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Abstract
Aims  Interleukin-9 (IL-9) attenuates podocyte injury in experimental kidney disease, but its role in diabetic nephropathy is 
unknown. We sought to relate urinary IL-9 levels to the release of podocyte-derived extracellular vesicles (EVs) in youth 
with type 1 diabetes. We related urinary IL-9 levels to clinical variables and studied interactions between urinary IL-9, vas-
cular endothelial growth factor (VEGF), tumor necrosis factor alpha (TNFα) and interleukin-6 (IL-6) on urinary albumin/
creatinine ratio (ACR) a functional measure of podocyte injury.
Methods  We performed an analysis of urine samples and clinical data from a cohort of youth with type 1 diabetes (n = 53). 
Cytokines were measured using a Luminex platform (Eve Technologies), and nanoscale flow cytometry was employed to 
quantify urinary podocyte-derived EVs. All urinary measures were normalized to urinary creatinine.
Results  Mean age was 14.7 ± 1.6 years, and the mean time from diagnosis was 6.7 ± 2.9 years. Mean HbA1c was 
70.3 ± 13.9 mmol/mol, mean ACR was 1.3 ± 1.9 mg/mmol, and mean eGFR was 140.3 ± 32.6 ml/min/1.73 m2. IL-9 was 
inversely related to podocyte EVs (r = − 0.56, p = 0.003). IL-9 was also inversely related to blood glucose, HbA1C and 
eGFR (r = − 0.44, p = 0.002; r = − 0.41, p = 0.003; r = − 0.49, p < 0.001, respectively) and positively correlated with systolic 
BP (r = 0.30, p = 0.04). There was a significant interaction between IL-9, EVs and ACR (p = 0.0143), and the relationship 
between IL-9 and ACR depended on VEGF (p = 0.0083), TNFα (p = 0.0231) and IL-6 levels (p = 0.0178).
Conclusions  IL-9 is associated with podocyte injury in early type 1 diabetes, and there are complex interactions between 
urinary IL-9, inflammatory cytokines and ACR.
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Introduction

Interleukin-9 (IL-9) is a T cell-derived cytokine, generally 
felt to be pro-inflammatory, which has been implicated 
in the regulation of both innate and adaptive immunity. 
[1, 2] Clinically, elevated serum IL-9 levels have been 
observed in a number of diseases including systemic lupus 
erythematosus [3], asthma [4] and coronary artery dis-
ease [5]. In a recent study of experimental murine kidney 
disease, Xiong and coworkers reported that intra-renal 
IL-9 attenuated podocyte injury in mice with adriamycin-
induced nephropathy [6]. IL-9 knockout mice exhibited 
more podocyte injury and loss of podocyte number in 
comparison with wildtype mice [6]. The impact of IL-9 on 
podocyte injury in human kidney disease remains largely 
unexplored.

Mesangial matrix expansion is a dominant feature of 
early kidney disease in type 1 diabetes mellitus (T1D), 
particularly in relationship to hyperfiltration and early 
declines in glomerular filtration rate (GFR) [7]. Ultras-
tructural abnormalities in glomerular podocytes also occur 
in T1D although the changes are subtle, especially in early 
kidney disease [8]. A decrease in glomerular podocyte 
number occurs in the Akita mouse, an experimental model 
of T1D, and the decrease precedes any rise in the urinary 
albumin excretion rate [9]. These findings suggest that 
early podocyte injury is an important feature of diabetic 
kidney disease and that podocyte injury may contribute to 
functional changes like a rise in albumin excretion. Identi-
fying biomarkers that correlate with early podocyte injury 
may help risk stratify patients early in the course of their 
disease.

