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Abstract
Aims Valid health economic models are essential to inform the adoption and reimbursement of therapies for diabetes mellitus. 
Often existing health economic models are applied in other countries and settings than those where they were developed. 
This practice requires assessing the transferability of a model developed from one setting to another. We evaluate the trans-
ferability of the MICADO model, developed for the Dutch 2007 setting, in two different settings using a range of adjustment 
steps. MICADO predicts micro- and macrovascular events at the population level.
Methods MICADO simulation results were compared to observed events in an Italian 2000–2015 cohort (Casale Monfer-
rato Survey [CMS]) and in a Dutch 2008–2019 (Hoorn Diabetes Care Center [DCS]) cohort after adjusting the demographic 
characteristics. Additional adjustments were performed to: (1) risk factors prevalence at baseline, (2) prevalence of com-
plications, and (3) all-cause mortality risks by age and sex. Model validity was assessed by mean average percentage error 
(MAPE) of cumulative incidences over 10 years of follow-up, where lower values mean better accuracy.
Results For mortality, MAPE was lower for CMS compared to DCS (0.38 vs. 0.70 following demographic adjustment) and 
adjustment step 3 improved it to 0.20 in CMS, whereas step 2 showed best results in DCS (0.65). MAPE for heart failure 
and stroke in DCS were 0.11 and 0.22, respectively, while for CMS was 0.42 and 0.41.
Conclusions The transferability of the MICADO model varied by event and per cohort. Additional adjustments improved 
prediction of events for MICADO. To ensure a valid model in a new setting it is imperative to assess the impact of adjust-
ments in terms of model accuracy, even when this involves the same country, but a new time period.
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Introduction

The international diabetes federation (IDF) estimated that 
the number of adults (aged 20–79 years) with diabetes 
will increase from 463 million in 2019 to 700 million in 
2045 [1]. Preventing diabetes complications through effec-
tive and cost-effective care is therefore an important task 
of health policy makers [2]. Health economic decision 
models are used to inform health policy decision making 
concerning diabetes management. These models allow to 
simulate the natural history of disease and translate the 
impact of treatments from short-term outcomes as meas-
ured in experimental studies to decision-relevant outcomes 
such as (quality-adjusted) life expectancy [3]. Such models 
are usually initially developed for a specific jurisdiction, 
usually a country. Furthermore, the use of input data from 
a certain time period implies a certain base year. How-
ever, subsequent model applications may require transfer 
to other settings and time periods. Diabetes health eco-
nomic decision models are mainly used to estimate the 
cost-effectiveness of treatments. Several health economic 
decision models of diabetes have been developed and vali-
dated in the past decades [2], including MICADO (Mod-
eling Integrated Care for Diabetes based on Observational 
data), which was developed for the Netherlands.

The MICADO model projects the prevalence and effect 
of both micro- and macrovascular complications in popu-
lations with diabetes. This model was developed to reflect 
the diabetes population in the Netherlands in 2007, and 
has been validated both internally and externally [3]. This 
model participated in several Mount Hood Challenges for 
cross-validation [4]. The structure of MICADO was based 
on the Dutch Chronic Disease Model [5].

It is common practice to transfer health economic mod-
els to the setting of relevance to the decision-maker when 
evaluating new treatments in that setting. In such cases, 
decision-makers want to know if a model is valid for use 
in their own country and time period, and whether it needs 
to be adjusted to achieve this. Assessing and enhancing 
the transferability of health economic decision models 
is challenging [6, 7]. Health economic models comprise 
several correlated parameters and simulate a variety of 
outcomes, from event-specific rates to (quality-adjusted) 
life expectancy. Some deliberate examples of health eco-
nomic models being transferred to a new setting have been 
published [8, 9], while many more exist, usually as part 
of health technology assessment dossiers. However, previ-
ous studies rarely assessed the validity of the transferred 
model predictions and often focused on producing cost-
effectiveness results in the new setting, without paying 
much attention to revalidating the transferred model in its 
new setting. Most often, adjustments focus on replicating 

the demographic characteristics of the new setting, as well 
as using country-specific utilities and costs. This lack of 
explicit attention for re-validating a transferred model and 
assessing more fully its transferability may relate to the 
rather qualitative approach taken by most transferability 
tools.

In this paper, we evaluate the transferability of the diabe-
tes simulation part of MICADO to (1) a more contemporary 
Dutch setting and (2) an Italian setting by explicit and elabo-
rate validation against empirical data. We aim to assess its 
transferability in an objective way and infer guidance regard-
ing the adjustment steps needed for any health economic 
decision model of diabetes to be transferred to a new setting.

