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Abstract Structured exercise is considered an important

cornerstone to achieve good glycemic control and improve

cardiovascular risk profile in Type 2 diabetes. Current

clinical guidelines acknowledge the therapeutic strength of

exercise intervention. This paper reviews the wide patho-

physiological problems associated with Type 2 diabetes

and discusses the benefits of exercise therapy on phenotype

characteristics, glycemic control and cardiovascular risk

profile in Type 2 diabetes patients. Based on the currently

available literature, it is concluded that Type 2 diabetes

patients should be stimulated to participate in specifically

designed exercise intervention programs. More attention

should be paid to cardiovascular and musculoskeletal de-

conditioning as well as motivational factors to improve

long-term treatment adherence and clinical efficacy. More

clinical research is warranted to establish the efficacy of

exercise intervention in a more differentiated approach for

Type 2 diabetes subpopulations within different stages of

the disease and various levels of co-morbidity.
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Type 2 diabetes: a modern, but not modest,

health threat

Already in the first century, the ancient Greek physician

Aretaeus of Cappadocia described the term diabetes (di-

abaı́nein) as ‘…a wonderful affection, not very frequent

among men…’ [1]. However, it was not until 1675 that

Thomas Willis, an English physician, added the word

mellitus, as a reference to the sweet taste of a diabetes

patient’s urine. Whether this condition referred to Type 1

(autoimmune disease) or Type 2 (relative insulin defi-

ciency) diabetes mellitus is unknown. However, it lasted

another 200 years before the French physician Lanceraux

made the distinction between diabetes in lean and obese

men: diabete gras and diabete maigre [2]. In the 1930 s, the

diabetologist Joslin c.s. noted that the incidence of diabetes

in lean individuals was relatively constant in each decade of

life, while diabetes in the obese was related to age [3].

Already in those days he attributed the increasing preva-

lence of diabetes in the 1930 s to increasing obesity [3].

The sharp rise in Type 2 diabetes prevalence during the

second half of the twentieth century first occurred in

developing countries, parallel to the rapid socio-economic

development and dramatic changes in lifestyle in these

countries [4]. In traditionally more affluent societies, the

prevalence of Type 2 diabetes showed a clear rise in

the early 1990 s [5, 6], almost parallel to the increase in the

prevalence of obesity [7]. Although genome-wide associ-

ation studies have revealed that certain single nucleotide

polymorphisms (SNPs) related to beta-cell function pre-

dispose to the development of Type 2 diabetes [8–11],

clinical characteristics such as obesity and lack of physical

activity are regarded as the most important risk factors,

both independently associated with diabetes and diabetes-

related co-morbidities [12–14].
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According to the International Diabetes Federation

(IDF), the disease now affects 246 million people world-

wide and is expected to affect some 380 million by 2025,

representing as much as 7.1% of the global adult popula-

tion [15]. As such, the associated health burden in terms of

cardiovascular disease, kidney failure, blindness, amputa-

tions and premature death will increase progressively,

unless more effective primary and secondary pharmaceu-

tical and/or lifestyle interventional strategies become more

widely available.

Metabolic disturbances associated with Type 2 diabetes

Hyperglycemia in the insulin-resistant state

The main feature of Type 2 diabetes is formed by the

relative resistance to peripheral insulin action, resulting in

impaired glycemic control. According to WHO criteria,

someone is considered to have Type 2 diabetes if fasting

plasma glucose levels are equal or above 7.0 mmol/l or if

2 h following an 75 g oral glucose tolerance test (OGTT)

plasma glucose concentration rises C 11.1 mmol/l [16].

Although still subject of intense debate, these diagnostic

cut-off points have been based on epidemiological studies

that have examined the risk of developing retinopathy

over a range of plasma glucose levels [17]. However,

even in ‘high-risk’ obese subjects without blood glucose

abnormalities during an OGTT, real-life hyperglycemia

was already detectable for almost 14% throughout the day

[18]. This indicates that even in the absence of formal

intermediate hyperglycemia, as defined by the IDF/World

Health Organisation (WHO) [17], so-called post-prandial

hyperglycemic spikes are probably an early feature of

the insulin-resistant state. The difficulties to manage this

post-prandial hyperglycemia were exemplified in two of

our most recent continuous glucose monitoring studies in

Type 2 diabetes patients [19, 20]. In these studies, we

show that hyperglycemia is experienced for as much as

8–13 h/day under strict dietary standardization, but

otherwise free-living conditions. A strong correlation was

observed between the prevalence of hyperglycemia and

HbA1c content in the Type 2 diabetes patients, but even

patients with apparent acceptable glycemic control

(HbA1c B 7.0%) were still experiencing hyperglycemia

for 11 ± 0.9 h throughout the day [20]. It has been sug-

gested that these hyperglycemic blood glucose excursions

may contribute to the development of macro- and/or

microvascular complications in prediabetic states [21, 22].

