Skip to main content

Advertisement

Log in

Lipid partitioning after uninephrectomy

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

This longitudinal study addressed the sequential events and metabolic consequences of lipid partitioning following uninephrectomy. Adult male Sprague–Dawley rats were randomized into sham operation (n = 15) or left uninephrectomy (UNX, n = 18). At 1 and 3 months post nephrectomy, three rats from each group were killed for histopathological examination of adipocyte differentiation and lipid accumulation. Renal protein expression of the lipogenic peroxisome proliferator-activated receptor-γ (PPAR-γ), HMG-CoA reductase (HMGCR), and adiponectin receptor was detected by Western blot and immunofluorescence microscopy. Blood lipids, glucose, insulin, and renal functions were longitudinally measured up to 10 months after operation. The UNX rats progressively developed lipodystrophy of subcutaneous and visceral adipose depots with failure of adipocyte differentiation and lipid storage, followed by blood lipid elevation and ectopic lipid deposition with cellular lipid peroxidation, and renal adipogenesis with chronic inflammatory infiltration. Despite having standard diet, normal food consumption and normal body weight, the uninephrectomized rats with defective lipid partitioning manifested a myriad of homeostatic disturbances including insulin resistance, hyperglycemia, adiponectin resistance, and upregulation of PPAR-γ and HMGCR. Abnormal lipid partitioning from adipose depots to circulation and non-adipose tissues and non-adipocytic cells contributes to homeostatic disturbances and lipogenic activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Montani JP, Carroll JF, Dwyer TM, Antic V, Yang Z, Dulloo AG (2004) Ectopic fat storage in heart, blood vessels and kidneys in the pathogenesis of cardiovascular diseases. Int J Obes Relat Metab Disord 28(Suppl 4):S58–S65

    Article  PubMed  CAS  Google Scholar 

  2. Unger RH (2003) Minireview: weapons of lean body mass destruction: the role of ectopic lipids in the metabolic syndrome. Endocrinology 144:5159–5165

    Article  PubMed  CAS  Google Scholar 

  3. Phan J, Reue K (2005) Lipin, a lipodystrophy and obesity gene. Cell Metab 1:73–83

    Article  PubMed  CAS  Google Scholar 

  4. Kambham N, Markowitz GS, Valeri AM, Lin J, D’Agati VD (2001) Obesity-related glomerulopathy: an emerging epidemic. Kidney Int 59:1498–1509

    Article  PubMed  CAS  Google Scholar 

  5. Javor ED, Moran SA, Young JR, Cochran EK, DePaoli AM, Oral EA, Turman MA, Blackett PR, Savage DB, O’Rahilly S, Balow JE, Gorden P (2004) Proteinuric nephropathy in acquired and congenital generalized lipodystrophy: baseline characteristics and course during recombinant leptin therapy. J Clin Endocrinol Metab 89:3199–3207

    Article  PubMed  CAS  Google Scholar 

  6. Avram AS, Avram MM, James WD (2005) Subcutaneous fat in normal and diseased states: 2. Anatomy and physiology of white and brown adipose tissue. J Am Acad Dermatol 53:671–683

    Article  PubMed  Google Scholar 

  7. Hull D, Segall MM (1966) Distinction of brown from white adipose tissue. Nature 212:469–472

    Article  PubMed  CAS  Google Scholar 

  8. Rothwell NJ, Stock MJ (1979) A role for brown adipose tissue in diet-induced thermogenesis. Nature 281:31–35

    Article  PubMed  CAS  Google Scholar 

  9. Rosen ED, Sarraf P, Troy AE, Bradwin G, Moore K, Milstone DS, Spiegelman BM, Mortensen RM (1999) PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol Cell 4:611–617