Methods

We assessed the transferability by re-validating the 
MICADO model using a Dutch [10] (Hoorn Diabetes Care 
System [DCS]) and an Italian [11, 12] (Casale Monferrato 
Survey [CMS]) diabetes cohort. Existing transferability 
checklists were scrutinized to guide our adjustment steps. 
The characteristics of each cohort at baseline are presented 
in Table 1. Details on data selection and imputation are pre-
sented in Supplementary Material (see sections “Data selec-
tion” and “Missing values”). Model results were compared 
to empirical observations to assess the validity of model 
transfer and the additional value of adjustment steps.

Table 1  Characteristics of two study cohorts, at baseline

CMS Casale monferrato, DCS Hoorn diabetes care system, BMI body 
mass index, HbA1c glycated hemoglobin, LDL low-density lipopro-
teins, HDL high-density lipoproteins, SD standard deviation, MI myo-
cardial infarction, CHF chronic heart failure

Characteristic CMS (Italian) DCS (Dutch)

N 1931 5188
Male (%) 48.9 55.6
Mean (SD) age (years) 67.8 (10.3) 64.8 (11.1)
Mean (SD) diabetes duration (years) 10.9 (8.0) 6.8 (5.9)
Mean (SD) BMI (kg/m2) 28.5 (5.0) 30.3 (5.5)
Mean (SD) HbA1c (mmol/mol) 53 (19) 50 (11)
Mean (SD) HbA1c (%) 7.0 (1.7) 6.7 (1.0)
Current smoker (%) 14.9 18.6
Mean (SD) HDL (mmol/L) 1.4 (0.4) 1.2 (0.3)
Mean (SD) LDL (mmol/L) 3.3 (0.9) 2.6 (0.9)
Mean total cholesterol (SD), (mmol/L) 4.8 (1.0) 4.6 (1.3)
Mean (SD) systolic blood pressure 

(mmHg)
146.1 (16.4) 142.1 (20.1)

History of MI (%) 7.9 7.7
History of stroke (%) 6.7 6.0
History of CHF (%) 1.9 2.7
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The MICADO model

MICADO is a state-transition model with a cycle length of 
one year. The structure of the model is based on the multi-
state life table method [3, 13]. The transition rates hence 
depend on age category, sex, and category of HbA1c-level, 
as well as on further risk factors by categories (smoking sta-
tus; Body Mass Index, BMI; systolic blood pressure, SBP; 
and total cholesterol). Risks of cardiovascular complications 
in diabetes were modeled using age, sex, and risk factor, 
that also vary depending on pre-existing events, which were 
derived from a literature review. The detailed structure of the 
model has been published previously [14, 15]. Based on the 
risk factors and pre-existing events, the model simulates at 
the population level the incidence and prevalence of micro-
vascular (diabetic foot, nephropathy and retinopathy) and 
macrovascular (myocardial infarction [MI], chronic heart 
failure [CHF] and stroke) diabetes-related complications, 
and provides estimates for all-cause mortality (by age and 
sex), complication-related mortality, costs of complications, 
and QALYs. In the current study, we focused on macrovas-
cular events and all-cause mortality. We report more details 
on MICADO inputs in Supplementary Materials (see section 
“Input data into MICADO”).

Selection of transferability items

A previous review identified seven unique checklists, flow-
charts, criteria and tools to assess the geographic transfer-
ability of health technology assessments [16]. We reviewed 
the seven transferability checklists and tools for items refer-
ring specifically to the disease simulation part of decision 
models [16]. Common across the checklists, is the reliance 
on expert opinion to assess the transferability of a model and 
the need for any adjustments.

The transfer items identified in the checklists, concern-
ing decision models, were as follows: age and sex, health 
status and severity of disease, life expectancy, complica-
tion rates, socio-economic and educational status. Based 
on these transfer items, MICADO met the criteria of being 
capable of transfer across different settings. Hence, to trans-
fer MICADO, we adjusted the model for each of these items 

in discrete steps to the CMS and DCS settings (see Sup-
plementary material, section “Assessing transferability of 
MICADO” for more detail). For comparison, our base case 
adjustment reflects a minimal adjustment, consisting of 
using the demographic characteristics of the new setting. We 
then evaluated the impact of each additional adjustment step 
(see Table 2) on the accuracy/validity of the model by com-
paring outcome predictions to actual observed events over 
time. The main reason for such order was that the complex-
ity of model would increase by each step and needs more 
data for adjusting the model. The adjustments started with 
adjusting demography (base case) and ended with adjusting 
mortality rate based on age and sex (adjustment step 3).

