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Abstract The purpose of this paper is the evaluation of the Fourier transform of
powers of the sinc function multiplied by monomials, also in the cases when log
terms arise. Such evaluations appear only rarely in the literature. Some old sources
are hardly available. Because of notations not in use today, several original works are
difficult to read. We apply an approach by J. H. Michell in a variant of G. H. Hardy
to integrals over sinc powers and their Fourier transforms. Moreover, the connection
of such integrals with B-splines is accentuated.

Keywords Integrals of Riemann type · Explicit integration · MSC Classification
26A42

1 Introduction

There are numerous methods to evaluate the so-called Dirichlet integral

Z C1

0

sin t

t
dt D �

2
: (1)
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148 U. Abel, V. Kushnirevych

In calculus lectures, one normally uses differentiation of the Laplace transform

F .s/ D R C1
0 e�st sinc .t/ dt under the integral sign. It can be justified that F 0 .s/ D

�R C1
0 e�st sin .t/ dt . It is a nice exercise to evaluate F 0 .s/ D �1=

�
1 C s2

�
by

applying standard procedures of integration. Taking its anti-derivative F.s/ D
�=2–arctan.s/, satisfying lims!C1F .s/ D 0, yields the value F .0/ D �=2.
Another common evaluation is via complex integration and residue theorem.

In 1909, G. H. Hardy [16] listed 7 proofs of the identity (1) and examined them
with regard to their simplicity. He remarked that “Practically all methods of eval-
uating any definite integral depend ultimately upon the inversion of two or more
operations of procedure to a limit.” In his opinion, such inversions “constitute what
we may call the difficulty of the problem”. Hardy based his system of marking
primarily upon them. Besides these marks he added “marks of artificiality, com-
plexity, etc. The proof obtaining least marks is to be regarded as the simplest and
best”. Hardy’s list comprises proofs given by Berry [3] and Nanson [21]. He added
a further proof by Bromwich [7, §173, last line of Ex. 1] which “he had forgotten”.
A couple of years later, in 1916, Hardy [17] extended his list by three more proofs of
(1), given by Dixon, Bromwich and Whipple. Remarkable is a proof by J. H. Michell
which was reported by Nanson [21] accompanying his own proof. Hardy claimed
to have “used a proof, in teaching, which is in principle substantially the same [...]
though slightly more simple in details and arrangement, viz.:

Z 1

0

sin x

x
dx D 1

2i

Z 1

0
dx

Z �

0
ei.tCxeit /dt D 1

2i

Z �

0
ei tdt

Z 1

0
eixeit

dx

D 1

2

Z �

0
dt D �

2
:

The successive steps of the proof can of course be stated in a form free from i by
merely taking the real part of the integrand.” Here it was used that
sinx

x
D � 1

2

R �1
1 eixzdz D � i

2

R �

0 eixeit
ei t dt , where the path in the complex plane,

parametrized by z D ei t , joins 1 to �1, when t increases through real values
from 0 to � . Hardy gave a justification of the inversion by the estimate

ˇ̌
ˇ̌
Z �

0
ei tdt

Z 1

X

eixeit

dx

ˇ̌
ˇ̌ � �

1 � e�X

X
:

Recently, Hardy’s version of Michell’s proof was rediscovered in [6].
In a first step, we apply this approach to integrals over the powers of the sinc

function sinc .t/ WD .sin t/ =t ,

In WD
Z C1

0

�
sin t

t

�n

dt .n 2 N/ : (2)
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Sinc integrals revisited 149

There are several derivations of its values

In D �

2n .n � 1/ Š

bn=2cX
kD0

.�1/k
�n

k

�
.n � 2k/n�1: (3)

The problem appears as an exercise in [26, Ex. 13, p. 123]. See also [2, 8, 12].
The numerators and denominators of the rational multiples of � in (3) are listed
as A049330 and A049331, respectively, in the On-Line Encyclopedia of Integer
Sequences [24]. Borwein and Borwein [4] studied the more general integrals

Z C1

0

nY
kD1

sin akt

t
dt .n 2 N/ ;

for real numbers a1; :::; an satisfying certain conditions and derived (3) as a special
case. Further proofs can be found in [13] and [1] (see also [5]; further publications
related to the matter are [15, 18, 20, 25]).

