82] Chinese outcomes model for type 2 diabetes
Cornerstone [83] Cornerstone diabetes simulation model
DiDACT [84] The diabetes decision analysis of cost—type 2 model
DMM [85] The diabetes mellitus model
EAGLE [86] Economic assessment of glycemic control and long-term effects of diabetes model
Eastman [33, 87] NA: An economic evaluation model published by Eastman et al
ECHO [88] The economic and health outcomes model of type 2 diabetes mellitus
GDM [16] The global diabetes model
Grima [89] NA: An economic evaluation model published by Grima et al
IHE [47, 90] The Swedish institute for health economics diabetes cohort model
IMIB [91, 92] NA: An economic evaluation model published by Palmer (Institute for Medical Informatics and 

Biostatistics) et al
IQVIA-CORE [93] The IQVIA center for outcomes research diabetes model
JADE [5] The Januvia diabetes economic model
JJCEM [94] The Japan diabetes complications study/Japanese elderly diabetes intervention trial risk engine 

cost-effectiveness model
MICADO [95, 96] Modelling integrated care for diabetes based on observational data
Michigan [97] The Michigan model for diabetes
ODEM [98] Ontario diabetes economic model
PRIME [53] PRIME type 2 diabetes model
PROSIT [99] The PROSIT disease modelling community (PROSIT in Latin means "it shall be useful")
RAMP-DM [100] The risk assessment and management programme-diabetes mellitus
REDICT-DM [15] Projection and evaluation of disease interventions, complications, and treatments–diabetes mellitus
Sheffield [101] The Sheffield type 2 diabetes model
SPHR [102] School for public health research diabetes model
Syreon [103] The Syreon diabetes control model
Tilden [104] NA: An economic evaluation model published by Tilden et al
TTM [105] The Treatment Transitions Model
UKPDS-OM [25] The UK Prospective Diabetes Study Outcomes Model
UKPDS-OM 2 [11] The UK Prospective Diabetes Study Outcomes Model 2
Prediction models
ADVANCE [106] The model for cardiovascular risk prediction in action in diabetes and vascular disease: Preterax and 

Diamicron modified-release controlled evaluation
BRAVO (risk models) [74] The prediction models of the building, relating, assessing, and validating outcomes diabetes micro-

simulation model based on the action to control cardiovascular risk in diabetes trial
CHIME (risk models) [81] Risk prediction models used in the Chinese Hong Kong integrated modeling and evaluation model 

based on the Hong Kong clinical management system
EAGLE (risk models) [86] Risk prediction models used in the economic assessment of glycemic control and long-term effects 

of diabetes model based on the Wisconsin epidemiological study of diabetic retinopathy, diabetes 
control and complications trial, and UK prospective diabetes study

Framingham [26–28] Framingham risk models
Hong Kong registry risk models [107–109] Risk prediction models based on Hong Kong registry data
JJRE [110] Japanese elderly diabetes intervention trial risk engine
NDR (risk models) [111, 112] Prediction models based on the Swedish national diabetes register
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Table 1  (continued)

Model (Abbreviation) with reference Full name

QRisk [113, 114] Cardiovascular risk score based on the practices in England that had been using a clinical computer 
system developed by EMIS

RECODe [115] Risk equations for complications of type 2 diabetes based on the action to control cardiovascular 
risk in diabetes trial

UKPDS (risk engine) [11, 25] The UK prospective diabetes study risk engine

Table 2  General characteristics 
of 34 included type 2 diabetes 
health economic models (for 
more details see Tables S3 and 
S4)

ADVANCE, model for cardiovascular risk prediction in Action in Diabetes and Vascular Disease: Preterax 
and Diamircon Modified-release Controlled Evaluation; BRAVO, the prediction models of Building, Relat-
ing, Assessing, and Validating Outcomes diabetes microsimulation model; CHIME, risk prediction models 
in Chinese Hong Kong Integrated Modeling and Evaluation; EAGLE, risk prediction models in Economic 
Assessment of Glycemic control and Long-term Effects of diabetes model; Framingham, Framingham risk 
models; JJRE, Japanese Elderly Diabetes Intervention Trial risk engine; NDR, prediction models from 
Swedish National Diabetes Register; QRisk2, Cardiovascular Risk Score 2; RECODe, Risk Equations for 
Complications of Type 2 Diabetes; UKPDS, The UK Prospective Diabetes Study risk engine
1 The Global diabetes model (GDM) could be run either at the individual level or cohort level based on the 
user’s choice. Since its cohort-mode model was structured largely similar to the individual-level model, 
except that the cohort mode model applied mean values of risk factors for the cohort, the individual-level 
model of GDM was our study focus
2 The number of HE models that applied this prediction model as part of their risk equations, does not add 
to 100%. Categories may overlap. Framingham, UKPDS and NDR contained several sets of risk equations. 
Details are listed in Table S3 and Table S4
3 The method of integrating prediction models for microvascular disease (if different from macrovascular 
diseases) is listed in Table S3 to avoid confusion
4 One model (Economic and Health Outcomes Model of Type 2 Diabetes Mellitus [ECHO-T2D]) can apply 
either 'sunflower method' or random order, by user’s choice
5 One model (The Global Diabetes Model [GDM]) applied 'sunflower method' for initial events, and simul-
taneous evaluation (lagged events) for post-initial events

Count Pro-
portion 
(%)

Level of  aggregation1 Individual-level 27 79
Cohort-level 7 21

Prediction models  applied2 UKPDS 20 59
Framingham 7 21
BRAVO 2 6
NDR 2 6
RECODe 2 6
ADVANCE 1 3
CHIME 1 3
EAGLE 1 3
Hong Kong registry risk models 1 3
QRisk2 1 3
JJRE 1 3

The method of integrating prediction 
models for macrovascular  diseases3

Independent, Simultaneous evaluation 12 35
Interdependent, Random order 124 35
Interdependent, Simultaneous evaluation (by 

a continuous model or lagged events)
45 12

Interdependent, 'Sunflower Method' 34, 5 9
Interdependent, Pre-defined order 1 3
Interdependent, Unclear order 4 12
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Model classification and the use of prediction 
models within different model structures

Developing HE models for diabetes is an iterative process, 
and many upgraded models have been built based on previ-
ous versions (Fig. 2). Many models consequently show a 
similar model structure (Tables 2 and 3).

Table 3 distinguishes four different model structures, 
including one continuous-time individual-level object-ori-
ented model, 11 discrete-time individual-level state transi-
tion models, 15 discrete-time individual-level discrete event 
simulation models, and seven discrete-time cohort-level 
state transition models. The object-oriented model, Archi-
medes, applied differential equations as prediction models 
at the biological level. State transition models defined com-
plications as states, with transition probabilities informed 
by prediction models, and thus the movement of an indi-
vidual to another state indicates an event occurs in the cur-
rent cycle. Discrete-time discrete event simulation models 
defined complications as events. Prediction models indicate 
the probability of event occurrence in a given time cycle. 
In the model simulation, these probabilities are compared 

with a random number drawn from a uniform distribution 
ranging from 0 to 1 to indicate whether an event occurs in 
the current cycle.

The most common states or events included in HE mod-
els were myocardial infarction (n = 23, 68%), heart failure 
(n = 21, 62%), and stroke (n = 14, 41%) for macrovascular 
complications, and retinopathy (n = 21, 62%), nephropathy 
(n = 19, 56%), and neuropathy (n = 18, 53%) for microvas-
cular complications (Table S3).

Application of prediction models

Tables 4, 5 and 6, Fig. 3, and Table S4 provide an overview 
of prediction models that were employed in the HE decision 
models. Figure 4 indicates in general where and how the 
prediction models were applied in the HE models.