However, many different pathophysiological pathways

may be simultaneously activated (see below). Therefore,

its separate contribution to macro- or microvascular

complications is currently unknown.

Hyperglycemia and beta-cell failure

The pathophysiological basis for aforementioned post-

prandial hyperglycemic spikes lies in a disturbed first-

phase insulin response of the pancreatic beta-cell, which

normally suppresses endogenous glucose production.

Subsequently, beta-cell function further deteriorates and

endogenous insulin production is insufficient to fully

compensate for the peripheral insulin insensitivity in

muscle, liver and/or fat cells [23]. Although the suscepti-

bility for a glucose-stimulated insulin secretory defect has a

genetic origin [24], it only becomes apparent in the context

of peripheral insulin resistance [25, 26]. Once the beta-cell

fails, post-prandial hyperglycemia may induce large

amounts of reactive oxygen species (ROS) that can cause

further damage to cellular components of insulin produc-

tion and induce apoptosis in beta-cells [27]. In addition,

lipotoxicity [28] and possibly also amyloid deposits [29]

may contribute to further deterioration of beta-cell func-

tion. Certain drugs, such as sulfonylurea (SU) derivatives,

are still widely applied to stimulate glucose-dependent

insulin release. Although these drugs temporarily improve

glucose homeostasis, they do not restore beta-cell function

and may accelerate loss of long-term glycemic control

[30]. In a quest to improve long-term diabetes outcome, a

whole new line of drugs has become available that try to

mimic the release of specific gut hormones [31]. These

incretin mimicking drugs have been shown to improve

islet-cell function, and both fasting and post-prandial gly-

cemic control [32–36]. Nevertheless, more long-term effi-

cacy of incretin mimicking drugs should be awaited before

their clinical value as a mono- or add-on therapy can be

established [37–39]. Besides medication, dietary measures

such as slowly digestible carbohydrates [40] and the

application of amino acid induced insulin secretion [41–43]

and/or high protein diets [44] can modulate post-prandial

hyperglycemia as well. As such, structured lifestyle inter-

ventions combined with metformin remain the first treat-

ment of choice. If oral dose adjustment is not sufficient to

meet therapeutic targets, early exogenous insulin therapy

should be initiated [45].

Obesity and insulin resistance

Over the past three decades, the etiology of insulin resis-

tance and beta-cell dysfunction has been subject to intense

study [23, 46]. Obesity, as a result of inactivity in combi-

nation with overeating, plays a key role in the development

of pancreatic beta-cell dysfunction as well as insulin

resistance. Several mechanisms mediating this interaction

have been identified. It is now well established that a

number of circulating hormones, cytokines, and metabolic

fuels, such as non-esterified fatty acids (NEFAs), are being
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released by adipose tissue and can modulate insulin action.

An increased mass of stored triglyceride, especially in

visceral or deep subcutaneous adipose depots, leads to

large adipocytes that are themselves resistant to the ability

of insulin to suppress lipolysis. This results in increased

release and circulating NEFA and glycerol levels. Both

aggravate insulin resistance in skeletal muscle [47, 48] and

the liver [49, 50].

Adipokines and chronic inflammation

Besides increased concentrations of NEFA, expanded vis-

ceral adipose tissue also releases pro-inflammatory cyto-

kines [e.g., tumor necrosis factor a (TNF-a), interleukin-6

(IL-6), monocyte chemoattractant protein-1 (MCP-1)].

Pathways regulating suppression of cytokine signaling

proteins [51] and inducible nitric oxide synthase [52] may

be involved in mediating cytokine-induced insulin resis-

tance. Secretion of these cytokines, particularly MCP-1 by

adipocytes, endothelial cells and monocytes, increases

macrophage recruitment and subsequently amplifies cyto-

kine-induced insulin resistance in a feed forward manner

[53]. TNF-a and IL-6 act through classical receptor-med-

iated processes, resulting in upregulation of potential

mediators of systemic inflammation that can lead to insulin

resistance.