We show that the method of Michell and Hardy can be applied to evaluate the
Fourier transform,

In;m .�/ WD
Z C1

0

sinnt

tn�m
ei�tdt .� 2 R/ (4)

for integers n; m with 0 � m < n. We highlight the relation to B-splines. Note

that, for even m,
R C1
0

sinnt
tn�m cos .�t/ dt and, for odd m,

R C1
0

sinnt
tn�m sin .�t/ dt

can easily be obtained by inverse Fourier transform (see Eqs. (17) and (18)). The
remaining cases are not easy to find in the literature. Therefore, they are explicitly
evaluated in Sect. 4.

Integrals of this type were already published, in 1855, by Lobatschewskji [19]

who studied
R C1
0

�
sin t

t

�n
e�at dt , for a > 0. Because of the notation not in use

today, the original work is difficult to read. In 1860, Schlömilch [23] evaluated the
integrals

R C1
0

sinpt
tq dt , even for real values of q > 0. To this end he took advantage

of the formulas

Z C1

0

sinˇt

tq
dt D �ˇq�1

2� .q/ sin .q�=2/
.0 < q < 2/ ;

Z C1

0

cosˇt

tq
dt D �ˇq�1

2� .q/ cos .q�=2/
.0 < q < 1/

[23, Eqs. 16 and 17]. Schlömilch [23, Eqs. 18, 20, 21] presented explicit formulas

for
R C1
0

sinpt
tq dt , apart of the case that p is an even integer and 0 < q � 1, in

which the integrals
R C1
0

sinpt
tq dt are divergent [23, Eq. 19].
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150 U. Abel, V. Kushnirevych

We note the Laplace transform of the powers of the absolute value of the sinc
function, i.e., jsin .t/ =t jp , for exponents p with R .p/ � 0, was recently studied
by Glasser [14]. In the special case that p is an even number, he derived a closed
expression as a finite sum involving log and arctan functions [14, Eq. (1.13)].

In the special case � D 0 of Eq. (4) we obtain formulas for the integrals

In;m WD In;m .0/ D
Z C1

0

sinnt

tn�m
dt .0 � m < n/ ; (5)

which were derived in 1877 by J. Wolstenholme in the hardly accessible publica-
tion [27]. He calculated the integrals (5) by reduction to the integrals (1) and the
Frullani-type integrals

Z C1

0

cos .at/ � cos .bt/

t
dt D log

b

a
.a; b > 0/

(see [11, 1014]). A splendid source of such calculations is the fundamental treatise
on integrals by Edwards [11]. Recursive formulas for the indefinite integrals of type
(5) can be found in the first volume [11, 265]. Many interesting calculations are
contained in the second volume [11, 1023ff]. Some of these methods are used in
Sect. 5.

Complete formulas for the Fourier transform In;m .�/ in the special case m D 0
appear in Oberhettinger’s table book [22, 5.12 on p. 20, 5.13 on p. 21, and 5.15,
5.16 on p. 134].

Historical remarks on the Fourier transform (4) and its connection to B-splines
can be found in [9, see Eqs. (2.1) and (2.4)].

The integrals (2), (5), (4) connected with the sinc function, i.e.,
In D R C1

0 .sinct/ndt , In;m .0/ D R C1
0 tm.sinct/ndt and the Fourier transform

In;m .�/ D R C1
0 tm.sinct/nei�tdt have well-known values, for suitable integers

n; m. As already mentioned, the purpose of the present article is to extend and apply
Michell’s and Hardy’s approach to the above mentioned integrals. All evaluations
are explicitly given in terms of B-splines and their derivatives. These formulas are
well-known. It appears that in several cases log-terms arise. However, proofs of
the corresponding formulas are rarely to find in standard textbooks. Their proofs
appear mostly in old sources which are difficult to read and not easy to access.