Outcomes to be validated

Our analysis focused on the incidence of macrovascular 
diabetes-related outcomes (MI, CHF and stroke) and all-
cause mortality. The macrovascular outcomes were defined 
according to the International Classification Codes (ICD9 
and ICD10) listed in Table S5. All-cause mortality was 
obtained from national death registries in each country.

Model validity and sensitivity analyses

Model validity was performed by comparing MICADO pre-
dictions with the mean and 95% CI of the observed cumu-
lative incidences in each cohort at 10 years of follow-up. 
MICADO was judged to be well-calibrated if the model sim-
ulated cumulative event rates were within the 95% CI of the 
observed cumulative incidence [17, 18]. We also calculated 
the mean absolute percentage error (MAPE), the mean abso-
lute error (MAE) and the root-mean-squared error (RMSE) 
to get a quantitative estimate of the calibration and compare 
the fit of each adjustment step [19]. Setting a threshold for 
these statistics was not possible, because there is no a global 
agreement on which value should be considered as a good 
fit. Instead, we compared all statistics (MAPE, MAE and 
RSME) for every outcome following each adjustment step. 
The adjustment that produced the lowest values was judged 
to have the best fit for a given outcome. For more details see 

Table 2  Model adjustment steps

BMI Body mass index, TC total cholesterol, SBP systolic blood pressure, HbA1c glycated hemoglobin, MI myocardial infarction, CHF chronic 
heart failure

Adjustment step Adjustment

Base case Adjusted age and sex of the modeled population (demography)
1 Adjusted demography and distribution of risk factors at baseline (BMI, smoking, TC, SBP and HbA1c)
2 Adjusted demography, risk factors and prevalence of pre-existing events at baseline (MI, CHF and stroke)
3 Adjusted demography, risk factors, events at baseline, and the general population mortality rate by age and sex
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the sections “Model validity” and “Sensitivity analyses” in 
Supplementary Materials.

Results

Model outcomes per adjustment step 
and calibration in the large

At 10 years of follow-up, the overall mortality was higher in 
the CMS cohort compared to DCS (40% vs. 26%) (Fig. 1). 
The three cardiovascular outcomes (MI, CHF and stroke) 
were also higher in the CMS cohort compared to DCS dur-
ing the same period.

Figure 2 shows the predicted and observed cumulative 
incidence of each outcome for each adjustment step over 
10 years of follow-up in both cohorts, starting with base 
case adjustments and adding up to 3 adjustments to the target 
cohort. In all adjustment steps, for CMS, MICADO showed 
a good prediction for mortality, but underpredicted stroke 
and CHF while overpredicting MI. In contrast, for DCS, 
MICADO showed a good prediction for CHF and stroke but 
overpredicted mortality and MI.

MICADO overpredicted mortality in the DCS cohort and 
the impact of different adjustments was limited with model 
predictions outside the 95% CI. For CMS, further adjust-
ments to the base case, resulted in a decrease in mortality 
rate (42 vs. 38% for the base case and step 3 adjustments), 
and all of predicted mortalities were in the 95% CI.

At 10 years, the incidence of MI was 7% (95%CI: 6–8%) 
and 3% (95%CI: 2–3%) in the CMS and DCS cohorts, 

respectively. However, MICADO predicted MI to be 11% 
in both cohorts. The predicted event rate of MI increased 
with more adjustments (14% to 15%) resulting in more over-
prediction in both cohorts. MICADO underpredicted CHF 
and stroke in CMS, while in DCS the predicted values were 
close to observed for CHF and for stroke they were within 
the 95% CI (see Tables S7-S10).

The largest variation in MAPE between different adjust-
ment steps was in MI for both cohorts (0.77–1.27 in CMS 
and 2.58–3.45 in DCS for the base case and step 3 adjust-
ments, respectively). For the other outcomes for different 
adjustments, MAPE varied at most from 0.11 to 0.70.