Older HE models estimated their own prediction mod-
els (e.g., Eastman, Archimedes, UKPDS and EAGLE), and 
newer HE models used or re-estimated existing prediction 
models, with a few exceptions (e.g., BRAVO and JJCEM). 
The UKPDS risk engine (n = 20, 59%) is the most frequently 
used set of prediction models (Table 2), followed by the 

Fig. 2  Development of some health economic models for type 2 dia-
betes. Abbreviations: Cardiff, The Cardiff Diabetes Model; Caro, an 
economic evaluation model published by Caro et  al.; CDC, an eco-
nomic evaluation model published by The CDC Diabetes Cost-effec-
tiveness Group; Eastman, an economic evaluation model published 
by Eastman et  al.; JADE, the Januvia Diabetes Economic model; 
ODEM, Ontario Diabetes Economic Model; RCT, Randomized Con-

trol Trials; Tilden, an economic evaluation model published by Til-
den et al.; TTM, the Treatment Transitions Model; UKPDS-OM, The 
UK Prospective Diabetes Study Outcomes Model
 Connections were made based on the explicit reference indicating 
the extension in the subsequent paper. Otherwise, the model was not 
included in this graph



867Acta Diabetologica (2023) 60:861–879 

1 3

Ta
bl

e 
3 

 T
he

 m
od

el
 st

ru
ct

ur
e 

of
 3

4 
in

cl
ud

ed
 h

ea
lth

 e
co

no
m

ic
 m

od
el

s

A
rc

hi
m

ed
es

, A
rc

hi
m

ed
es

 m
od

el
; B

R
AV

O
, B

ui
ld

in
g,

 R
el

at
in

g,
 A

ss
es

si
ng

, a
nd

 V
al

id
at

in
g 

O
ut

co
m

es
 d

ia
be

te
s 

m
ic

ro
si

m
ul

at
io

n 
m

od
el

; C
ar

di
ff,

 T
he

 C
ar

di
ff 

D
ia

be
te

s 
M

od
el

; C
ar

o,
 a

n 
ec

on
om

ic
 

ev
al

ua
tio

n 
m

od
el

 p
ub

lis
he

d 
by

 C
ar

o 
et

 a
l.;

 C
D

C
, a

n 
ec

on
om

ic
 e

va
lu

at
io

n 
m

od
el

 p
ub

lis
he

d 
by

 T
he

 C
D

C
 D

ia
be

te
s 

C
os

t-e
ffe

ct
iv

en
es

s 
G

ro
up

; C
H

IM
E,

 C
hi

ne
se

 H
on

g 
K

on
g 

In
te

gr
at

ed
 M

od
el

in
g 

an
d 

Ev
al

ua
tio

n;
 C

O
M

T,
 C

hi
ne

se
 O

ut
co

m
es

 M
od

el
 fo

r 
Ty

pe
 2

 D
ia

be
te

s;
 C

or
ne

rs
to

ne
, C

or
ne

rs
to

ne
 D

ia
be

te
s 

Si
m

ul
at

io
n 

M
od

el
; D

iD
A

C
T,

 T
he

 D
ia

be
te

s 
D

ec
is

io
n 

A
na

ly
si

s 
of

 C
os

t —
 T

yp
e 

2 
m

od
el

; D
M

M
, t

he
 D

ia
be

te
s 

M
el

lit
us

 M
od

el
; D

M
M

, t
he

 D
ia

be
te

s 
M

el
lit

us
 M

od
el

; E
A

G
LE

, E
co

no
m

ic
 A

ss
es

sm
en

t o
f G

ly
ce

m
ic

 c
on

tro
l a

nd
 L

on
g-

te
rm

 E
ffe

ct
s 

of
 d

ia
be

te
s 

m
od

el
; E

as
tm

an
, a

n 
ec

on
om

ic
 e

va
lu

at
io

n 
m

od
el

 p
ub

lis
he

d 
by

 E
as

tm
an

 e
t a

l.;
 E

C
H

O
, T

he
 E

co
no

m
ic

 a
nd

 H
ea

lth
 O

ut
co

m
es

 M
od

el
 o

f T
yp

e 
2 

D
ia

be
te

s 
M

el
lit

us
; G

D
M

, T
he

 G
lo

ba
l D

ia
be

te
s 

M
od

el
; G

rim
a,

 a
n 

ec
o-

no
m

ic
 e

va
lu

at
io

n 
m

od
el

 p
ub

lis
he

d 
by

 G
rim

a 
et

 a
l.;

 IH
E,

 T
he

 S
w

ed
is

h 
In

sti
tu

te
 fo

r H
ea

lth
 E

co
no

m
ic

s 
D

ia
be

te
s 

C
oh

or
t M

od
el

; I
M

IB
, a

n 
ec

on
om

ic
 e

va
lu

at
io

n 
m

od
el

 p
ub

lis
he

d 
by

 P
al

m
er

 (I
ns

ti-
tu

te
 fo

r M
ed

ic
al

 In
fo

rm
at

ic
s 

an
d 

B
io

st
at

ist
ic

s)
 e

t a
l.;

 IQ
V

IA
-C

O
R

E,
 T

he
 IQ

V
IA

 C
O

R
E 

D
ia

be
te

s 
M

od
el

; J
A

D
E,

 th
e 

Ja
nu

vi
a 

D
ia

be
te

s 
Ec

on
om

ic
 m

od
el

; J
JC

EM
, T

he
 Ja

pa
n 

D
ia

be
te

s 
C

om
pl

ic
a-

tio
ns

 S
tu

dy
/Ja

pa
ne

se
 E

ld
er

ly
 D

ia
be

te
s 

In
te

rv
en

tio
n 

Tr
ia

l r
is

k 
en

gi
ne

 C
os

t-E
ffe

ct
iv

en
es

s 
M

od
el

; M
IC

A
D

O
, t

he
 M

od
el

lin
g 

In
te

gr
at

ed
 C

ar
e 

fo
r D

ia
be

te
s 

ba
se

d 
on

 O
bs

er
va

tio
na

l d
at

a;
 M

ic
hi

ga
n,

 
Th

e 
M

ic
hi

ga
n 

M
od

el
 fo

r D
ia

be
te

s;
 O

D
EM

, O
nt

ar
io

 D
ia

be
te

s 
Ec

on
om

ic
 M

od
el

; P
R

IM
E,

 P
R

IM
E 

Ty
pe

 2
 D

ia
be

te
s 

M
od

el
; P

RO
SI

T,
 th

e 
PR

O
SI

T 
D

is
ea

se
 M

od
el

lin
g 

C
om

m
un

ity
; R

A
M

P-
D

M
, 

th
e 

R
is

k 
A

ss
es

sm
en

t a
nd

 M
an

ag
em

en
t P

ro
gr

am
m

e-
D

ia
be

te
s 

M
el

lit
us

; R
ED

IC
T-

D
M

, P
Ro

je
ct

io
n 

an
d 

Ev
al

ua
tio

n 
of

 D
is

ea
se

 I
nt

er
ve

nt
io

ns
, C

om
pl

ic
at

io
ns

, a
nd

 T
re

at
m

en
ts

–D
ia

be
te

s 
M

el
lit

us
; 

Sh
effi

el
d,

 th
e 

Sh
effi

el
d 

ty
pe

 2
 d

ia
be

te
s 

m
od

el
; S

PH
R

, S
ch

oo
l f

or
 P

ub
lic

 H
ea

lth
 R

es
ea

rc
h 

D
ia

be
te

s 
M

od
el

; S
yr

eo
n,

 th
e 

Sy
re

on
 D

ia
be

te
s 

C
on

tro
l M

od
el

; T
ild

en
, a

n 
ec

on
om

ic
 e

va
lu

at
io

n 
m

od
el

 
pu

bl
is

he
d 

by
 T

ild
en

 e
t a

l.;
 T

TM
, t

he
 T

re
at

m
en

t T
ra

ns
iti

on
s M

od
el

; U
K

PD
S-

O
M

, T
he

 U
K

 P
ro

sp
ec

tiv
e 

D
ia

be
te

s S
tu

dy
 O

ut
co

m
es

 M
od

el
; U

K
PD

S-
O

M
, T

he
 U

K
 P

ro
sp

ec
tiv

e 
D

ia
be

te
s S

tu
dy

 O
ut

-
co

m
es

 M
od

el

M
od

el
 st

ru
ct

ur
e 

[3
5]

Th
e 

nu
m

be
r (

pr
op

or
tio

n)
: M

od
el

s
D

es
cr

ip
tio

n

In
di

vi
du

al
-le

ve
l

C
on

tin
uo

us
 o

bj
ec

t-o
rie

nt
ed

 M
od

el
(in

di
vi

du
al

-le
ve

l, 
co

nt
in

uo
us

-ti
m

e,
 o

bj
ec

t-o
rie

nt
ed

 m
od

el
)