Extracellular vesicles (EVs), including microparticles, 
exosomes, and apoptotic bodies, are cell-membrane-
derived vesicles released by a variety of cell types in 
response to injury [10–12]. Cultured podocytes release 
EVs when subjected to mechanical strain or high glucose 
concentrations [13]. In accord with these in vitro obser-
vations, podocyte-derived EVs are also present in the 
urine of diabetic mice, and we found increased podocyte-
derived EVs in the urine of adults with T1D [13, 14]. More 
recently, we reported that there was a significant correla-
tion between podocyte-derived EVs and both blood glu-
cose levels and eGFR in youth with TID [15]. However, 
the relationship between podocyte-derived EVs and IL-9 
in T1D is unknown.

Accordingly, our aim in this exploratory study was to 
examine the relationship between urinary IL-9 and urinary 
podocyte-derived EVs in a well-characterized cohort of 
youth with T1D. Our hypothesis was that higher levels 
of IL-9 would be associated with lower podocyte-derived 
EV numbers in the urine, reflecting less podocyte injury 

and a protective effect of IL-9. We evaluated the relation-
ships between IL-9 and HbA1C, blood glucose (BG), 
eGFR and blood pressure (BP). We hypothesized there 
would be negative correlations with each, supporting a 
reno-protective effect. In an exploratory analysis, we also 
studied interactions between IL-9, the albumin/creatinine 
ratio (ACR) and urinary cytokines linked to the progres-
sion of diabetic nephropathy: vascular endothelial growth 
factor (VEGF), interleukin-6 (IL-6) and tumor necrosis 
factor alpha (TNFα). [16–18].

Methods

Ethical statement and cohort description

We examined urine samples from a Cohort created from 
Canadian participants recruited from the observational arm 
of the Adolescent Type 1 Diabetes Cardio-Renal Interven-
tion Trial (AdDIT) [19]. In brief, eligible individuals were 
10 to 16 years of age with a diagnosis of Type 1 diabetes. 
The size of the cohort was based on the exploratory analy-
sis that showed significant relationships between EVs and 
the clinical variables BG and eGFR [15]. Exclusion criteria 
included other forms of diabetes, pregnancy or unwilling-
ness to adhere to contraceptive advice and pregnancy testing, 
severe hyperlipidemia or a family history suggesting famil-
ial hypercholesterolemia, the presence of coexisting condi-
tions (excluding treated hypothyroidism and celiac disease), 
proliferative retinopathy, and the presence of non-diabetic 
renal disease. Study participants and their guardians gave 
informed consent. Studies were approved by The Hospital 
for Sick Children, Research Ethics Board at the University 
of Toronto (ID# 1,000,012,240).

Serum and urine samples

Fasting first morning midstream urine samples were col-
lected for all participants in the cohort. Urine samples were 
centrifuged at 2000 g at 4 °C for 6 min before storage in 
−80 °C. All analyses were conducted from a single urine 
sample from each participant. A single venous blood sam-
ple was also taken at the time of urine collection for the 
analysis of blood glucose levels and HbA1c. HbA1c was 
measured by enzymatic assay (Architect Analyzer; Abbott 
Diagnostics, USA).

Urinary cytokines

Urinary levels of cytokines/chemokines were measured 
with Cytokine/Chemokine Panel Luminex Assay [19] from 
the urine samples. The urine samples were centrifuged at 
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1500 g for 15 min, separated into 1 ml aliquots and fro-
zen at − 80 °C. The urine was then thawed at 4 °C one day 
prior to use [19]. We limited our cytokine/chemokine analy-
sis to IL-9, VEGF, TNFα and IL-6 to maintain statistical 
power. The accuracy and precision of the urinary cytokine/
chemokine assay is available from the vendor at http://​www.​
milli​pore.​com/​userg​uides/​tech1/​proto_​mpxhc​yto-​60k. We 
have previously published the detection limits of the assays. 
[20].