Impact of adjustments on model transferability

Table 3 lists which adjustment step resulted in the lowest 
values of MAPE (Table S11 shows for MAE and RMSE) 
by outcome and cohort over a 10 year time horizon com-
pared to the base case. For CMS, adjustment step 3 improved 
MAPE for mortality by 48% (observed versus prediction: 
40 vs. 38%). For DCS, the highest MAPE improvement was 
8% for the mortality, following adjustment step 2 (observed 
versus prediction: 26 vs. 35%). For both cohorts, additional 
adjustments did not improve MAPE for MI compared to the 
base case adjustment. In CMS, adjustment step 2 resulted 
in the lowest MAPE for CHF (0.42), while adjustment 
step 1 worked best for stroke (0.41), improving model fit 
by 4% and 3%, respectively, compared to base case adjust-
ment. In DCS, base case adjustment resulted in the lowest 
MAPE for CHF (0.11), while adjustment step 2 was best 
for stroke (MAPE: 0.22). For the results of subgroups and 

Fig. 1  The observed versus pre-
dicted at year 10. CMS: Casale 
Monferrato Survey; DCS: 
Hoorn Diabetes Care System; 
MI: Myocardial infarction; 
CHF: Chronic heart failure
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the sensitivity analyses please see Supplementary Materi-
als sections “Results of subgroup analyses” and “Results of 
sensitivity analyses.”

Discussion

It is important to assess the transferability of diabetes simu-
lation models and validate transferred models before using 
them in different settings with confidence. After adjusting 
for demography, the MICADO model predicted mortality 
rates close to the observed values for the Italian cohort but 
it overestimated the rates of MI and underestimated the rates 
of stroke and CHF. In the Dutch cohort, the MICADO model 
overestimated the mortality and MI rates but showed a good 
fit for CHF and stroke. Additional adjustments improved the 
model fit, pointing at inadequacy of adjusting demographic 

characteristics only, without proper validation against empir-
ical data from the new setting.

The MICADO model was developed based on Dutch 
data on mortality rates by age and sex, and the prevalence 
of events in 2007 [14]. While the Italian CMS cohort con-
sisted of the individuals followed from 2000 to 2017, the 
Dutch DCS cohort had a follow-up from 2008 till 2019. In 
regression models, cross-validation is usually performed 
in regression analysis or prediction modeling studies to 
reduce overfitting. However, in the current study, we did 
not perform a regression analysis or fit a prediction model. 
Rather we applied an existing health economic simula-
tion model (MICADO) to two independent cohorts. Since 
MICADO was not developed based on the two cohorts, 
overfitting is not relevant here. Rather, each adjustment 
step made while applying the model to the independent 
cohorts can be seen as external validation. The varia-
tion in the model accuracy concerning mortality across 

Fig. 2  Observed events vs. the 
predicted events by model in 
different adjustment step. CMS: 
Casale Monferrato Survey; 
DCS: Hoorn Diabetes Care Sys-
tem; MI: Myocardial infarction; 
CHF: Chronic heart failure
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the cohorts might be explained by differences in the time 
periods covered by the model and cohorts. Moreover, the 
observed mortality rate of the Dutch diabetes cohort was 
almost 30% lower than the Italian cohort, suggesting that 
the Dutch cohort consisted of a better controlled diabe-
tes population. In a previous study which compared the 
diabetes type 2 treatment across European countries, they 
reported that the guidelines for intensification of treatment 
(by adding a sulfonylurea) in Italy are less strict than the 
Netherlands [20]. Additionally, the diabetes care program 
in the DCS was structured and centralized with annual 
elaborate check-ups by a diabetes nurse [10].

Our findings show that model adjustments recommended 
in transferability checklists have limited impact in model 
predictions and the overall fit of MICADO across the two 
cohorts. For MI, more extensive adjustments even led to an 
increase in the MAPE. No single adjustment was clearly the 
best performing in both settings and across all outcomes. 
The most complex adjustments did not result necessarily 
in higher accuracy. However, the MICADO model met the 
checklist criteria for a transferable model and we were able 
to make several of the recommended adjustments to new 
settings. This highlights the potential limitations of basing 
the criteria in transferability checklists on expert opinion 
without formal assessments of model accuracy in the new 
setting. Validation against empirical data is an essential step 
in the transfer of a health economic diabetes model to a new 
setting. As pointed out in our study, validation and uncer-
tainty were among the most important aspects of the ISPOR 
modeling good research practice [21]. To do so, we followed 
the common practice to measure the relative difference in 
the predicted against observed cumulative point estimates 
[18, 22].