N
 =

 1 
(3

%
):

A
rc

hi
m

ed
es

[7
2]

In
di

vi
du

al
 tr

aj
ec

to
rie

s w
er

e 
si

m
ul

at
ed

 b
y 

ph
ys

io
lo

gy
-b

as
ed

 p
re

di
ct

io
n 

eq
ua

tio
ns

 (c
on

tin
uo

us
-ti

m
e 

m
od

el
s)

, s
im

ul
at

in
g 

bi
ol

og
ic

al
 in

di
ca

to
rs

 
an

d 
th

ei
r i

nt
er

co
nn

ec
tio

ns
 a

t t
he

 le
ve

l o
f o

rg
an

 sy
ste

m
s

D
is

cr
et

e 
st

at
e 

tra
ns

iti
on

 m
od

el
(in

di
vi

du
al

-le
ve

l, 
di

sc
re

te
-ti

m
e,

 st
at

e 
tra

ns
iti

on
 m

od
el

)
N

 =
 11

 (3
2%

):
Ea

stm
an

[3
3,

 8
7]

, C
ar

o[
76

, 7
7]

, I
Q

V
IA

-C
O

R
E[

93
], 

M
ic

hi
ga

n 
m

od
el

[9
7]

, T
ild

en
[1

04
], 

O
D

EM
[9

8]
, S

he
ffi

el
d[

10
1]

, S
yr

eo
n[

10
3]

, 
PR

O
SI

T[
99

], 
an

d 
EC

H
O

[8
8]

, a
nd

 P
R

ED
IC

T[
15

]

In
di

vi
du

al
 tr

aj
ec

to
rie

s w
er

e 
si

m
ul

at
ed

 a
s c

ha
ng

es
 fr

om
 o

ne
 d

is
cr

et
e 

he
al

th
 

st
at

e 
to

 a
no

th
er

 o
ve

r a
 d

is
cr

et
e 

an
d 

fix
ed

 ti
m

e 
cy

cl
e,

 u
su

al
ly

 a
 y

ea
r

Tr
an

si
tio

n 
pr

ob
ab

ili
tie

s w
er

e 
ba

se
d 

on
 e

xi
sti

ng
 o

r s
el

f-
de

ve
lo

pe
d 

pr
ed

ic
-

tio
n 

m
od

el
s, 

re
fle

ct
in

g 
th

e 
ris

k 
to

 d
ev

el
op

 a
 c

er
ta

in
 c

om
pl

ic
at

io
n 

du
rin

g 
th

e 
m

od
el

’s
 ti

m
e 

cy
cl

e
D

is
cr

et
e 

ev
en

t s
im

ul
at

io
n 

m
od

el
(in

di
vi

du
al

-le
ve

l, 
di

sc
re

te
-ti

m
e,

 d
is

cr
et

e 
ev

en
t s

im
ul

at
io

n 
m

od
el

)
N

 =
 15

 (4
4%

):
G

D
M

[1
6]

, U
K

PD
S-

O
M

1[
25

], 
EA

G
LE

[8
6]

, C
ar

di
ff[

75
], 

JA
D

E[
5]

, 
D

M
M

[8
5]

, U
K

PD
S-

O
M

2[
11

], 
TT

M
[1

05
], 

SP
H

R
[1

02
], 

B
R

AV
O

[7
4]

, C
O

M
T[

82
], 

R
A

M
P-

D
M

[1
00

], 
C

or
ne

rs
to

ne
[8

3]
, 

C
H

IM
E[

81
], 

an
d 

PR
IM

E[
53

]

In
di

vi
du

al
 tr

aj
ec

to
rie

s w
er

e 
si

m
ul

at
ed

 a
s a

 se
qu

en
ce

 o
f e

ve
nt

s b
y 

re
pe

at
-

ed
ly

 a
pp

ly
in

g 
pr

ed
ic

tio
n 

m
od

el
s, 

us
in

g 
a 

di
sc

re
te

 ti
m

e 
cy

cl
e,

 u
su

al
ly

 a
 

fix
ed

 a
nn

ua
l c

yc
le

R
is

ks
 fo

r e
ve

nt
s w

er
e 

ba
se

d 
on

 e
xi

sti
ng

 o
r s

el
f-

de
ve

lo
pe

d 
pr

ed
ic

tio
n 

m
od

el
s, 

re
fle

ct
in

g 
th

e 
ris

k 
to

 d
ev

el
op

 a
 c

er
ta

in
 c

om
pl

ic
at

io
n

M
ai

n 
di

ffe
re

nc
es

 w
ith

 th
e 

di
sc

re
te

 st
at

e 
tra

ns
iti

on
 m

od
el

:
•P

ot
en

tia
lly

 in
fin

ite
 d

es
ig

n 
sp

ac
e 

(N
o 

ne
ed

 fo
r m

ut
ua

lly
 e

xc
lu

si
ve

 h
ea

lth
 

st
at

es
 [1

6]
.)

•F
le

xi
bi

lit
y 

in
 im

pl
em

en
tin

g 
ch

an
ge

s a
nd

 m
er

gi
ng

 c
au

sa
l p

ro
ce

ss
es

 fr
om

 
tri

al
s [

16
]

C
oh

or
t-l

ev
el

D
is

cr
et

e 
st

at
e 

tra
ns

iti
on

 m
od

el
(c

oh
or

t-l
ev

el
, d

is
cr

et
e-

tim
e,

 st
at

e 
tra

ns
iti

on
 m

od
el

)
N

 =
 7 

(2
1%

):
IM

IB
[9

1,
 9

2]
, D

iD
A

C
T[

84
], 

C
D

C
[7

8,
 7

9]
, G

rim
a[

89
], 

IH
E[

47
, 9

0]
, 

M
IC

A
D

O
[9

5,
 9

6]
, a

nd
 JJ

C
EM

[9
4]

M
od

el
 th

e 
in

ci
de

nc
e,

 p
re

va
le

nc
e,

 a
nd

 m
or

ta
lit

y 
of

 c
om

pl
ic

at
io

ns
 w

ith
in

 
as

su
m

ed
 h

om
og

en
eo

us
 c

oh
or

ts
, r

at
he

r t
ha

n 
si

m
ul

at
in

g 
in

di
vi

du
al

 tr
aj

ec
-

to
rie

s, 
w

hi
ch

 w
ou

ld
 a

cc
ou

nt
 fo

r h
et

er
og

en
ei

ty
Tr

an
si

tio
n 

pr
ob

ab
ili

tie
s r

efl
ec

t t
he

 e
ffe

ct
 o

f c
ov

ar
ia

te
s a

s f
ol

lo
w

s:
•C

on
di

tio
na

l r
el

at
iv

e 
ris

ks
 (e

.g
., 

M
IC

A
D

O
[9

5,
 9

6]
)

•S
tra

tifi
ca

tio
n 

of
 p

ro
ba

bi
lit

ie
s b

y 
ris

k 
fa

ct
or

 le
ve

ls
 (e

.g
., 

IM
IB

[9
1,

 9
2]

)
•P

re
di

ct
io

n 
m

od
el

s u
se

 th
e 

m
ea

n 
va

lu
es

 o
f r

is
k 

in
di

ca
to

rs
 fo

r t
he

 c
oh

or
t 

of
 in

te
re

st 
(e

.g
., 

IH
E[

47
, 9

0]
)