Podocyte extracellular vesicles

Quantification of podocyte EVs was performed using our 
previously described nanoscale flow cytometry approach 
[13–15]. Briefly, stored urine samples were thawed, and 
EVs were isolated by sequential centrifugation first 2500 × g 
for 10 min at 4 °C, followed by 20,000 × g for 20 min at 
4 °C. [9] The pellet was re-suspended in Annexin V Binding 
buffer with Annexin V FITC (1:50, Biolegend, California, 
USA). Podocyte origin was confirmed by co-staining with an 
anti-podoplanin APC-conjugated antibody (1:100, Bioleg-
end, California, USA). Samples were analyzed by nanoscale 
flow cytometry (CytoFLEX S, Beckman Coulter, USA), and 
ApogeeMix beads (Cat. 1493–Apogee Flow Systems, UK) 
were used for size calibration. EVs were defined as particles 
sized between ~ 100–1000 nm. Samples labeled with isotype 
controls, antibodies alone in buffer, and unlabeled samples 
were analyzed as controls. FlowJo ver 7.6.5 was used for 
analysis. Levels of urinary EVs were normalized to urinary 
creatinine levels and podocyte EV levels were expressed as 
number/umolCr.

ACR measurement

ACR was measured in 2 sets of 3 of the collected urine sam-
ples. A normal albumin excretion rate was defined this as an 
ACR < 2.0 mg/mmol [21]. Microalbuminuria was defined as 
an ACR of 2.0 to 20 mg/mmol.

Estimated glomerular filtration rate (eGFR)

eGFR was calculated using the Larsson equation (cysta-
tin C) as previously described [19]. Serum cystatin C was 
measured by a single operator using an immunoassay (Dade 
Behring Diagnostics, Newark, DE, USA) conducted on a 
BN Prospec System nephelometer [19]. Hyperfiltration was 
defined as an eGFR > 135 ml/min/1.73m2. [19].

Blood pressure

BP values were the mean of two separate in-clinic measure-
ments using an automated and validated BP cuff. Normal 
BP, elevated BP, stage one and stage two hypertension were 

defined as per American Academy of Pediatric Guidelines 
[22]. We calculated the BP percentiles using (https://​apps.​
cpeg-​gcep.​net/​BPz_​cpeg/., accessed July 2020). [15].

Statistical analysis

Descriptive statistics were used to describe the clinical char-
acteristics of the sample, including mean and standard devi-
ation for continuous measures, frequency and percentages 
for categorical variables. Spearman correlations were used 
to assess the strength of the association among continuous 
measures. In all parts of the analysis, p values were corrected 
for multiple comparisons using false discovery rate method. 
Our primary outcome of interest was the relationship 
between IL-9 and podocyte EVs. Data were disaggregated 
by sex to confirm the relationship. Secondary outcomes 
included the relationship between IL-9 and BP, glycemic 
control, eGFR and the cytokines VEGF, TNFα and IL-6. We 
then looked for interactions between IL-9, podocyte EVs and 
ACR. Finally, we looked for interactions between IL-9, the 
cytokines VEGF, TNFα and IL-6, and ACR. We log-trans-
formed the continuous measures and used linear regression 
to assess the significance of the interactions.

Results

Clinical characteristics of the study cohort

The mean age was 14.7 ± 1.6 years, and the mean duration 
of time from diagnosis of diabetes was 6.7 ± 2.9 years. There 
were 26 males and 27 females. Ethnicity of the T1D group 
was as follows: 32/53 (60.4%) were white, 6/53 (11.3%) 
were black, 3/53 (5.7%) were South Asian, 4/53 (7.5%) were 
South East Asian, and 8/53 (15.1%) were classified as other. 
HbA1C levels averaged 70.3(8.6%) ± 13.9(3.1%) mmol/mol 
(Table 1), and the average BMI (kg/m2) was 22.1 ± 3.7 kg/
m2. The mean eGFR (Larsson) was 140.3 ± 32.6  ml/
min/1.73m2, and 47% of the cohort exhibited hyperfiltra-
tion. The mean ACR was 1.3 ± 1.9. Only 13% of the cohort 
exhibited an ACR > 2 mg/mmol (Table 1).