More recently, a new adipokine, named retinol binding

protein-4, has been discovered that is directly linked to the

level of obesity-induced insulin resistance, both in cross-

sectional [54, 55] and longitudinal studies [54, 56–58].

Another adipokine, subject to intense study, is adiponectin.

Low adiponectin levels have been correlated with visceral

obesity and whole-body insulin sensitivity [59]. This fat

cell hormone acts as an insulin sensitizer, inhibiting tri-

glyceride formation in liver and stimulating fatty acid

oxidation in muscle in an AMP-activated protein kinase

(AMPK) and peroxisome proliferators activated receptor

alpha (PPAR-a)-dependent way [60]. Despite their appar-

ent importance in the insulin resistance syndrome, afore-

mentioned adipokines are just examples of a family of

adipocyte-derived factors that modulate insulin resistance

and systemic inflammation. Besides new adipokines, also

certain myokines now appear to affect insulin sensitivity

and inflammatory responses [61]. As such, the list of

insulin (de)sensitizing proteins and cytokines is still far

from complete.

Ectopic fat storage causes insulin resistance

in muscle and liver

In the context of a low habitual physical activity level and

low oxidative capacity, excess intramyocellular lipid

(IMCL) storage has been associated with skeletal muscle

insulin resistance [62]. In accordance, intervention studies

indicate that insulin sensitivity can change independently

of IMCL contents [63–68]. Indeed, not IMCL content

itself, but rather the peroxidation of inactive pools of IMCL

and intra-cellular fatty acids may explain the apparent

correlation between IMCL content and insulin resistance

[69]. In addition, intra-cellular lipid metabolites such as

diacylglycerol (DAG), long chain fatty-acyl CoA and

ceramides have been shown to interfere with the insulin

signaling pathway [70]. These metabolites activate a pro-

tein kinase leading to the phosphorylation of serine/threo-

nine sites on the insulin receptor substrate 1, subsequently

hampering glucose transport activity and insulin-stimulated

myocellular glucose uptake [71].

Ectopic fat storage in hepatocytes, so-called intrahepatic

lipids (IHL), has also been related to the development of

hepatic insulin resistance [72] and hepatic inflammation,

initiating non-alcoholic fatty liver disease [73]. In rodents,

3 days of a high-fat diet induces hepatic insulin resistance,

while no significant changes in fat content in muscle or

visceral tissue could be detected [74]. Experimental

research now suggests that hepatic insulin resistance arises

from DAG-induced activation of protein kinase Ce, which

directly binds to and inhibits insulin receptor tyrosine

kinase activity [75]. As such, fat-induced hepatic insulin

resistance and hepatic inflammation are considered

important etiological factors in the development of sys-

temic insulin resistance.

Glucolipotoxicity and long-term complications

in Type 2 diabetes

Besides inhibiting intra-cellular insulin signaling, afore-

mentioned metabolic disturbances in glucose and fat

metabolism increase the formation of Amadori-glycated

proteins and advanced glycation end-products (AGE)

impairs receptor function for AGE (RAGE) and increases

exposure to ROS in almost any organ system [76–78].

Chronic exposure to Amadori products, AGE and ROS,

so-called glucolipotoxicity, can cause vasculopathy [76],

glomerulopathy [79, 80] and potentially also induce nerve

cell damage [81]. In accordance, hyperglycemia-induced

AGE and ROS formation provide a unifying model for the

high incidence of microvascular disease, retinopathy,

nephropathy [80, 82], and possibly also neuropathy [83]

prevalent in long-term Type 2 diabetes [84]. In accordance,

certain pharmaceutical [85, 86], nutritional [81] and/or

exercise interventions [87–89] that modulate AGE, RAGE

and/or ROS formation have been reported to improve

insulin sensitivity in experimental rodent models. In

humans, both structured exercise and alpha lipoic acid have

been suggested to reduce neuropathic symptoms [90, 91].

However, it is unknown whether such a combined and
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long-term approach can modulate glucolipotoxicity and

prevent diabetes-related complications [92].