868 Acta Diabetologica (2023) 60:861–879

1 3

Ta
bl

e 
4 

 O
ve

rv
ie

w
 o

f f
re

qu
en

tly
 a

pp
lie

d 
pr

ed
ic

tio
n 

m
od

el
s i

nc
or

po
ra

te
d 

in
 ty

pe
 2

 d
ia

be
te

s h
ea

lth
 e

co
no

m
ic

 m
od

el
s

A
CC

O
RD

, A
ct

io
n 

to
 C

on
tro

l C
ar

di
ov

as
cu

la
r R

isk
 in

 D
ia

be
te

s t
ria

l; 
A

DV
A

N
CE

, A
ct

io
n 

in
 D

ia
be

te
s a

nd
 V

as
cu

la
r D

ise
as

e:
 P

re
te

ra
x 

an
d 

D
ia

m
irc

on
 M

od
ifi

ed
-re

le
as

e 
Co

nt
ro

lle
d 

Ev
al

ua
tio

n;
 B

RA
VO

, B
ui

ld
in

g,
 R

el
at

-
in

g,
 A

ss
es

sin
g,

 a
nd

 V
al

id
at

in
g 

O
ut

co
m

es
 d

ia
be

te
s 

m
ic

ro
sim

ul
at

io
n 

m
od

el
; C

ar
di

ff,
 T

he
 C

ar
di

ff 
D

ia
be

te
s 

M
od

el
; C

ar
o,

 a
n 

ec
on

om
ic

 e
va

lu
at

io
n 

m
od

el
 p

ub
lis

he
d 

by
 C

ar
o 

et
 a

l.;
 C

D
C,

 a
n 

ec
on

om
ic

 e
va

lu
at

io
n 

m
od

el
 

pu
bl

ish
ed

 b
y 

Th
e 

CD
C 

D
ia

be
te

s C
os

t-e
ffe

ct
iv

en
es

s G
ro

up
; C

H
D

, C
on

ge
ni

ta
l H

ea
rt 

D
ise

as
e;

 C
H

IM
E,

 C
hi

ne
se

 H
on

g 
K

on
g 

In
te

gr
at

ed
 M

od
el

in
g 

an
d 

Ev
al

ua
tio

n;
 C

O
M

T,
 C

hi
ne

se
 O

ut
co

m
es

 M
od

el
 fo

r T
yp

e 
2 

D
ia

be
te

s; 
Co

rn
er

sto
ne

, C
or

ne
rs

to
ne

 D
ia

be
te

s S
im

ul
at

io
n 

M
od

el
; C

V
D

, C
ar

di
ov

as
cu

la
r D

ise
as

e;
 D

CC
T,

 D
ia

be
te

s C
on

tro
l a

nd
 C

om
pl

ic
at

io
ns

 T
ria

l; 
D

iD
A

CT
, T

he
 D

ia
be

te
s D

ec
isi

on
 A

na
ly

sis
 o

f C
os

t —
 T

yp
e 2

 m
od

el
; D

M
M

, t
he

 
D

ia
be

te
s M

el
lit

us
 M

od
el

; D
M

M
, t

he
 D

ia
be

te
s M

el
lit

us
 M

od
el

; E
A

G
LE

, E
co

no
m

ic
 A

ss
es

sm
en

t o
f G

ly
ce

m
ic

 c
on

tro
l a

nd
 L

on
g-

te
rm

 E
ffe

ct
s o

f d
ia

be
te

s m
od

el
; E

CH
O

, T
he

 E
co

no
m

ic
 a

nd
 H

ea
lth

 O
ut

co
m

es
 M

od
el

 o
f 

Ty
pe

 2
 D

ia
be

te
s M

el
lit

us
; E

M
IS

, a
 cl

in
ic

al
 co

m
pu

te
r s

ys
te

m
 d

ev
el

op
ed

 b
y 

EM
IS

; F
ra

m
in

gh
am

, F
ra

m
in

gh
am

 ri
sk

 m
od

el
s; 

G
D

M
, T

he
 G

lo
ba

l D
ia

be
te

s M
od

el
; G

rim
a, 

an
 ec

on
om

ic
 ev

al
ua

tio
n 

m
od

el
 p

ub
lis

he
d 

by
 G

rim
a 

et
 a

l.;
 H

F,
 H

ea
rt 

Fa
ilu

re
; I

H
E,

 T
he

 S
w

ed
ish

 In
sti

tu
te

 fo
r H

ea
lth

 E
co

no
m

ic
s D

ia
be

te
s C

oh
or

t M
od

el
; I

M
IB

, a
n 

ec
on

om
ic

 ev
al

ua
tio

n 
m

od
el

 p
ub

lis
he

d 
by

 P
al

m
er

 (I
ns

tit
ut

e 
fo

r M
ed

ic
al

 In
fo

rm
at

ic
s a

nd
 B

io
sta

tis
tic

s)
 e

t a
l.;

 
IQ

V
IA

-C
O

RE
, T

he
 IQ

V
IA

 C
O

RE
 D

ia
be

te
s M

od
el

; J
A

D
E,

 th
e J

an
uv

ia
 D

ia
be

te
s E

co
no

m
ic

 m
od

el
; J

D
CS

, J
ap

an
 D

ia
be

te
s C

om
pl

ic
at

io
ns

 S
tu

dy
; J

-E
D

IT
, J

ap
an

es
e E

ld
er

ly
 D

ia
be

te
s I

nt
er

ve
nt

io
n 

Tr
ia

l; 
JJ

CE
M

, T
he

 Ja
pa

n 
D

ia
be

te
s 

Co
m

pl
ic

at
io

ns
 S

tu
dy

/Ja
pa

ne
se

 E
ld

er
ly

 D
ia

be
te

s 
In

te
rv

en
tio

n 
Tr

ia
l r

isk
 e

ng
in

e 
Co

st-
Eff

ec
tiv

en
es

s 
M

od
el

; M
ich

ig
an

, T
he

 M
ich

ig
an

 M
od

el
 fo

r D
ia

be
te

s; 
N

D
R,

 S
w

ed
ish

 N
at

io
na

l D
ia

be
te

s 
Re

gi
ste

r; 
O

D
EM

, 
O

nt
ar

io
 D

ia
be

te
s 

Ec
on

om
ic

 M
od

el
; P

RI
M

E,
 P

RI
M

E 
Ty

pe
 2

 D
ia

be
te

s 
M

od
el

; Q
Ri

sk
2,

 C
ar

di
ov

as
cu

la
r R

isk
 S

co
re

 2
; R

EC
O

D
e, 

Ri
sk

 E
qu

at
io

ns
 fo

r C
om

pl
ic

at
io

ns
 o

f T
yp

e 
2 

D
ia

be
te

s; 
RE

D
IC

T-
D

M
, P

Ro
je

ct
io

n 
an

d 
Ev

al
ua

tio
n 

of
 D

ise
as

e 
In

te
rv

en
tio

ns
, C

om
pl

ic
at

io
ns

, a
nd

 T
re

at
m

en
ts–

D
ia

be
te

s M
el

lit
us

; S
he

ffi
el

d,
 th

e 
Sh

effi
el

d 
ty

pe
 2

 d
ia

be
te

s m
od

el
; S

PH
R,

 S
ch

oo
l f

or
 P

ub
lic

 H
ea

lth
 R

es
ea

rc
h 

D
ia

be
te

s M
od

el
; T

ild
en

, a
n 

ec
on

om
ic

 
ev

al
ua

tio
n 

m
od

el
 p

ub
lis

he
d 

by
 T

ild
en

 e
t a

l.;
 T

TM
, t

he
 T

re
at

m
en

t T
ra

ns
iti

on
s M

od
el

; U
K

PD
S-

O
M

, T
he

 U
K

 P
ro

sp
ec

tiv
e 

D
ia

be
te

s S
tu

dy
 O

ut
co

m
es

 M
od

el
; U

K
PD

S,
 T

he
 U

K
 P

ro
sp

ec
tiv

e 
D

ia
be

te
s S

tu
dy

; U
K

PD
S-

O
M

, 
Th

e U
K

 P
ro

sp
ec

tiv
e D

ia
be

te
s S

tu
dy

 O
ut

co
m

es
 M

od
el

; W
ES

D
R,

 W
isc

on
sin

 E
pi

de
m

io
lo

gi
ca

l S
tu

dy
 o

f D
ia

be
tic

 R
et

in
op

at
hy

1   A
C

CO
R

D
 p

ar
tic

ip
an

ts
 w

er
e 

ex
cl

ud
ed

 d
ue

 to
 m

is
si

ng
 c

an
di

da
te

 p
re

di
ct

or
 v

ar
ia

bl
es

 in
 R

EC
O

D
e,

 c
au

si
ng

 th
e 

di
ffe

re
nc

e 
in

 m
ed

ia
n 

fo
llo

w
-u

p 
co

m
pa

re
d 

to
 B

R
AV

O

St
ud

y/
M

od
el

 (P
ub

lis
h 

ye
ar

)
B

as
ic

 m
od

el
 st

ru
ct

ur
e

Th
e 

so
ur

ce
 o

f s
tu

dy
 p

op
ul

at
io

n,
 m

ai
n 

co
un

try
, 

re
cr

ui
te

d/
ba

se
lin

e 
pe

rio
d,

 m
ed

ia
n/

m
ea

n 
fo

llo
w

-u
p 

tim
e

H
E 

m
od

el
s t

ha
t i

nc
or

po
ra

te
 th

is
 m

od
el

. (
nu

m
be

r: 
na

m
es

)