Urinary IL‑9 and urinary podocyte extracellular 
vesicles

The median value for the podocyte-derived EVs normalized 
to urinary creatinine (EV/UCr) was 7.88 in the cohort, and 
as we previously reported there was no differences in the 
median urinary EV values between male and female subjects 
[15]. There was a negative correlation between IL-9 and EV 
(r = −0.56, p < 0.0003) such that higher values of IL-9 were 
associated with lower EV shown in Fig. 1A. The relationship 

http://www.millipore.com/userguides/tech1/proto_mpxhcyto-60k
http://www.millipore.com/userguides/tech1/proto_mpxhcyto-60k
https://apps.cpeg-gcep.net/BPz_cpeg/
https://apps.cpeg-gcep.net/BPz_cpeg/
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was similar in female (r = −0.56, p = 0.003) and male sub-
jects (r = −0.58, p = 0.002) as seen in Fig. 1B and C.

Spearman correlation coefficients relating urinary 
IL‑9, clinical variables and the cytokines VEGF, TNFα 
and IL‑6

There was a negative correlation between IL-9 and 
eGFR (r = − 0.49, p < 0.0005) such that higher values of 
eGFR were associated with lower IL-9 levels (Table 2). 
There was a negative correlation between IL-9 and BG 
(r = − 0.44, p < 0.002) such that higher BG values were 
associated with lower IL-9 levels. Similarly, there was a 
negative correlation between IL-9 and HbA1C (r = − 0.41, 
p < 0.004) with higher HbA1C measurements associated 
with lower IL-9 levels. In contrast, there was a positive 
correlation between IL-9 and systolic blood pressure 

Table 1   Clinical characteristics of the study cohort

Values are expressed as mean ± SD for normally distributed variables 
or as median (minimum–maximum) for non-normally distributed. 
Microalbuminuria was defined as ACR > 2 mg/mmol. Hyperfiltration 
was defined as eGFR > 135 ml min/1.73 m2. The fraction of individu-
als with hyperfiltration is a percentage of the total number of subjects. 
DBP diastolic blood pressure; SBP systolic blood pressure

Clinical characteristic Youth with type 1 DM

N = 53
Age(years) 14.7 ± 1.6
Sex, male, N (%) 26 (49)
Ethnicity, N (%)
 White 32 (62.3)
 Black 6 (11.3)
 South Asian 3 (5.7)
 South East Asian 4 (7.5)
 Other 8 (15.1)

Glycated hemoglobin, HbA1c mmol/mol 70.3 ± 13.9
HbA1C % 8.6 ± 3.1
Diabetes duration (years) 6.7 ± 2.9
Body mass index, BMI (kg/m2) 22.1 ± 3.7
Z-score BMI 0.6 ± 1.0
Systolic blood pressure, SBP (mmHg) 114.6 ± 9.6
Diastolic blood pressure, DBP (mmHg) 67.2 ± 6.6
Blood pressure classification N (%)
Normal 35 (63)
Elevated 14 (26.4)
Albumin/creatinine ratio, ACR (mg/mmol) 1.3 ± 1.9
% Microalbuminuria (> 2 mg/mmol) 13.2% (7/53)
Estimated glomerular filtration rate, eGFR 140.3 ± 32.6
% Hyperfiltration > 135 47% (25/53)

Fig. 1   Scatter plots of the relationship between urinary interleukin-9 
(IL-9) and podocyte-derived extracellular vesicles (EVs) in adoles-
cents with T1D: A all subjects (N = 53) (r = −0.55692, p < 0.0003); 
and B females (N = 27) (r = −0.55692, p = 0.0031); and C males 
(N = 26) (r = −0.58154, p = 0.0023)
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(SBP) (r = 0.30, p < 0.04) but not for IL-9 and diastolic 
blood pressure (DBP) (r = 0.05, p = 0.76).