Reduced oxidative capacity and mitochondrial function

in insulin-resistant states

It has been well established that most patients with Type 2

diabetes have a significantly lower oxidative capacity

(VO2peak) than age-matched controls [93–95]. Whether this

lower oxygen uptake capacity is attributed to a low habitual

physical activity level, reduced mitochondrial content or an

intrinsic mitochondrial defect is a topic of intense debate

[96–109]. Recent experimental evidence indicates that

mitochondrial respiration is not abnormal when normalized

for mitochondrial content [104, 110], which implies that

low habitual physical activity level and/or cardiovascular

dysfunction may explain the generally deconditioned state

in the Type 2 diabetes patient [97, 106]. Although the

debate will probably continue whether the lower oxidative

capacity represents either cause or consequence [97, 111],

future exercise studies should be aimed at answering the

question whether a substantial long-term increase in

physical activity level by implementing a well-structured

exercise intervention program can reverse the decondi-

tioned state of Type 2 diabetes patients and improve the

metabolic profile.

Hyperinsulinemia, autonomic dysregulation

and cardiovascular disease

Above-mentioned metabolic disturbances in oxidative

capacity, glucose homeostasis and fat metabolism not only

affect systemic insulin resistance, but also appear to

influence long-term energy homeostasis [112]. Animal

studies indicate that long-term energy balance is coordi-

nated through the combined action of insulin and leptin in

the brain [113]. Interestingly, these studies have suggested

that insulin action in certain hypothalamic centers reduces

food intake while increasing sympathetic nervous system

(SNS) outflow to brown adipose tissue to produce heat

from fatty acid oxidation as a mechanism to increase

energy expenditure [113]. As such, these chronically ele-

vated insulin [114, 115] and leptin concentrations [116]

further contribute to obesity-associated hypertension

through activation of the SNS and release of catechola-

mines in the basal state [117]. Indeed, early-stage insulin

resistance appears to cause sympathovagal imbalance in

normoglycemic, insulin-resistant offspring of Type 2 dia-

betes patients [118]. Also in more advanced insulin-resis-

tant states, aforementioned increases in sympathetic tone

have been associated with changes in cardiac and vascular

function that lead to hypertension, left ventricular dys-

function and/or cardiac autonomic neuropathy [119]. Such

changes set the stage for arrhythmia, silent infarction and

sudden death [120, 121]. Because potentiation of athero-

genesis and cardiac dysfunction occurs in the presence of

early diabetic symptoms as well as in the established dis-

ease [122, 123], early implementation of strategies to

reduce cardiovascular risk factors and to attenuate diabetes

progression may help to improve long-term outcomes for

at-risk individuals. Such interventions may include well-

established pharmaceutical treatments for hypertension and

dyslipidemia, dietary modulation and/or energy restriction,

weight loss, and exercise intervention [121].

Exercise as opposed to pharmaceutical therapy

in Type 2 Diabetes

Over the past 5 years, both lipid lowering therapy [124,

125] and blood pressure lowering therapies [126, 127] have

been proven effective to improve cardiovascular outcome in

Type 2 diabetes patients. The effectiveness of these drugs

may explain why the additive benefits of intensive glycemic

control are more difficult to demonstrate, even in large and

long-term clinical trials such as ACCORD, ADVANCE and

VADT [128]. Nevertheless, much effort is currently put into

the discovery of novel pharmacological solutions that may

further improve metabolic control and prevent diabetes-

related co-morbidities. Although the combination of intense

blood pressure and blood glucose lowering therapy has been

shown to reduce (microvascular) complications [129–131],

stringent application of multiple blood glucose lowering

drugs does not necessarily result in a further reduction of

macrovascular events [130, 132–135]. Especially, in more

advanced Type 2 diabetes, more intensive blood glucose

lowering strategies may have counter-balancing conse-

quences for cardiovascular disease, such as hypoglycemia,

weight gain, or other metabolic changes [128]. Although

results of long-term intervention studies are underway, the

current increase in Type 2 diabetes incidence and con-

comitant cardiovascular co-morbidities may benefit more

from therapeutic strategies entailing structured exercise

interventions with [136–138] or without [137, 139, 140]

dietary modulation and/or oral blood glucose lowering

medication [136, 141, 142].

Does exercise reverse chronic inflammation?

In insulin-resistant populations, several adipokines, such as

leptin and adiponectin, as well as muscle contraction-

induced factors, so-called myokines (i.e., IL-6), have been

shown to modulate insulin resistance and inflammatory

status [143]. Although there is consensus that weight loss is

associated with an increase in adiponectin and decreased

levels of leptin, TNF-a and high sensitivity C-reactive
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protein (hsCRP) [144, 145], studies on the medium-term

effects of exercise without concomitant weight loss

are limited and produce somewhat inconsistent results

[146–148]. Nevertheless, the finding in longitudinal studies

that regular exercise training induces a reduction in hsCRP

indicates that physical activity may help to suppress sys-

temic low-grade inflammation [149–151]. An experimental

study using endotoxin-induced chronic inflammation

showed that physical exercise directly inhibits endotoxin-

induced TNF-a production in humans, most likely through

IL-6 release from exercising muscle [152]. Clearly, more

long-term intervention studies are warranted to see to what

extent the proposed anti-inflammatory effect of exercise

training modulates peripheral insulin sensitivity in Type 2

diabetes patients.