U
K

PD
S 

ris
k 

en
gi

ne
 [1

1,
 2

5]
 (2

00
4,

 2
01

3)
U

K
PD

S 
O

M
1:

 W
ei

bu
ll 

pr
op

or
tio

na
l h

az
ar

ds
 re

gr
es

-
si

on
U

K
PD

S 
O

M
2:

 W
ei

bu
ll 

an
d 

Ex
po

ne
nt

ia
l p

ro
po

rti
on

al
 

ha
za

rd
s r

eg
re

ss
io

n 
(e

xc
ep

t u
lc

er
 a

pp
lie

d 
lo

gi
sti

c 
re

gr
es

si
on

)

U
K

PD
S,

 U
K

,
U

K
PD

S 
O

M
1:

 1
97

7–
19

91
, 1

0.
3 

ye
ar

s
U

K
PD

S 
O

M
2:

 1
97

7–
19

91
, 1

7.
6 

ye
ar

s

20
: C

D
C

, U
K

PD
S-

O
M

1,
 IQ

V
IA

-C
O

R
E,

 M
ic

hi
ga

n,
 

EA
G

LE
, C

ar
di

ff,
 G

rim
a,

 T
ild

en
, J

A
D

E,
 O

D
EM

, 
Sh

effi
el

d,
 D

M
M

, U
K

PD
S-

O
M

2,
 T

TM
, I

H
E,

 S
PH

R
, 

EC
H

O
, C

or
ne

rs
to

ne
, J

JC
EM

, P
R

IM
E

Fr
am

in
gh

am
 [2

6–
28

] (
19

91
, 1

99
4,

 1
99

8)
Fr

am
in

gh
am

: N
on

-p
ro

po
rti

on
al

 h
az

ar
ds

 W
ei

bu
ll 

ac
ce

le
ra

te
d 

fa
ilu

re
 ti

m
e 

m
od

el
Fr

am
in

gh
am

-s
tro

ke
 a

nd
 F

ra
m

in
gh

am
-C

H
D

: C
ox

 
pr

op
or

tio
na

l h
az

ar
ds

 re
gr

es
si

on
 m

od
el

Fr
am

in
gh

am
 H

ea
rt 

St
ud

y 
an

d 
Fr

am
in

gh
am

 O
ffs

pr
in

g 
St

ud
y,

 U
S,

Fr
am

in
gh

am
: 1

96
8–

19
75

, 1
2 

ye
ar

s
Fr

am
in

gh
am

-s
tro

ke
: 1

96
8–

19
75

, 1
0 

ye
ar

s
Fr

am
in

gh
am

-C
H

D
: 1

97
1–

19
74

, 1
2 

ye
ar

s

7:
 G

D
M

, I
M

IB
, C

ar
o,

 D
iD

A
C

T,
 C

D
C

, I
Q

V
IA

-C
O

R
E,

 
SP

H
R

N
D

R
 ri

sk
 m

od
el

s [
11

1,
 1

12
] (

20
11

, 2
01

3)
N

D
R

: C
ox

 p
ro

po
rti

on
al

 h
az

ar
ds

 re
gr

es
si

on
 m

od
el

N
D

R-
C

V
D

: W
ei

bu
ll 

pr
op

or
tio

na
l h

az
ar

ds
 m

od
el

N
D

R
, S

w
ed

is
h,

N
D

R
: 2

00
2–

20
03

, 5
 y

ea
rs

N
D

R-
C

V
D

: 2
00

3,
 5

 y
ea

rs

2:
 IH

E,
 E

C
H

O

R
EC

O
D

e 
[1

15
] (

20
17

)
C

ox
 p

ro
po

rti
on

al
 h

az
ar

ds
 m

od
el

s
A

C
CO

R
D

, U
S,

 2
00

1–
20

05
, 4

.7
  y

ea
rs

1
2:

 C
O

M
T,

 P
R

ED
IC

T
B

R
AV

O
 ri

sk
 m

od
el

s [
74

] (
20

18
)

W
ei

bu
ll 

pr
op

or
tio

na
l h

az
ar

ds
 m

od
el

A
C

CO
R

D
, U

S,
 2

00
1–

20
05

, 3
.7

  y
ea

rs
1

2:
 B

R
AV

O
, P

R
IM

E
EA

G
LE

 ri
sk

 m
od

el
s [

86
] (

20
06

)
Re

gr
es

sio
n 

an
al

ys
es

 (l
in

ea
r, 

ex
po

ne
nt

ia
l, 

an
d 

qu
ad

ra
tic

 
re

gr
es

sio
n 

fo
rm

ul
ae

) (
de

ta
ils

 se
e 

A
pp

en
di

x 
S4

)
W

ES
D

R
, U

S,
 1

97
9,

 1
 y

ea
r

D
C

C
T,

 U
S 

an
d 

C
an

ad
a,

 1
98

3–
19

89
, 6

.5
 y

ea
rs

U
K

PD
S,

 U
K

, 1
97

7–
19

91
,1

0 
ye

ar
s

1:
 E

A
G

LE

Q
R

is
k2

 [1
13

] (
20

07
)

C
ox

 p
ro

po
rti

on
al

 h
az

ar
ds

 re
gr

es
si

on
 m

od
el

A
ll 

pr
ac

tic
es

 in
 E

ng
la

nd
 th

at
 h

ad
 b

ee
n 

us
in

g 
th

e 
EM

IS
 c

om
pu

te
r s

ys
te

m
, U

K
, 1

99
5–

20
07

, 6
.5

 y
ea

rs
1:

 S
PH

R

H
on

g 
K

on
g 

re
gi

str
y 

ris
k 

m
od

el
s [

10
7–

10
9]

(2
00

7,
 2

00
8,

 2
00

8)
C

ox
 p

ro
po

rti
on

al
 h

az
ar

ds
 re

gr
es

si
on

 m
od

el
H

on
g 

K
on

g 
D

ia
be

te
s R

eg
ist

ry
, C

hi
na

,  
St

ro
ke

: 1
99

5–
20

05
, 5

.4
 y

ea
rs

H
F 

19
95

–2
00

5,
 5

.5
 y

ea
rs

C
H

D
: 1

99
5–

20
05

, 5
.4

 y
ea

rs

1:
 P

R
IM

E

A
D

VA
N

C
E 

[1
06

] (
20

11
)

C
ox

 p
ro

po
rti

on
al

 h
az

ar
ds

 re
gr

es
si

on
 m

od
el

A
D

VA
N

C
E,

 m
ul

tip
le

 c
ou

nt
rie

s i
n 

A
si

a,
 A

us
tra

la
si

a,
 

Eu
ro

pe
 a

nd
 C

an
ad

a 
et

c.
, 2

00
1–

20
03

, 4
.5

 y
ea

rs
1:

 E
C

H
O

C
H

IM
E 

ris
k 

m
od

el
s [

81
] (

20
21

)
Pa

ra
m

et
ric

 p
ro

po
rti

on
al

 h
az

ar
ds

 m
od

el
s (

ex
po

ne
nt

ia
l, 

lo
g-

lo
gi

sti
c,

 lo
g-

no
rm

al
, a

nd
 W

ei
bu

ll)
H

on
g 

K
on

g 
C

lin
ic

al
 M

an
ag

em
en

t S
ys

te
m

, C
hi

na
, 

20
06

–2
01

7,
 4

.1
 y

ea
rs

1:
 C

H
IM

E

JJ
R

E 
[1

10
] (

20
13

)
C

ox
 p

ro
po

rti
on

al
 h

az
ar

ds
 re

gr
es

si
on

 m
od

el
JD

CS
, 1

99
5–

19
96

 an
d J

-E
D

IT
, 2

00
1–

20
02

, J
ap

an
, 7

.2 
ye

ar
s

1:
 JJ

C
EM



869Acta Diabetologica (2023) 60:861–879 

1 3

ADVANCE and QRisk2) were only applicable for macro-
vascular disease. In many models, microvascular disease was 
estimated using diabetes duration stratified constant hazard 
ratios, assuming implicit exponential survival models. For 
example, Eastman calculated transition probabilities for 
various microvascular health states using published evi-
dence-based diabetes duration-related hazard ratios (Algo-
rithms see Appendix S2). Nine subsequent models (GDM, 
DiDACT, CDC, Cardiff, Sheffield, TTM, IHE, MICADO, 
and ECHO) also applied the Eastman transition rates or 
adjusted rates with the same algorithm, using newly pub-
lished clinical evidence.