There were positive correlations between IL-9 and 
VEGF (r = 0.72, p < 0.0003), IL-9 and TNFα (r = 0.55, 
p < 0.0003) and IL-9 and IL-6 (r = 0.47, p = 0.001).

Spearman correlation coefficients relating urinary 
IL‑9, EV and ACR​

The correlations between IL-9 and ACR (r = −0.26, 
p = 0.073) and between EV and ACR (r = 0.20, p = 0.16) 
were more modest and did not reach statistical signifi-
cance (Table 3). However, there was a significant interac-
tion between IL-9, EV and ACR (p = 0.0143). As shown in 
Fig. 2A, the relationship between EV and ACR is dependent 
on the IL-9 levels such that the steepness and direction of the 
relationship varies depending on the IL-9 percentile (10th to 
90th) in the cohort. The 3-D plot in Fig. 2B is a visual rep-
resentation of the interaction between these three variables.

Spearman correlation coefficients relating urinary 
IL‑9, urinary VEGF and ACR​

There was a strong positive correlation between IL-9 
and VEGF (r = 0.72, p < 0.001) such that higher values 
of IL-9 were associated with higher values of VEGF 
(Table 3). The modest correlation between VEGF and 
ACR (r = − 0.23, p = 0.13) did not reach statistical sig-
nificance. There was, however, a significant interaction 
between IL-9, VEGF and ACR (p = 0.0083). As shown 

in Fig. 3A, the relationship between IL-9 and ACR is 
dependent on the VEGF levels such that the steepness 
and direction of the relationship varies depending on the 
VEGF percentile (10th to 90th).

Spearman correlation coefficients relating urinary 
IL‑9, urinary TNFα and ACR​

There was a positive correlation between IL-9 and TNFα 
(r = 0.55, p < 0.001), but the correlation between TNFα 
and ACR (r = −0.24, p = 0.13) did not reach statistical 
significance (Table 3). There was a significant interaction 
between IL-9, TNFα and ACR (p = 0.0231). As shown in 
Fig. 3B, the relationship between IL-9 and ACR is also 
dependent on the TNFα levels. Again, the steepness and 
direction of the relationship varies depending on the TNFα 
percentile (10th to 90th).

Table 2   Spearman correlations coefficients for observed relationships 
with urinary interleukin-9

eGFR estimated glomerular filtration rate, ACR​ albumin/creatinine 
ratio, EV extracellular vesicle, VEGF vascular endothelial growth fac-
tor, TNFα tumor necrosis factor alpha, IL-6 interleukin-6

Clinical variable Spearman correlation p value

eGFR − 0.49401 0.0005
Blood glucose − 0.43534 0.0023
ACR​ − 0.2601 0.0752
Systolic blood pressure 0.29846 0.0417
Diastolic blood pressure 0.04467 0.7556
HbA1C − 0.40896 0.0041
Podocyte EV − 0.55692 0.0003
Cytokines
VEGF 0.71701 0.0003
TNFα 0.55391 0.0003
IL-6 0.46874 0.0014

Table 3   Spearman correlations coefficients and the interaction terms 
for three variable analyses with interleukin-9

IL-9 interleukin-9, ACR​ albumin/creatinine ratio, EV extracellular 
vesicle, VEGF vascular endothelial growth factor, TNFα tumor necro-
sis factor alpha, IL-6 interleukin-6

Spearman correlations

Variables Correlation P value

IL-9 and ACR​ − 0.26011 0.0943
Podocyte extracellular vesicle analysis
Podocyte EV and IL-9 − 0.55692 0.0004
Podocyte EV and ACR​ 0.20433 0.1629
Interaction term
IL-9, podocyte EV, ACR​ 0.0143
VEGF analysis
VEGF and IL-9 0.71701 0.0004
VEGF and ACR​ − 0.22874 0.1258
Interaction term
IL-9, VEGF, ACR​ 0.0083
TNFα analysis
TNFα and IL-9 0.55391 0.0004
TNFα and ACR​ − 0.23531 0.1258
Interaction term
IL-9, TNFα, ACR​ 0.0231
IL-6 analysis
IL-6 and IL-9 0.46874 0.0023
IL-6 and ACR​ − 0.09641 0.5099
Interaction term
IL-9, IL-6, ACR​ 0.0178
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Spearman correlation coefficients relating urinary 
IL‑9, urinary IL‑6 and ACR​