    Article  PubMed  CAS  Google Scholar 

  10. Tontonoz P, Hu E, Spiegelman BM (1994) Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 79:1147–1156

    Article  PubMed  CAS  Google Scholar 

  11. Grundy SM (1988) HMG-CoA reductase inhibitors for treatment of hypercholesterolemia. N Engl J Med 319:24–33

    Article  PubMed  CAS  Google Scholar 

  12. Sui Y, Zhao HL, Ma RC, Ho CS, Kong AP, Lai FM, Ng HK, Rowlands DK, Chan JC, Tong PC (2007) Pancreatic islet beta-cell deficit and glucose intolerance in rats with uninephrectomy. Cell Mol Life Sci 64:3119–3128

    Article  PubMed  CAS  Google Scholar 

  13. Zhao HL, Sui Y, Guan J, He L, Zhu X, Fan RR, Xu G, Kong AP, Ho CS, Lai FM, Rowlands DK, Chan JC, Tong PC (2008) Fat redistribution and adipocyte transformation in uninephrectomized rats. Kidney Int 74:467–477

    Article  PubMed  CAS  Google Scholar 

  14. Asensi V, Martin-Roces E, Carton JA, Collazos J, Maradona JA, Alonso A, Medina M, Aburto JM, Martinez E, Rojo C, Bustillo E, Fernandez C, Arribas JM (2004) Perirenal fat diameter measured by echography could be an early predictor of lipodystrophy in HIV type 1-infected patients receiving highly active antiretroviral therapy. Clin Infect Dis 39:240–247

    Article  PubMed  Google Scholar 

  15. Danforth E Jr (2000) Failure of adipocyte differentiation causes type II diabetes mellitus? Nat Genet 26:13

    Article  PubMed  CAS  Google Scholar 

  16. Campbell DJ, Kladis A, Duncan AM (1993) Nephrectomy, converting enzyme inhibition, and angiotensin peptides. Hypertension 22:513–522

    PubMed  CAS  Google Scholar 

  17. Ikonen E (2006) Mechanisms for cellular cholesterol transport: defects and human disease. Physiol Rev 86:1237–1261

    Article  PubMed  CAS  Google Scholar 

  18. Zhao B, Fisher BJ, St Clair RW, Rudel LL, Ghosh S (2005) Redistribution of macrophage cholesteryl ester hydrolase from cytoplasm to lipid droplets upon lipid loading. J Lipid Res 46:2114–2121

    Article  PubMed  CAS  Google Scholar 

  19. Daumerie CM, Woollett LA, Dietschy JM (1992) Fatty acids regulate hepatic low density lipoprotein receptor activity through redistribution of intracellular cholesterol pools. Proc Natl Acad Sci USA 89:10797–10801

    Article  PubMed  CAS  Google Scholar 

  20. Voelker DR (1991) Organelle biogenesis and intracellular lipid transport in eukaryotes. Microbiol Rev 55:543–560

    PubMed  CAS  Google Scholar 

  21. Kim HJ, Moradi H, Yuan J, Norris K, Vaziri ND (2009) Renal mass reduction results in accumulation of lipids and dysregulation of lipid regulatory proteins in the remnant kidney. Am J Physiol Renal Physiol 296:F1297–F1306

    Article  PubMed  CAS  Google Scholar 

  22. Heuck CC, Liersch M, Ritz E, Stegmeier K, Wirth A, Mehls O (1978) Hyperlipoproteinemia in experimental chronic renal insufficiency in the rat. Kidney Int 14:142–150

    Article  PubMed  CAS  Google Scholar 

  23. Nagase S, Aoyagi K, Gotoh M, Hirayama A, Tomida C, Shimozawa Y, Koyama A (1996) Increased lipid peroxidation by rat liver microsomes in experimental renal failure. Nephron 74:204–208

    Article  PubMed  CAS  Google Scholar 

  24. Naito M, Bomsztyk K, Zager RA (2009) Renal ischemia-induced cholesterol loading: transcription factor recruitment and chromatin remodeling along the HMG CoA reductase gene. Am J Pathol 174:54–62