Exercise as an antihypertensive agent

Besides improving glycemic control, a recent meta-analysis

showed that structured exercise intervention studies in non-

insulin-dependent Type 2 diabetes patients reduce systolic

blood pressure with -4.16 mmHg (95% CI -9.46 to 1.14)

[153]. Such reductions in mean arterial blood pressure are

clinically relevant and are similar to the effects of add-on

blood pressure lowering therapy using a combination of an

ACE inhibitor and thiazide diuretic [126]. Although both

resistance- and endurance-type exercise seem to reduce

mean arterial blood pressure to a similar extent in Type 2

diabetes populations [154], further research is needed to

explore their separate contribution and way of action in

different insulin-resistant (sub)populations.

Does exercise therapy improve lipid metabolism?

Although fasting blood lipid profiles in Type 2 diabetes

populations have been shown to improve following long-

term exercise interventions with [136, 137, 155] or without

dietary restriction [142, 156], recent exercise intervention

studies in Type 2 diabetes patients showed few to no

additional benefits on top of lipid lowering agents [146,

157]. The latter may be related to the lack of a simulta-

neously diet-induced weight loss [158], a compensatory

decline in daily physical activity level [159] or the fact that

in most Type 2 diabetes populations baseline total-cho-

lesterol, LDL-cholesterol and triglycerides levels were

already 15–35% lower in comparison with aforementioned

‘exercise-only’ intervention studies [142, 156]. Neverthe-

less, in accordance with earlier reports (for references see

[160]), detailed body composition analyses using dual

energy X-ray absorptiometry (DEXA) and MRI revealed

that, despite an unaltered body weight, 5–6 months of

combined endurance and resistance type of exercise train-

ing is able to induce regional changes in fat and lean muscle

mass in obese Type 2 diabetes patients [146, 157]. Indeed,

several lines of research [68, 161–163] now indicate that

exercise interventions of sufficient volume and intensity

may also modulate post-prandial lipid handling. Interest-

ingly, higher levels of habitual physical activity were

reported to be strongly associated with reduced IHL content

[164], while intervention studies using dietary or exercise

intervention report somewhat contrasting results [165, 166],

supporting the idea that nutritional modulation may be more

effective in reducing IHL content. Future studies should

aim to unravel the mechanisms of action and modulating

effects of different modes of exercise training on post-

absorptive and post-prandial lipid handling in Type 2 dia-

betes patients [167]. Ideally, dietary intake and hormonal

responses should be monitored to differentiate between the

impact of isocaloric exercise bouts of different volumes and

intensities on both post-prandial glycemia and lipidemia.

Exercise prescription in Type 2 diabetes

Current guidelines from the American Diabetes Associa-

tion (ADA), the European Association for the Study of

Diabetes (EASD) or the American College of Physicians

(ACP) all acknowledge the therapeutic strength of exercise

intervention [45, 168–170]. The ADA states that ‘to

improve glycemic control, assist with weight maintenance,

and reduce risk of CVD, at least 150 min/week of moder-

ate-intensity aerobic physical activity is recommended and/

or at least 90 min/week of vigorous aerobic exercise, …
distributed over at least 3 days/week and with no more

than 2 consecutive days without physical activity.’ Since

2006, the ADA guidelines explicitly mention and recognize

that ‘in the absence of contraindications, people with Type

2 diabetes should be encouraged to perform resistance

exercise 3 times a week, targeting all major muscle groups,

progressing to 3 sets of 8–10 repetitions at a weight that

can not be lifted more than 8–10 times’ [169]. However,

these clinical guidelines generally do not include detailed

information on the preferred type and intensity of exercise

that should be applied to maximize the benefits of exercise

for different subgroups of Type 2 diabetes patients and

further research is needed.

Acute versus more longer term exercise responses

Both a single bout of endurance- [171] and resistance-type

exercise [172, 173] have been shown to improve whole-

body insulin sensitivity and/or oral glucose tolerance.