There was a positive correlation between IL-9 and IL-6 
(r = 0.47, p = 0.002), but the correlation between IL-6 and 
ACR (r = − 0.10, p = 0.51) did not reach statistical sig-
nificance (Table 3). There was a significant interaction 
between IL-9, IL-6 and ACR (p = 0.018). As shown in 
Fig. 3C, the relationship between IL-9 and ACR is also 
dependent on the IL-6 levels. The steepness and direction 
of the relationship varies depending on the IL-6 percentile 
(10th to 90th).

Discussion

In this study, we sought to characterize relationships between 
IL-9 and early podocyte injury in youth with T1D. The 
rationale was based on recent studies that revealed a protec-
tive effect of IL-9 on glomerular podocyte injury in experi-
mental kidney disease. [6] Our first major observation was 
that there was a negative correlation between urinary IL-9 
and podocyte-derived EVs, a relationship that was similar in 
females and males. Although correlation does not establish 
causation, the current study is the first to relate urinary IL-9 
to measures of glomerular podocyte injury in humans with 
T1D, and the finding is consistent with the hypothesis that 
IL-9 may limit podocyte injury in diabetic subjects, which 
is reflected by the release of EVs into the urine.

We have reported that urinary IL-9 levels are higher in 
adolescents with T1D compared to healthy age-matched 

subjects [23], but there is a paucity of data on urinary levels 
of IL-9 in diabetes. Vasanthakumar and coworkers reported 
that serum levels of IL-9 were lower in adults with type 2 
diabetes and normal kidney function compared to healthy 
subjects [24]. They did find that IL-9 levels increased in par-
ticipants with diabetic kidney disease [24]. Although IL-9 
may limit podocyte injury in early diabetic kidney disease, 
its role in advanced disease is less clear.

Hyperglycemia, hyperfiltration and hypertension are risk 
factors for the onset and progression of diabetic nephropathy 
[25–28]. As part of our exploratory analysis, we therefore 
sought to relate IL-9 to glycemia (using both the blood glu-
cose level at the time of urine collection and HbA1C), eGFR 
and blood pressure. There were negative correlations seen 
between urinary IL-9 with both HbA1C and BG at the time 
of urine collection. We similarly found lower values of IL-9 
were associated with higher values of eGFR. These correla-
tions support the hypothesis that IL-9 is reno-protective. In 
contrast, IL-9 was positively correlated with SBP but not 
with DBP. It is important to note that few of the study par-
ticipants were hypertensive.

Our next major observation involved a functional cor-
relate of podocyte injury, ACR. We discovered that there 
was a significant interaction between IL-9, podocyte-derived 
EVs and ACR. At low levels of urinary IL-9, there is a posi-
tive relationship between EVs and ACR, suggesting that as 
podocyte injury worsens, reflected by increasing EVs, there 
is a rise in the ACR. As IL-9 levels (represented as quintiles 
in Fig. 2A) rise, the association between EVs and ACR flat-
tens, suggesting that urinary levels of IL-9 may change the 
relationship between podocyte injury reflected by EVs and 
ACR.