    Article  PubMed  CAS  Google Scholar 

  25. Liang K, Vaziri ND (1997) Gene expression of LDL receptor, HMG-CoA reductase, and cholesterol-7 alpha-hydroxylase in chronic renal failure. Nephrol Dial Transplant 12:1381–1386

    Article  PubMed  CAS  Google Scholar 

  26. Kida K, Nakajo S, Kamiya F, Toyama Y, Nishio T, Nakagawa H (1978) Renal net glucose release in vivo and its contribution to blood glucose in rats. J Clin Invest 62:721–726

    Article  PubMed  CAS  Google Scholar 

  27. McGuinness OP, Fugiwara T, Murrell S, Bracy D, Neal D, O’Connor D, Cherrington AD (1993) Impact of chronic stress hormone infusion on hepatic carbohydrate metabolism in the conscious dog. Am J Physiol 265:E314–E322

    PubMed  CAS  Google Scholar 

  28. Stumvoll M, Chintalapudi U, Perriello G, Welle S, Gutierrez O, Gerich J (1995) Uptake and release of glucose by the human kidney. Postabsorptive rates and responses to epinephrine. J Clin Invest 96:2528–2533

    Article  PubMed  CAS  Google Scholar 

  29. Boudville N, Prasad GV, Knoll G, Muirhead N, Thiessen-Philbrook H, Yang RC, Rosas-Arellano MP, Housawi A, Garg AX (2006) Meta-analysis: risk for hypertension in living kidney donors. Ann Intern Med 145:185–196

    PubMed  Google Scholar 

  30. Mak RH, DeFronzo RA (1992) Glucose and insulin metabolism in uremia. Nephron 61:377–382

    Article  PubMed  CAS  Google Scholar 

  31. Cheung AK, Wu LL, Kablitz C, Leypoldt JK (1993) Atherogenic lipids and lipoproteins in hemodialysis patients. Am J Kidney Dis 22:271–276

    PubMed  CAS  Google Scholar 

  32. Odamaki M, Furuya R, Ohkawa S, Yoneyama T, Nishikino M, Hishida A, Kumagai H (1999) Altered abdominal fat distribution and its association with the serum lipid profile in non-diabetic haemodialysis patients. Nephrol Dial Transplant 14:2427–2432

    Article  PubMed  CAS  Google Scholar 

  33. Solomon LR, Mallick NP, Lawler W (1985) Progressive renal failure in a remnant kidney. Br Med J (Clin Res Ed) 291:1610–1611

    Article  CAS  Google Scholar 

  34. Tavakol MM, Vincenti FG, Assadi H, Frederick MJ, Tomlanovich SJ, Roberts JP, Posselt AM (2009) Long-term renal function and cardiovascular disease risk in obese kidney donors. Clin J Am Soc Nephrol 4:1230–1238

    Article  PubMed  Google Scholar 

  35. Ibrahim HN, Foley R, Tan L, Rogers T, Bailey RF, Guo H, Gross CR, Matas AJ (2009) Long-term consequences of kidney donation. N Engl J Med 360:459–469

    Article  PubMed  CAS  Google Scholar 

  36. Zimmet P, Alberti KG, Shaw J (2001) Global and societal implications of the diabetes epidemic. Nature 414:782–787

    Article  PubMed  CAS  Google Scholar 

  37. Nielsen S, Guo Z, Johnson CM, Hensrud DD, Jensen MD (2004) Splanchnic lipolysis in human obesity. J Clin Invest 113:1582–1588

    PubMed  CAS  Google Scholar 

  38. Miyazaki Y, Mahankali A, Matsuda M, Mahankali S, Hardies J, Cusi K, Mandarino LJ, DeFronzo RA (2002) Effect of pioglitazone on abdominal fat distribution and insulin sensitivity in type 2 diabetic patients. J Clin Endocrinol Metab 87:2784–2791