Therefore, both types of exercise are of therapeutic use in

an insulin-resistant state [154]. The acute effects of exer-

cise on skeletal muscle insulin sensitivity are attributed to

the prolonged activation of the skeletal muscle glucose
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transporter system [174, 175], depletion of liver and mus-

cle glycogen stores [174, 176–178], and/or increased

skeletal muscle blood flow following the cessation of

exercise [179]. The glucoregulatory benefits of either type

of exercise training are represented by the sum of the

effects of each successive bout of exercise [178]. In addi-

tion, more prolonged exercise training is accompanied by a

more structural adaptive response. For instance, endurance

training may upregulate mitochondrial enzyme activity in

skeletal muscle and subsequently improve whole-body

oxygen uptake capacity [180, 181]. However, the latter

response may be attenuated in more advanced and older

Type 2 diabetes patients [146, 182–185]. On the other

hand, resistance-type exercise is able to induce muscle

protein synthesis [186, 187] and, as such, represents an

effective interventional strategy to increase lean body mass

in both early [188] and advanced stage Type 2 diabetes

patients [146, 189].

Exercise modality

In terms of physiological adaptations, apparent differences

exist in the long-term adaptive response to endurance- or

resistance-type exercise training. Prolonged endurance-

type exercise training has been shown to improve insulin

sensitivity in both young [190], elderly [191] and/or insu-

lin-resistant subjects [178, 192–194]. The latter is attrib-

uted to the upregulation of skeletal muscle GLUT-4

expression, improved nitric oxide-mediated skeletal muscle

blood flow and concomitant induction of weight loss [195],

reduced hormonal stimulation of hepatic glucose output

[196] and the normalization of blood lipids [197]. Long-

term resistance-type exercise interventions have also been

reported to improve glucose tolerance [157] and/or whole-

body insulin sensitivity [172, 188, 198]. Besides the

consecutive effects of each successive bout of exercise in

acutely reducing glycogen stores [173, 199], resistance-

type exercise training has been associated with a sub-

stantial gain in skeletal muscle mass, thereby improving

whole-body glucose disposal capacity [172]. Besides the

attenuation of the loss of muscle mass with aging, resis-

tance-type exercise training also improves muscle strength

and functional capacity, thereby allowing a healthier, more

active lifestyle. Some studies report even greater benefits of

resistance as opposed to endurance-type exercise training

on glycemic control and insulin sensitivity in long-standing

Type 2 diabetes patients [182]. However, recent evidence

indicates that both types of exercise interventions have

similar therapeutic strength in uncomplicated Type 2 dia-

betes patients [157]. Its combined application is probably

more effective, especially in patients with HbA1c lev-

els C 7.5% [157]. As such, it has been firmly established

that both endurance- and resistance-type exercise training

can be applied to improve metabolic control and quality of

life in Type 2 diabetes patients [154].

Energy expenditure determines therapeutic strength

of exercise

When prescribing exercise as treatment for an individual

diabetes patient, it is important to estimate total energy

expenditure that can be achieved through the recommended

type of exercise. Several studies have shown that the

energy equivalent of an endurance exercise bout represents

the major determinant of the exercise-induced changes in

glucose homeostasis [200–202]. To obtain durable meta-

bolic improvements through exercise, the absolute mini-

mum dose of weekly energy expenditure should entail

4.2 MJ (&1,000 kcal) [202], but for optimal results weekly

energy expenditure should probably be twice as high [202,

203]. Therefore, a lesser exercise intensity should be

compensated for by an increase in exercise duration.

Exercise in advanced stage Type 2 diabetes patients

Another expanding Type 2 diabetes subpopulation is

formed by the long-standing, insulin treated, Type 2 dia-

betes patients [204]. These patients generally suffer from

severe exercise intolerance due to the combination of low

oxidative capacity [205], micro- and macrovascular disease

[206, 207], neuropathy-related muscle weakness [207–210]

and/or sarcopenia [211]. As generic exercise intervention

programs are too demanding for most of these patients, it is

of utmost importance to implement intermediate exercise

intervention programs. Such intermediate programs are

needed to bring the patient to a level at which they are able

to participate in more generic diabetes intervention pro-

grams. Such intermediate programs should implement

short, relatively high-intensity, exercise bouts applied in an

intermittent fashion with the intention to increase muscle

strength and functional performance. These so-called short

‘ins-and-outs’ exercises do not produce feelings of dysp-

noea or discomfort and have been proven safe and effective

in cardiac patients [212, 213]. The efficacy and safety of

such intermediate programs in long-standing Type 2 dia-

betes patients with high cardiovascular risk profile was

recently confirmed in a small scale study by our research

group [146]. Nevertheless, more larger scale trials are

warranted since exercise intervention studies generally

exclude this specific Type 2 diabetes subpopulation.