2 Theoretical background and notation

The unnormalized sinc function, also called sinus cardinalis, is defined by

sinc .t/ WD
( sin t

t
for t ¤ 0;

1 for t D 0.

With the value sinc .0/ WD limt!0sinc .t/ D 1, sinc is continuous on the whole real
axis. In order to avoid confusion, we note that there are different notations. In digital
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Sinc integrals revisited 151

signal processing and information theory, the normalized sinc function is commonly
defined by sinc .t/ WD .sin�t/ = .�t/ which will not be used in the following. The
sinc function plays an important role in pure mathematics as well as in physics
and engineering. When separating variables of the Helmholtz equation in spherical
coordinates, the spherical Bessel functions jn are solutions of the radial equation,

where jn .x/ D .�x/n
�

1
x

d
dx

�n

sinc .x/. In particular, the zeroth spherical Bessel

function j0 .x/ D sinc .x/ is the unnormalized sinc function. A further application
in physics is diffraction from a slit. The Fraunhofer diffraction from a slit is the
Fourier transform of a rectangular function (see (8)), which is a sinc function (see
(9)). The irradiance (the radiant flux received by a surface per unit area) is then
given in terms of sinc2.

The term “B-spline” was coined by Isaac Jacob Schoenberg and is short for basis
spline. For a given set of distinct knots t0 < t1 < � � � < tn, there are, up to a scaling
factor, unique splines Bi;n .x/ of order n with compact support Œti ; tiCn�. Choosing
the scaling factors such that

P
iBi;n .x/ D 1 for t0 < x < tn, the resulting Bi;n .x/

are called B-splines. They can easily be determined by the Cox–de Boor recursion
formula [10, p. 90, Eqs. (14) and (15)]. A direct representation is given by

Bi;n .x/ D .tn � t0/ Œt0; :::; tn� .� � x/n�1
C ; (6)

where the n-th divided difference Œt0; :::; tn� applies to the variable at the placeholder.
Here xrC denotes the truncated power function, defined, for r 2 N, by xrC D
xr .x � 0/ and xrC D 0 .x < 0/. In the case r D 0, one defines x0C D 1 .x > 0/,
00C D 1=2 and x0C D 0 .x < 0/. Note that the function f .x/ D .x � x0/

r
C is

a piecewise polynomial with one break, at x0, and is continuous at x0 in the
case r > 0, while, for r D 0, it has a jump across x0, of size 1. Since
f 0 .x/ D r.x � x0/

r�1
C , we see that f has r � 1 continuous derivatives, with

a jump in the r th derivative across x0, of size rŠ.
Recalling the formula Œt0; :::; tn� f D Pn

kD0f .tk/
Qn

j D0;j ¤k

�
tk � tj

��1
, for-

mula (6) provides the explicit form

Bi;n .x/ D .tn � t0/

nX
kD0

.tk � x/n�1
C

nY
j D0;
j ¤k

�
tk � tj

��1
: (7)

Cardinal B-splines have knots that are equidistant from each other. If tiC1 � ti D
h > 0, for all i , the Bi;n .x/ are just shifted copies of each other.
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152 U. Abel, V. Kushnirevych

The close connection between sinc integrals and B-splines has its origin in the
fact that the Fourier transform of the sinc function is, up to scaling factors, the
rectangular function,

1

2�

Z C1

�1
sinc

�
t

2

�
ei txdt D rect .x/ WD

8<
:
1; jxj < 1=2;

1=2; jxj D 1=2;

0; jxj > 1=2.
(8)

The inverse transform

Z C1

�1
rect .t/ e�i txdx D sinc

�
t

2

�
(9)

can easily be verified. The rectangular function is just the central B-spline M1

of first order. Note that in the theory of splines M1 can be defined such that
M1 .x/ ¤ rect .x/, for jxj D 1=2. The central B-splines are the cardinal B-splines,
which arise if we choose the knots ti D �n=2Ci .i D 0; :::; n/. They are the Fourier
transforms of the powers of the sinc function,

Mn .x/ D 1

2�

Z C1

�1

�
sinc

t

2

�n

ei txdt: (10)