Most HE models split mortality into two components: 
cardiovascular disease (CVD) mortality and other mortality 
(Table S3). CVD mortality was informed by prediction mod-
els (e.g., Framingham, UKPDS, and RECODe), and other 
mortality was either derived from local mortality statistics 
(e.g., national life tables) or informed by mortality prediction 
models. Competing risk models were often applied to avoid 

Table 5  Overview of predictors used in prediction models incorporated in type 2 diabetes health economic models

ADVANCE, model for cardiovascular risk prediction in Action in Diabetes and Vascular Disease: Preterax and Diamircon Modified-release 
Controlled Evaluation; BRAVO, the prediction models of Building, Relating, Assessing, and Validating Outcomes diabetes microsimulation 
model; CHD, Congenital Heart Disease; CHIME, risk prediction models in Chinese Hong Kong Integrated Modeling and Evaluation; EAGLE, 
risk prediction models in Economic Assessment of Glycemic control and Long-term Effects of diabetes model; Framingham, Framingham risk 
models; JJRE, Japanese Elderly Diabetes Intervention Trial risk engine; NDR, prediction models from Swedish National Diabetes Register; 
QRisk, Cardiovascular Risk Score; RECODe, Risk Equations for Complications of Type 2 Diabetes; UKPDS, The UK Prospective Diabetes 
Study risk engine
Top 10 most frequently applied predictors are listed here, and all predictors are listed in Table S4

Gender Age SBP Smoking status HbA1c Diabetes 
Duration

BMI Race Event History Medication

Framingham [26] Y Y Y Y
Framingham-stroke [27] Y Y Y Y Y Y
Framingham-CHD [28] Y Y Y Y
UKPDS-35 [116] Y
UKPDS-56 [117] Y Y Y Y Y Y Y
UKPDS-60 [118] Y Y Y Y Y
UKPDS-66 – MI [119] Y Y Y
UKPDS-66 – Stroke [119] Y Y Y Y
UKPDS-68 [25] Y Y Y Y Y Y Y Y
UKPDS-82 [11] Y Y Y Y Y Y Y Y Y
NDR [112] Y Y Y Y Y Y Y Y
NDR-CVD [111] Y Y Y Y Y Y Y Y
EAGLE [86] Y Y Y Y Y Y Y
Hong Kong registry risk [107–109] Y Y Y Y Y Y Y
QRisk2 [113] Y Y Y Y Y Y
QRisk3 [114] Y Y Y Y Y Y Y
ADVANCE [106] Y Y Y Y Y
JJRE [110] Y Y Y Y Y Y Y
RECODe [115] Y Y Y Y Y Y Y Y
BRAVO [74] Y Y Y Y Y Y Y Y Y
CHIME risk equations [81] Y Y Y Y Y Y Y Y Y

Framingham, BRAVO, NDR, RECODe models. Updated 
versions of HE models tend to incorporate UKPDS risk 
engines rather than Framingham, which was developed 
20 years ago, because UKPDS is more recent (published in 
2013) and has a longer follow-up (1977–2007). The most 
recent prediction models are CHIME (cohorts observed from 
2006 to 2017 and models published in 2021), RECODe, and 
BRAVO (both applied the Action to Control Cardiovascu-
lar Risk in Diabetes trial cohorts observed from 2001 to 
2009 and published around 2018). The rationale for choos-
ing particular existing prediction models is unclear in most 
HE models. Only the SPHR model explained that this was 
based on discussion with the stakeholder group regarding the 
suitability of settings, such as country, cohort characteristics, 
and covariate selection.

Many HE models applied different prediction models for 
macrovascular and microvascular disease risks (Table S3). 
Some existing prediction models (e.g., Framingham, 
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overestimation of the mortality risk (e.g., DiDACT, CDC, 
and Michigan). As an exception, GDM applied one predic-
tion model to estimate all-cause mortality, with a random 
number to define whether it was CVD or other mortality.

Two methods of re-calibrating prediction models to a 
specific setting were identified, either adjusting the default 
risk (e.g., EAGLE) or reconciling the transition probability 
in an iterative process until reproducing findings from an 
external population (e.g., Grima). Another adjustment option 
was providing users with choices of several prediction mod-
els (e.g., IQVIA-CORE, EAGLE, IHE, and ECHO). For 
example, ECHO enables the users’ choice between UKPDS, 
ADVANCE and NDR-CVD risk equations. Finally, rather than 
choosing between prediction models, PRIME implemented a 
model averaging approach based on the “distance” between the 
derivation cohort and the simulated cohort to evaluate individ-
ual-level risk informed by multiple risk models, including the 
UKPDS and BRAVO risk engines.

Dealing with multiple complications and prediction 
models

Integrating selected and adjusted prediction models into 
a HE decision model is related to the HE model’s time 
cycle (Table S3). A fixed annual cycle was applied in the 
majority of models (n = 27, 79%), in which shorter cycles 
may be enabled for certain complications, such as a one-
month cycle for neuropathy for COMT. Only DiDACT 
applied a 5-year cycle to simplify the model. A six-month 
cycle was applied in Tilden, JADE, and Syreon, and a one-
month cycle in TTM and PREDICT. These shortened time 
cycles serve to ensure consistency with clinical trial data’s 
follow-up. Two methods were identified for incorporating 
prediction models with an original follow-up time other 
than the time cycle needed for the HE models. This was 
done either via algebraic compression and a constant risk 
assumption (e.g., GDM, RAMP, and PREDICT) or using 

Table 6  Overview of outcomes measured in prediction models incorporated in type 2 diabetes health economic models

ADVANCE, model for cardiovascular risk prediction in Action in Diabetes and Vascular Disease: Preterax and Diamircon Modified-release 
Controlled Evaluation; BRAVO, the prediction models of Building, Relating, Assessing, and Validating Outcomes diabetes microsimulation 
model; CHD, Congenital Heart Disease; CHIME, risk prediction models in Chinese Hong Kong Integrated Modeling and Evaluation; CVD, 
Cardiovascular Disease; EAGLE, risk prediction models in Economic Assessment of Glycemic control and Long-term Effects of diabetes 
model; Framingham, Framingham risk models; HF, Heart Failure; JJRE, Japanese Elderly Diabetes Intervention Trial risk engine; MI, Myocar-
dial Infarction; NDR, prediction models from Swedish National Diabetes Register; QRisk, Cardiovascular Risk Score; RECODe, Risk Equations 
for Complications of Type 2 Diabetes; UKPDS, The UK Prospective Diabetes Study risk engine
Top 10 most frequently estimated outcomes are listed here, and all outcomes are listed in Table S4

Stroke MI CHD HF CVD Retinopathy Nephropathy Neuropathy Amputation Blindness

Framingham [26] Y Y Y Y
Framingham-stroke [27] Y
Framingham-CHD [28] Y
UKPDS-35 [116] Y Y Y Y Y Y
UKPDS-56 [117] Y Y
UKPDS-60 [118] Y
UKPDS-66 – MI [119] Y
UKPDS-66 – Stroke [119] Y
UKPDS-68 [25] Y Y Y Y Y Y Y Y Y
UKPDS-82 [11] Y Y Y Y Y Y Y Y Y
NDR [112] Y Y Y Y
NDR-CVD [111] Y
EAGLE [86] Y Y Y Y Y Y Y Y
Hong Kong registry risk [107–109] Y Y Y
QRisk2 [113] Y
QRisk3 [114] Y
ADVANCE [106] Y
JJRE [110] Y Y Y
RECODe [115] Y Y Y Y Y
BRAVO [74] Y Y Y Y Y Y Y
CHIME risk equations [81] Y Y Y Y Y Y Y Y
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the proportional hazard assumption and applying hazard 
ratios from the prediction models to survival over the dura-
tion of the time cycle from the HE model (e.g., SPHR), see 
Appendix S3 for algorithms.