    Article  PubMed  CAS  Google Scholar 

  39. Gavrilova O, Marcus-Samuels B, Graham D, Kim JK, Shulman GI, Castle AL, Vinson C, Eckhaus M, Reitman ML (2000) Surgical implantation of adipose tissue reverses diabetes in lipoatrophic mice. J Clin Invest 105:271–278

    Article  PubMed  CAS  Google Scholar 

  40. Tran TT, Yamamoto Y, Gesta S, Kahn CR (2008) Beneficial effects of subcutaneous fat transplantation on metabolism. Cell Metab 7:410–420

    Article  PubMed  CAS  Google Scholar 

  41. Ruan XZ, Moorhead JF, Fernando R, Wheeler DC, Powis SH, Varghese Z (2003) PPAR agonists protect mesangial cells from interleukin 1beta-induced intracellular lipid accumulation by activating the ABCA1 cholesterol efflux pathway. J Am Soc Nephrol 14:593–600

    Article  PubMed  CAS  Google Scholar 

  42. Fiorentino L, Vivanti A, Cavalera M, Marzano V, Ronci M, Fabrizi M, Menini S, Pugliese G, Menghini R, Khokha R, Lauro R, Urbani A, Federici M (2010) Increased tumor necrosis factor alpha-converting enzyme activity induces insulin resistance and hepatosteatosis in mice. Hepatology 51:103–110

    Article  PubMed  CAS  Google Scholar 

  43. Menghini R, Menini S, Amoruso R, Fiorentino L, Casagrande V, Marzano V, Tornei F, Bertucci P, Iacobini C, Serino M, Porzio O, Hribal ML, Folli F, Khokha R, Urbani A, Lauro R, Pugliese G, Federici M (2009) Tissue inhibitor of metalloproteinase 3 deficiency causes hepatic steatosis and adipose tissue inflammation in mice. Gastroenterology 136:663–672.e4

    Article  PubMed  CAS  Google Scholar 

  44. Menghini R, Casagrande V, Cardellini M, Martelli E, Terrinoni A, Amati F, Vasa-Nicotera M, Ippoliti A, Novelli G, Melino G, Lauro R, Federici M (2009) MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1. Circulation 120:1524–1532

    Article  PubMed  CAS  Google Scholar 

  45. Menghini R, Marchetti V, Cardellini M, Hribal ML, Mauriello A, Lauro D, Sbraccia P, Lauro R, Federici M (2005) Phosphorylation of GATA2 by Akt increases adipose tissue differentiation and reduces adipose tissue-related inflammation: a novel pathway linking obesity to atherosclerosis. Circulation 111:1946–1953

    Article  PubMed  CAS  Google Scholar 

  46. Wu W, Wang M, Sun Z, Wang X, Miao J, Zheng Z (2010) The predictive value of TNF-alpha and IL-6 and the incidence of macrovascular complications in patients with type 2 diabetes. Acta Diabetol

  47. Fidan E, Onder Ersoz H, Yilmaz M, Yilmaz H, Kocak M, Karahan C, Erem C (2011) The effects of rosiglitazone and metformin on inflammation and endothelial dysfunction in patients with type 2 diabetes mellitus. Acta Diabetol

  48. Pitocco D, Giubilato S, Zaccardi F, Di Stasio E, Buffon A, Biasucci LM, Liuzzo G, Crea F, Ghirlanda G (2009) Pioglitazone reduces monocyte activation in type 2 diabetes. Acta Diabetol 46:75–77

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mr. Stanley Ho for his technical assistance in this study. This study was in part supported by a direct grant from Guilin Medical College.

Conflict of interest

All the authors declared no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Lu Zhao.

Additional information

H.-L. Zhao and Y. Sui contributed equally to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, HL., Sui, Y., He, L. et al. Lipid partitioning after uninephrectomy. Acta Diabetol 48, 317–328 (2011). https://doi.org/10.1007/s00592-011-0286-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-011-0286-9

Keywords

Navigation