In the special case n D 1, this formula reduces to (8), i.e., M1 .x/ D rect .x/.
Direct computation verifies that

Mn .x/ D
Z xC1=2

x�1=2
Mn�1 .t/ dt;

where Mn has compact support Œ�n=2; n=2� with Mn .x/ > 0, for �n=2 <

x < n=2. Noting that
R C1

�1 M1 .t/ dt D 1, mathematical induction shows thatR C1
�1 Mn .t/ dt D 1, for all n 2 N. Application of (7) shows that the integrals (10)
possess the explicit representation

Mn .x/ D 1

.n � 1/ Š

nX
kD0

.�1/k
�n

k

� �
x C n

2
� k

�n�1

C
:

Thus, the rectangular function can be written in the form rect .x/ D M1 .x/ D�
x C 1

2

�0
C � �

x � 1
2

�0
C.

The integer translates of the function Mn .x/ form a basis in the sense that
every spline function Sn .x/ of order n, namely a function which has a con-
tinuous derivative of order n � 2 on the real axis, and reduces on each interval
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.k � n=2; k C 1 � n=2/, k 2 Z, to a polynomial of degree n � 1, can be uniquely
represented in the form

Sn .x/ D
1X

kD�1
ckMn .x � k/

with appropriate constant coefficients ck . Conversely, any such series represents
a spline of order n (see [9, p. 139]).

For our purposes it appears to be more convenient to consider the cardinal
B-splines with knots ti D i .i D 0; :::; n/, i.e.,

Mn

�
x � n

2

�
DW Bn�1 .x/ :

Then,

Bn�1 .x/ D n Œ0; 1; :::; n� .� � x/n�1
C D 1

.n � 1/ Š

nX
kD0

.�1/k
�n

k

�
.x � k/n�1

C :

Eq. (8) can be rewritten in the form
Z 1

�1
sinc .t/ eixtdt D � � B0

�
x C 1

2

�
;

where

B0 .x/ D x0C � .x � 1/0C D
8<
:
1; 0 < x < 1;

1=2; x 2 f0,1g ;

0; x 62 Œ0,1� :

More generally, Eq. (10) can be rewritten in the form
Z 1

�1
.sinc .t//neixtdt D � � Mn

�x

2

�
D � � Bn�1

�
x C n

2

�
:

We emphasize the fact that the subsequent sections do not take advantage of the
results presented in this section. In order to keep the exposition self-contained, we
shall use in the following only elementary theorems like Taylor formula and the
Riemann–Lebesgue lemma.

K



154 U. Abel, V. Kushnirevych

3 The evaluation of In

The aim of this section is a short proof of (3) using only elementary methods by
reducing the integrals (2) to (1). The tools used are the forward differences with
step 1,

�nf .x/ D
nX

kD0

.�1/n�k
�n

k

�
f .x C k/ (11)

and the Taylor formula with remainder in integral form,

f .x/ D
n�1X
kD0

f .k/ .0/

kŠ
xk C

Z x

0

f .n/ .z/

.n � 1/ Š
.x � z/n�1dz:

Since �np .x/ D 0, for each polynomial p of degree at most n � 1, the Taylor
formula and Eq. (11) yield

�nf .0/ D
Z n

0
f .n/ .z/ Bn�1 .z/ dz; (12)

where

Bn�1 .z/ WD 1

.n � 1/ Š

nX
kD0

.�1/n�k
�n

k

�
.k � z/n�1

C : (13)

Now we are in position to prove (3).