Table 2 summarizes the methods of the combination 
of the prediction models. Many early HE models, espe-
cially those built before 2004, assumed no interdependence 
between different complications. GDM was the first model 
seen to assume interdependency of CVD events using the 
sunflower method. This method first predicted the occur-
rence of the next CVD event of any kind and used additional 
equations to predict which CVD event it would be, including 
combined events. This process was then repeated during the 
next cycle to estimate the order of events. For example, in 
SPHR, the QRisk2 equation estimated the CVD probability, 
and its nature (e.g., stroke or myocardial infarction, etc.) 
was determined separately by the published age- and gender-
specific CVD distribution. ECHO also adopted this method 
as an optional choice for users.

An alternative approach is random order evaluation with 
interdependency. For example, IQVIA-CORE and UKPDS-
OM tackled interactions among multiple complications by 
recording individuals’ event history in tracker variables and 
adjusting the risk of other complications accordingly, using 
dummies reflecting pre-existing complications in prediction 
models. To avoid possible bias, during simulations, the order 
of prediction models is randomly assigned for each time 
cycle.

A third approach is the simultaneous evaluation by lagged 
events information to inform on interdependencies. This 
approach avoids considering the interdependency of events 
occurring in the current cycle (e.g., MICADO). A predefined 
order, as the fourth approach, was applied in only JJCEM, in 
which the prediction model of amputation, which included 
retinopathy as a predictor, was run as the final model.

Fig. 3  Characteristics of prediction models in type 2 diabetes health 
economic models. Abbreviations:ADVANCE, model for cardiovas-
cular risk prediction in Action in Diabetes and Vascular Disease: 
Preterax and Diamicron Modified-release Controlled Evaluation; 
BMI, Body Mass Index; BRAVO, the prediction models of Building, 
Relating, Assessing, and Validating Outcomes diabetes microsimula-
tion model; CHD, Congenital Heart Disease; CHIME, Chinese Hong 
Kong Integrated Modeling and Evaluation; CVD, Cardiovascular 
Disease; Framingham, Framingham risk models; HbA1c, Hemo-

globin A1c; HF, Heart Failure; JJRE, Japanese Elderly Diabetes 
Intervention Trial risk engine; MI, Myocardial Infarction; NDR, 
prediction models from Swedish National Diabetes Register; QRisk, 
Cardiovascular Risk Score; RECODe, Risk Equations for Complica-
tions of Type 2 Diabetes; SBP, Systolic Blood Pressure; UKPDS, The 
UK Prospective Diabetes Study risk engine.
 Top 10 are listed for each characteristic, and full characteristics are 
listed in Tables S3 and S4
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Fig. 4  Flowchart of a general individual-level model structure.  Abbreviations:HbA1c, Hemoglobin A1c; MI, Myocardial Infarction
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Treatment effects

Prediction models might be estimated from data with dif-
ferent treatments in place. Treatment effects were either 
included explicitly as a dummy variable, or implicitly as 
impact on risk factors. Most prediction models identified in 
health economic HE models only used dummy variables to 
reflect the use of antihypertensive medication (Framingham-
stroke, ADVANCE, and QRisk2), while the effect of glucose 
control treatment was consistently modeled implicitly via 
impact on risk factors (e.g., UKPDS and JJRE). Two excep-
tions are that CHIME risk equations and RECODe include 
both antihypertensives and oral diabetes drug as dummy 
variables (Table S4). Statin use was also included in only 
these two risk equations (CHIME and RECODe), though 
ADVANCE included statin in the variable selection phase 
but it was finally dropped by stepwise approach.

Two methods were identified for modeling treatment 
effects while applying prediction models that do not explic-
itly consider treatment effects as dummy variables. One 
method applies relative risks or conditional probabilities 
(e.g., treatment-specific states and transition probabilities 
applied in IMIB). The other method estimates the effect of 
treatment on underlying risk factors (e.g., in Cardiff, the 
effect of medication on HbA1c was modeled via an update 
of HbA1c levels in a treatment module that, in turn, altered 
the probabilities of events, see Fig. 4). Treatment modules 
may also allow treatment switches, mimicking clinical prac-
tice. The trigger for this switch depended on an evidence-
based transition matrix (e.g., DiDACT) or on individuals’ 
clinical indicators, such as a specific HbA1c level or diabetes 
duration (e.g., JADE).

Treatment compliance was considered in 6 (18%) models 
(Eastman, GDM, Michigan model, Tilden, Syreon, ECHO), 
by specifying the rate of individual compliance or simulating 
HbA1c levels between standard care (e.g., 10%) and com-
prehensive care (e.g., 7.2%).

Discussion

We found four solutions for dealing with the interdepend-
ency of prediction models in HE simulation models. All 
approaches required several assumptions, and no new 
approaches were introduced in recent years. For many mod-
els, it was difficult to determine the exact methods applied 
because of the lack of transparency in reporting and the 
ambiguity of the terminology applied.

The pros and cons of various HE modeling structures 
have been widely discussed [7, 36, 37]. Our study inves-
tigated HE models from the perspective of incorporating 
prediction models. Individual-level discrete event simulation 
models would be the most straightforward structure, because 

individual-level models can be well informed directly by 
common prediction models, while cohort-level models 
require extra implementation steps (e.g., converting informa-
tion from prediction models into relative risks or using mean 
risk factor values to inform prediction models). Additionally, 
as a result of Markov property assumptions, state transi-
tion models usually cannot easily accommodate prediction 
models that explicitly include duration, while discrete event 
simulation models can easily keep track of time as an attrib-
ute and hence directly use time-to-event prediction models.

Confirming previous studies [38, 39], we did not find a 
clear preference for certain prediction models. The likely 
explanation of UKPDS risk engine being the most com-
monly used prediction model, is that it is the first risk engine 
developed in a T2D population, covers most T2D complica-
tions, and has a high degree of transparency in describing 
its algorithm and coefficients [25]. However, the rationale 
for adopting specific prediction models in HE models has 
been underreported.

Being referenced or recommended in clinical guidelines 
could be one rationale for incorporating specific prediction 
models into HE models [40]. For instance, a risk calcula-
tor [41] is recommended for estimating the risk of ASCVD 
in American diabetes guidelines [42] and the UKPDS risk 
engine is referenced to measure CVD risk in European dia-
betes guidelines [43]. Since clinical prediction models have 
higher calibration requirements than HE models [44], such 
inclusion in guidelines could be seen as support for these 
prediction models. However, clinical prediction models and 
HE models may deviate in requirements regarding variable 
selection. Clinical prediction models often prefer including 
fewer predictors, which are available in routine care, whereas 
HE models may want to cover all of their modeled risk fac-
tors. When using clinical trials as main source of input this 
might be a wider range of predictors than those in routine 
care. In addition, for clinical application, discrimination next 
to calibration is very important [45], while for HE models, 
with their focus on aggregate outcomes, calibration-in-the-
large will be the most important [46]. Due to these distinct 
scopes and requirements, clinical guideline-recommended 
prediction models are not always the best fit for HE models. 
For example, NDR performed better than UKPDS risk model 
for well-treated individuals, whereas UKPDS risk model per-
formed better for the older UK cohort, indicating that the 
choice should reflect the specifics of the application [47].

In our opinion, several criteria could help select suitable 
prediction models as follows (multiple sets of prediction 
models can be chosen at the same time):

1. Time period: The UKPDS risk engine allows to validate 
modeling a population for a long-time horizon (17.6-
year median follow-up), but covers a somewhat older 
time period (1977–2007). CHIME risk model suits well 
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with short-term and recent time horizons (4-year mean 
follow-up until 2017).

2. Population: JJRE, CHIME, and the Chinese Hong Kong 
registry risk models suit well with an Asian population; 
NDR suits well with a European population; QRisk and 
UKPDS were developed in UK populations; BRAVO 
and RECODe were developed in US populations. If a 
mixture of multiple ethnic groups is of interest, UKPDS, 
EAGLE, QRisk, RECODe, and BRAVO which consider 
ethnic groups as a predictor, are suitable.