Comparing the transferability of the MICADO model 
with previous transferability studies in type 2 diabetes mod-
eling is challenging. We identified two studies, one assessing 
the transferability of the Building, Relating, Assessing, and 
Validating Outcomes (BRAVO) risk engine[23] (a US-based 
model) and another assessing the UKPDS Outcomes Model 
(UKPDS-OM) [24] (a UK-based model). The BRAVO 
model showed significant improvement of prediction accu-
racy for different global settings (the United States, Europe, 
Latin America, Africa, Asia) after re-calibration of the haz-
ard ratios of MI, stroke, CHF, angina, revascularization and 
all-cause mortality [25]. The UKPDS-OM was transferred 
to an Australian population by re-estimating the model equa-
tions for predicting mortality of diabetes-related complica-
tions using a large local diabetes dataset. Similar to BRAVO, 
they reported a significant improvement on model fit follow-
ing re-calibration [26]. Similar to our findings, these studies 
concluded that adjusting the model for the cohort-specific 
characteristics further improved the prediction accuracy and 
the validation of outcomes is required.Ta
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The DCS and CMS cohorts were used previously to 
assess the validity of version 2 of the UKPDS-OM [27]. The 
approach used in that work, coincided with our adjustment 
step 2 (i.e., adjusting for demography, risk factors and pre-
existing events). However, no adjustment of mortality was 
performed, i.e., our step 3. This was due to the complexity 
of the UKPDS-OM, which uses 15 different connected pre-
diction functions to estimate outcomes, including all-cause 
mortality [28]. Although MICADO and UKPD-OM have a 
different structure and were built using different input data, 
the performance of these two models on the Italian CMS 
and the Dutch DCS cohorts were quite similar. Both models 
predicted a mortality rate in CMS close to observed values 
but for DCS, they overestimated mortality. MI was overes-
timated by both models in these two cohorts. Both models 
predicted CHF and stroke in DCS close to observed values 
but overestimated them for CMS. This provides further sup-
port to the period effects as a partial explanation for poor 
performance of both models regarding MI and mortality. 
Also, the difference between population characteristics in 
Italy and the Netherlands might be another explanation (such 
as higher mortality rate in the Italian cohort).

For single outcome/equation prediction models, re-cali-
bration of intercepts and the coefficients are routinely per-
formed after transfer to a new setting [29]. However, re-cali-
bration of decision models is more complex as their baseline 
risk of events is not informed by a single parameter, like the 
intercept or baseline hazard in a single risk prediction model. 
Many current applications only partially adjust population 
characteristics and seldom validate the decision model in 
the new setting. Re-calibration is a complex task requiring 
adjusting parameters across several interconnected equa-
tions and checking their joint impact on model predictions. 
Hence, we did not perform re-calibration, i.e., adjustment/
re-estimation of risk equations, but rather adapted MICADO 
by changing the characteristics of the simulated population 
to match those of the validation cohort as well as updating 
general mortality rates to those more suitable for each vali-
dation setting. However, the adjustment of individual risk 
equations may be justifiable when using diabetes models to 
simulate the risks of MI, CHF and stroke in contemporary 
cohorts similar to the CMS or DCS.

Our work is not without limitations. We did not adjust 
relative risks of diabetic complications and risk factors in 
our adjustment steps. For MICADO, these model param-
eters were derived from reviews of international literature 
[30]. Furthermore, we did not adjust for the incidence and 
case fatality risk of complications, and the transitions of 
risk factors. The reasons for not doing so were absence of 
data in the CMS cohort. However, our sensitivity analyses 
showed that different transition rates had little impact on 
the model predictions. Socio-economic status was another 
parameter recommended for adjustment in transferability 

checklists. However, the MICADO model only allowed for 
adjustment for patient’s age, sex, risk factor levels and pre-
existing events. Finally, the MICADO model is a cohort 
level state-transition model while many diabetes simula-
tion models consist of patient-level state transition models, 
or discrete event simulation models [19, 24, 31, 32]. Our 
findings and adjustment steps may be more relevant to 
other cohort models [33–39], than to patient level models.

Strengths of this study were the use of two relatively 
large cohorts from different settings allowing evaluating 
transferability of a Dutch model to a setting outside the 
Netherlands, covering the same period as the original 
model, and a more contemporary Dutch setting. Another 
strength is that the adjustments needed to transfer the 
model to the new settings, were systematically performed 
in a stepwise way, assessing performance of the model for 
each adjustment step.

In conclusion, the MICADO model showed good trans-
ferability for mortality in the Italian CMS cohort, and for 
CHF and stroke in the Dutch DCS cohort. We showed that 
additional adjustments, especially regarding the baseline dis-
tribution of risk factors in the population, improved the pre-
diction accuracy of mortality, MI and stroke for MICADO. 
However, our findings suggest that the most complex adjust-
ment steps did not always result in the most accurate model. 
Therefore, simply performing the model adjustments as sug-
gested in transferability checklists do not necessarily trans-
late into a valid model in a new setting. This highlights the 
need for model validation using observed data rather than 
relying solely on expert opinion to assess its transferability. 
After this has been established, additional adjustments on 
other model elements needed for economic evaluations such 
as costs and utilities can be performed.
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