Interaction between exercise and blood glucose

lowering medication

Type 2 diabetes is characterized by resistance to the

actions of insulin in the presence of defects in insulin
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secretion. Absolute insulin levels vary with the severity of

the disease; early stages tend to be characterized by a

compensatory hyperinsulinemic state, but progressive

beta-cell failure eventually occurs in most patients, lead-

ing to low basal fasting insulin levels [214]. Circulating

insulin plays a critical role in regulating hepatic glucose

output during exercise and has been shown to modulate

peripheral glucose uptake during exercise and recovery

[215–217]. Depending on the remaining insulin secretory

capacity, the use of insulin secretagogues [183, 218, 219],

the type of exogenous insulin used [220], as well as the

level of peripheral insulin resistance, the glucose lowering

effect of single bout of resistance or endurance bout of

exercise may vary considerably. Moreover, as discussed

in aforementioned paragraphs, the type, intensity and

duration of exercise may result in different glycemic

responses [182]. In accordance, failure to adequately

adjust medication and/or carbohydrate supplementation

can result in inappropriate swings in blood glucose levels,

either too low or too high. In accordance with Type 1

diabetes patients [221, 222], antecedent hypoglycemia

may also result in hypoglycemia unawareness in Type 2

diabetes [223] However, circumstances that result in

inappropriate elevations in blood glucose levels (such as

excessive carbohydrate supplementation or too large

reductions in insulin dosage) also have long-term adverse

implications [224–226]. Knowledge of the factors that

affect glucose metabolism is critical for designing strat-

egies to minimize inappropriate swings in blood glucose

control related to exercise. As such, more research is

required to better understand the complex interaction

between the different exercise modalities and blood glu-

cose lowering drugs. Nevertheless, in long-standing

insulin-treated Type 2 diabetes patients, we have shown

that frequent self-monitoring of blood glucose levels

before and after each exercise bout is safe and feasible

and results in improved glycemic control [146, 227].

Prevention of overload injuries in exercise training

Many patients with Type 2 diabetes experience not only

cardio-respiratory [205], but also musculoskeletal de-

conditioning [207–210]. Obesity- and diabetes-related

subclinical osteoarthritis [228, 229] on top of neuropathy-

related peripheral muscle weakness [210] have shown

potential reasons for overload injuries and subsequent drop

out [157, 230]. In future, endurance type of exercise

interventions, certain overuse injuries, might be prevented

through adaptations in biomechanical loading on feet and

lower extremities [231–234] as well as through the appli-

cation of resistance-type exercise aimed at strengthening

myotendinous structures. The latter concept is supported by

resistance-type exercise studies that report long-term

program adherence between 68% [235] and 72% [236],

without concomitant musculoskeletal overuse injuries.

Nevertheless, more long-term tailored exercise intervention

studies are needed to assess the usefulness of a differenti-

ated approach.

Long-term program adherence in therapeutic exercise

intervention programs

Long-term program adherence may vary between as much

as 10 and 80% [142, 230, 235, 237, 238]. Therefore,

motivational factors and time constraints should be con-

sidered to prevent long-term drop out rate. In accordance,

future exercise interventions might benefit from psycho-

logical strategies such as motivational interviewing [239]

or booster sessions [240–242]. Furthermore, restricting the

travel time toward a training facility [243] and providing

the patient with feedback on physical activity levels [244]

may improve long-term adherence as well. Although

aforementioned approaches are likely to reduce program

drop out throughout the course of a supervised exercise

program, scientific studies are warranted that combine

aforementioned approaches.

Safety considerations before initiating exercise therapy

Before exposing patients with Type 2 diabetes to more

vigorous exercise programs, the ADA and U.S. Preventive

Services Task Force recommend exercise testing for silent

myocardial ischemia (SMI) if 10-year cardiovascular risk

exceeds 10% [169, 245]. Cardiac dysfunction [246] and

SMI are estimated to be present between 6 and 22% [247]

of the Type 2 diabetes patients, with cardiac autonomic

dysfunction, disease duration and male gender being the

best predictors for SMI [247]. Moreover, poor physical

fitness [248], scintigraphy abnormalities [249], diabetic

retinopathy [249] and an advancing age [60 years [250] in

combination with the traditional cardiac risk factors also

represent good predictors for the likelihood of a cardiac

event. The UKPDS Risk Engine v2.0 (available free of

charge at www.dtu.ox.ac.uk) may be of help to calculate an

individual patient’s risk for coronary heart disease [251].