3. The available predictors are listed in Table 5 and could 
guide choice of prediction model(s). Of note, unavail-
able risk factors, such as white blood cell counts, may be 
imputed, enlarging the applicability of prediction mod-
els [48]. If information about both events and medication 
use is available, CHIME and RECODe are suitable.

4. Outcomes of interest can be found in Table 6. NDR, 
ADVANCE, and QRisk predict the aggregate CVD, 
while UKPDS, BRAVO, CHIME, and RECODe pre-
dict each separate CVD event (i.e., MI, stroke and oth-
ers). For prediction of subsequent events (i.e., the sec-
ond or next time of occurring), NDR and UKPDS offer 
most details. If microvascular diseases are of interest, 
UKPDS, EAGLE, BRAVO, and CHIME suit well.

Once prediction models are selected, properly incorpo-
rating them into HE models requires attention to recalibra-
tion and adjustment. When data are available, recalibrating 
prediction models is important if the cohort of deriving 
prediction models differs from that of the application at 
hand in a HE model. For example, UKPDS-OM2 poorly 
predicted the CANVAS program outcomes, but recalibrat-
ing intercepts and refitting the coefficients, while preserv-
ing the UKPDS-OM2 structure, substantially improved the 
fit [49]. That is, the recalibration of the prediction models 
based on available data or characteristics to the setting 
of interest involves adjusting the intercept (for logistic 
regression models) or the baseline survival function (for 
survival regression models) and adjusting regression coef-
ficients for prediction models [24, 50–52]. Furthermore, 
especially when data for recalibration are unavailable, 
applying different sets of prediction models in HE mod-
els for the same outcome might help to overcome differ-
ences between populations. The weighted model averaging 
approach [53] could be applied to summarize multiple pre-
dictions. Alternatively, different prediction models could 
inform best-case or worst-case risk predictions and enable 
quantifying the structural uncertainty caused by prediction 
model choice [54–56]. This would inform HE model users 
better than a single prediction model.

Interdependency is increasingly incorporated when 
combining prediction models in HE models, but the order 
problem currently shows only four solutions: random 

ordering, the sunflower method, using lagged events or 
using a predefined order. Random ordering is the most 
common approach for recent HE models in T2D. Despite 
its advantage of simplicity, it might ignore potential bio-
logically more plausible sequences of T2D complications. 
Alternative approaches therefore deserve further investiga-
tion, and we recommended to use them in different study 
designs accordingly and compare results to random order-
ing, to check which works best:

1. When the HE model is defined in continuous time: Use 
the vertical modeling approach [57, 58], as the continu-
ous-time version of the sunflower method in the statis-
tical analysis to derive prediction models. Both meth-
ods decompose the joint probability by looking first at 
the time of the event and then its cause at the time of 
failure based on observable quantities, such as relative 
cause-specific hazards [16, 57, 58]. However, vertical 
modeling is a continuous-time model that integrates 
time-proportional hazards and logistic regression with 
covariates [57, 58]. The sunflower method is a discrete-
time method that compares the estimated time-related 
incidence rate to the relative event frequency [16].

2. When the HE model is defined in discrete time, and 
the event progression is moderate during one cycle: 
Use linked-equations with a time-lagging structure to 
minimize the effects of endogeneity, like this has been 
applied in HE models of chronic obstructive pulmonary 
disease [59].

3. When pathology and an estimation of the sequence of 
events are of interest: Use directed acyclic graphs [60, 
61] or the network approach [62] which unravel the 
pathological sequence of complications to find a causal 
diagram to guide interdependencies.

4. When running time is not a major concern, the most 
straightforward method is to reduce the cycle length (to, 
e.g., monthly cycles). As all health statuses will then be 
more frequently updated, the bias introduced by order-
ing will be reduced [15].

The distinct methods of treatment effect integration we 
identified (either by the change of risk factors or dummy 
variables) may influence what sources of evidence can be 
handled. Treatment effects as indicated by risk factors, could 
use effect estimates from either randomized control trials or 
real-world evidence, and enable relatively straightforward 
updates of such effects. However, they risk underestimat-
ing effects that run via routes other than risk factor levels. 
For example, the effect of sodium-glucose cotransporter-2 
inhibitors on the risk of cardiovascular complications may 
be underestimated when modeled based on risk factor lev-
els alone, and trial-observed hazard ratios may provide the 
best fit [63]. Therefore, we recommend future HE models 
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to adopt a hybrid approach which supplement surrogate risk 
factors with directly observed event rate changes [64], by 
incorporating both event rate changes resulting from treat-
ment-induced risk-factor-level changes through prediction 
models and direct event rate changes indicated by direct 
evidence from observations (e.g., hazard ratios from trials). 
Of note, double counting should be avoided by estimating 
the gap between the risk-factor induced and observed event 
rate changes, and adjusting estimated to observed event rate 
changes for the trial follow-up period only. Any assumptions 
regarding treatment effects beyond the trial follow-up period 
should be clearly and transparently reported [65].

Treatment switches were modeled using a transition 
matrix or threshold-levels of risk factors. However, switches 
might also be triggered by events (e.g., CVD) regardless of 
past medication [66]. Therefore, future studies might con-
sider treatment switches triggered by events or tracker vari-
ables. Furthermore, many HE models did not adequately 
integrate treatment compliance and persistence, which poten-
tially affects the estimated cost-effectiveness of treatment. 
Future studies might incorporate compliance by establishing 
rates of disease progression (e.g., transition probabilities) or 
risk factor levels as functions of individual compliance [67].

HE models are becoming increasingly complicated and 
have integrated more interdependent prediction models, so 
transparency has become more difficult and important to 
achieve. Although the continuous-time model, Archimedes, 
was successfully validated with 18 trials (correlation = 0.99) 
[68], it has been criticized because of its high complexity and 
low transparency [37], indicating the necessity of balancing 
transparency and complexity when incorporating prediction 
models. Although there are reporting and transparency guide-
lines or checklists for HE models [69], prediction models 
[70], and diabetes modeling in particular [65], these guide-
lines neglect aspects valuable in estimating prediction models 
with the purpose of subsequently using them in HEs. These 
aspects include the order and interdependency of prediction 
models (i.e., how to order the interdependent prediction mod-
els to reflect causal relations of diabetes complications). The 
Diabetes Modelling Input Checklist [65] might be applied to 
improve model transparency. This requires clearly describing 
the assumption of treatment effect and the source of the risk 
equations for the model. Additionally, reporting the method 
of integrating prediction models and possible recalibration 
might be helpful. Furthermore, attending networks, such as 
the Mount Hood Diabetes Challenge Network; maintaining 
model registries; and reporting results from reference case 
simulations will improve transparency and confidence in 
models and ultimately improve decision-making [71].

Despite the study’s strengths, it has limitations. First, 
only one reviewer screened searches and selected papers. 
However, compared to other reviews, we did not miss any 
models to the best of our knowledge. Second, contrary to 

other reviews, we did not assess HE models’ quality but 
rather focused on the methodology. To get overview of all 
methods and prediction models applied, we did not restrict 
the time of publishing or the HE model’s validity. Most HE 
models we investigated were validated internally and exter-
nally with a satisfactory quality [7, 20, 37]. Previous studies 
could be consulted if the validity [7, 20, 37], quality [7, 20, 
37], and suitability [20] of T2D HE models are the primary 
areas of interest. Finally, we could not identify an existing 
categorization of methods to combine prediction models into 
HE models and hence had to use our own terminology.

In conclusion, descriptions of prediction model integra-
tion methods in HE models tend to be ambiguous, while 
methods used to combine them seemed somewhat out-
dated, creating the need for clarification and improvement. 
We sought to mitigate this need by addressing the gap in 
assessing how prediction models that calculate complica-
tion risks are incorporated in T2D HE models. Currently, 
an increasing number of T2D HE models are being devel-
oped and updated for a wide range of countries, popula-
tions, complications, treatments, and indicators, enhancing 
the need for proper integration of prediction models. Thus, 
more attention should be focused on the methodology of 
choosing, adjusting, and ordering prediction models and the 
transparency of these approaches.
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