Fig. 2   Interactions between urinary podocyte-derived extracellular 
vesicles (EVs), interleukin-9 (IL-9) and the albumin/creatinine ratio 
(ACR): A the impact of EVs on the ACR for fixed values of IL-9 
(quintiles). There was a significant interaction between the variables 

(p = 0.0143); and B three-dimensional (3D) representation of the 
relationships between IL-9, EVs and ACR. All values were log-trans-
formed for these analyses
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IL-9 was also strongly correlated with VEGF, TNFα and 
IL-6 (Table 2) all of which have all been previously implicated 
in diabetic nephropathy [16–18]. VEGF is primarily produced 
by podocytes and plays a critical role in maintenance of the 
fenestrated endothelium in the glomerular basement membrane 
[29]. IL-9 may limit podocyte injury and accordingly preserve 
VEGF synthesis. Members of the TNFα superfamily have been 
identified as biomarkers of kidney risk in several clinical stud-
ies of both T1D and type 2 diabetes [18, 30]. IL-6 expression 
is increased in diabetic nephropathy, and levels correlate with 
glomerular basement membrane thickening [17, 31]. Interest-
ingly, both TNFα and IL-6 regulate IL-9 expression, which 
may explain the positive correlation [6, 32, 33].

ACR is a functional outcome of podocyte injury, and 
we found that there were significant interactions between 
IL-9 with VEGF, TNFα, and IL-6 and ACR (Table 3). The 
direction of the relationship between IL-9 and ACR was 
dependent on each of these cytokines (Table 3), and each 
cytokine exhibited a similar pattern. At low levels of VEGF, 
TNFα and IL-6 (10th percentile line in Fig. 3A, B, C), there 
is a negative relationship between IL-9 and ACR. At high 
levels (90th percentile line in Fig. 3A, B, C), there is a posi-
tive relationship between IL-9 and ACR. This suggests that 
kidney inflammation impacts the protective effect of IL-9 
on podocyte function.

The strengths of this study include evaluation of a well-
characterized cohort of adolescents with T1D with standard-
ized collections and analysis of bio-specimens. However, there 
are also some important limitations. First, we did not identify 
the source of IL-9 in the urine. IL-9 is primarily produced by 
T helper cells recruited by IL-6 [34, 35] and by T-regulatory 
cells [36]. Animal models of diabetic nephropathy have shown 
helper T cells (CD4 +), cytotoxic (CD8 +) T cells and small 
numbers of T-regulatory cells in kidney [34, 37]. As inflamma-
tion in the kidney increases, infiltration of T cells may result in 
increased levels of IL-9. Second, the data are cross-sectional 
and therefore the implications of our findings with respect 
to the progression of ACR and declining GFR are unknown. 
Establishing an IL-9 threshold for high-risk patients could 
make it a clinically useful biomarker and establish its role as a 
potential treatment target. Long-term studies of larger cohorts 

will be required to address the limitation of our current study. 
Thirdly, the analyses are limited to correlations and interac-
tions and do not establish causation. In vitro studies of cultured 
podocytes and studies of IL-9 gene deletion in murine models 

Fig. 3   Interactions between interleukin-9 (IL-9), cytokines implicated in 
diabetic nephropathy including vascular endothelial growth factor (VEGF), 
tumor necrosis factor alpha (TNFα), interluekin-6 (IL-6) and the albumin/
creatinine ratio (ACR) A the impact of IL-9 on the ACR for fixed values 
of VEGF (quintiles). There was a significant interaction between the vari-
ables (p = 0.0083); B the impact of IL-9 on the ACR for fixed values of 
TNFα (quintiles). There was a significant interaction between the vari-
ables (p = 0.0231); C the impact of IL-9 on the ACR for fixed values of 
IL-6 (quintiles). There was a significant interaction between the variables 
(p = 0.0178); all values were log-transformed for these analyses

▸
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of diabetes can address these limitations. Finally, validation in 
other populations of TID will strengthen our conclusions and 
allow for generalizability.

Conclusions

In summary, there is a strong relationship between urinary 
IL-9 and measures of glomerular podocyte injury (the 
release of EVs) in youth with T1D. Complex interactions 
between IL-9, cytokines and ACR support the hypothesis 
that inflammation is an important determinant of both glo-
merular injury and function in the diabetic kidney.
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