Although arbitrary, the UKPDS Risk Engine indicates that

ECG stress testing in Type 2 diabetes is useful in most

patients with [2 cardiovascular risk factors, in middle-

aged patients with a diabetes duration [5 years, as well in

elderly patients [70 years. Although a stress ECG is not

the most sensitive diagnostic tool to detect SMI [252] and

predict coronary events [253], other research indicates that

it is still the most cost-effective tool when trying to mini-

mize the risk of a coronary event [254]. In case SMI

is expected, more sensitive diagnostic tests such as myo-

cardial perfusion scintigraphy [255], electron beam
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computerized tomography [256] and/or coronary angiog-

raphy [257] should be considered before more vigorous

exercise is prescribed. Even in the absence of SMI, a stress

test will detect chronotropic incompetence [258] as well as

exercise-related hypertension and provide more objective

information on the individual fitness level [205]. Ideally,

this information should be used to further tailor an exercise

program for the individual patient with Type 2 diabetes

[259].

Are structured exercise interventions cost-effective?

Previous lifestyle intervention studies indicate that long-

term health benefits mainly depend on long-term program

adherence as well as the level of motivation, coaching and

supervision [235, 236, 260–263]. Depending on the level

and duration of exercise supervision and dietary guidance,

direct health care costs vary between *400 and *2,000

euro per individual participant [230, 264]. Although the

cost-effectiveness of such (theoretical) interventions is

more favorable in groups with high-risk populations com-

pared with mixed populations [264], lifestyle intervention

is considered highly cost-effective for the prevention of

Type 2 diabetes [264–270]. As far as we know, no study

has been published on the cost-effectiveness of similar

lifestyle interventions in patients that have already devel-

oped Type 2 diabetes. However, direct costs of either a

brisk walking or medical fitness program in Type 2 dia-

betes seem to be within the aforementioned range [230].

Although we could not determine the cost-effectiveness in

the latter study, several larger scale multidisciplinary life-

style interventions (e.g., the ‘BeweegKuur’ in the Nether-

lands [265] and the LookAHEAD study in the USA) [271]

are underway. These studies should provide more insight

into the cost-effectiveness of well-structured exercise

interventions as a part of a multidisciplinary Type 2

diabetes care program consisting of medication, diet and

exercise.

Future research

Based on a thorough review of the literature, we recently

have proposed a more differentiated approach for exercise

therapy in Type 2 diabetes [259]. However, before more

differentiated exercise prescription guidelines can be used

as clinical treatment guidelines, its medium to long-term

efficacy should first be evaluated in more large-scale

randomized controlled clinical trials. By definition, most

randomized clinical trials completely disregard a patient’s

free choice or preference for a specific type of exer-

cise. In fact, potentially interested patients may feel

excluded, while others may find it difficult to adhere to a

non-preferred type of exercise intervention. Therefore, to

simulate a more realistic type of health care environment,

randomized clinical trials should be performed in which

subjects can choose from different exercise programs.

Moreover, for each type of exercise intervention, control

groups should perceive a similar amount of supervision and

guidance. Such an approach is likely to result in higher

adherence rates and will provide us with more definitive

answers on how to implement exercise therapy more

effectively in the chain of diabetes health care.

On top of these clinical and methodological issues,

recent studies suggest that genetic factors [272, 273] should

be considered to determine which subgroup Type 2 dia-

betes patients is likely to benefit the most from tailored

exercise interventions. However, to unravel the proposed

genetic influences, well-defined exercise intervention

studies with a high compliance rate will be essential.

Although such mechanistic studies often do not represent a

realistic clinical approach, these studies should provide

more insight into the pathomechanics of exercise inter-

vention in Type 2 diabetes patients with a different genetic

and/or co-morbidity profile. The combined approach of

mechanistic and clinical implementation studies is expec-

ted to lead toward more specific and evidence-based

exercise prescription guidelines that can optimize long-

term therapeutic outcome at an affordable socio-economic

cost price. Given the size and expanding nature of the Type

2 diabetes pandemic, the field of clinical diabetes research

has the scientific, socio-economic and medical ethical

obligation to contribute to such studies and move the field

of diabetes care into action.
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