Proof of Formula (3) For t > 0, we have, by (12),

�
sin t

t

�n

D
�

e�i t

2i t

�n�
e2i t � 1

�n D
�

e�i t

2i t

�n

�ngt .0/

D 1

2

Z n

�n

ei tzBn�1

�
z C n

2

�
dz;

where gt .z/ WD e2i tz. Integrating with respect to t , we obtain, for x > 0,

Z x

0

�
sin t

t

�n

dt D 1

2

Z n

�n

eixz � 1

iz
Bn�1

�
z C n

2

�
dz

D 1

2

Z n

�n

sin .xz/

z
Bn�1

�
z C n

2

�
dz;

K
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because the integral has a real value. Observe that

Bn�1

�
z C n

2

�
� Bn�1

�n

2

�
D zh .z/ ;

where h is a bounded function and h .0/ D B 0
n�1

�
n
2

�
=2. Hence,

Z x

0

�
sin t

t

�n

dt D 1

2

Z n

�n

sin .xz/ h .z/ dz C 1

2
Bn�1

�n

2

� Z n

�n

sin .xz/

z
dz:

Passing to the limit x ! C1, the first integral tends to zero, by the Rie-
mann–Lebesgue lemma, and a change of variable leads to

In D 1

2
Bn�1

�n

2

�
limx!1

Z nx

�nx

sin z

z
dz D I1Bn�1

�n

2

�
;

which in view of (13) proves (3).

Remark 1 Note that the above proof derives, as a by-product, the well-known
representation of the powers of sinc .t/ WD .sin t/ =t , as a finite Fourier transform

�
sin t

t

�n

D 1

2

Z n

�n

ei tzBn�1

�
z C n

2

�
dz: (14)

Remark 2 An alternative approach is as follows. Note that �ngt .0/ D
nŠ Œ0; 1; :::; n�

gt .0/. For real numbers z0; :::; zn satisfying z0 < � � � < zn, the divided dif-
ferences Œz0; :::; zn� f possess the Peano form

Œz0; :::; zn� f D 1

nŠ

Z zn

z0

f .n/ .z/ Bn�1 .z/ dz;

where the Peano kernel Bn�1 is a (cardinal) B-spline of degree n � 1 for the data
points z0; :::; zn, normalized such that

Z n

0
Bn�1 .z/ dz D 1.

In particular, for zk D k .k D 0; :::; n/,

Bn�1 .z/ D .�1/nn � Œ0; 1; :::; n� .z � �/n�1
C D n

nX
kD0

.�1/k

kŠ .n � k/ Š
.z � k/n�1

C ; (15)
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156 U. Abel, V. Kushnirevych

which is equivalent to Eq. (13). This can be seen by an easy manipulation noting

that
Pn

kD0.�1/n�k
�

n
k

�
P .k/ D 0, for each polynomial P of degree less than n

(see Lemma 2).
Using integration by parts repeatedly and noting that the B-spline of degree n�1

satisfies B
.k/
n�1 .0/ D B

.k/
n�1 .n/ D 0, for k D 0; :::; n � 2, yield, for m � n � 1,

Z n

�n

ei tzBn�1

�
z C n

2

�
dz D

� �1

2i t

�mZ n

�n

ei tzB
.m/
n�1

�
z C n

2

�
dz:

Hence, Eq. (14) implies the finite Fourier transform

sinnt

tn�m
D 1

2

�
i

2

�mZ n

�n

B
.m/
n�1

�
z C n

2

�
ei tzdz:

For n � m � 2, inverse Fourier transform yields

im

2mC1 B
.m/
n�1

�
� C n

2

�
D 1

2�

Z 1

�1
sinnt

tn�m
e�i�tdt: (16)

If m is even, we infer that
Z 1

0

sinnt

tn�m
cos .�t/ dt D .�1/m=2 �

2mC1 B
.m/
n�1

�
� C n

2

�
: (17)

In particular, for � D 0,

In;m D
Z 1

0

sinnt

tn�m
dt D .�1/m=2 �

2mC1 B
.m/
n�1

�n

2

�
:

Differentiating Eq. (13) m times, we obtain the more explicit expression

In;m D .�1/m=2 �

2n .n � m � 1/ Š

bn=2cX
kD0

.�1/k
�n

k

�
.n � 2k/n�m�1:

In the special case m D 0, this formula reduces to Eq. (3).
If m is odd, we conclude that
Z 1

0

sinnt

tn�m
sin .�t/ dt D .�1/.mC1/=2 �

2mC1 B
.m/
n�1

�
� C n

2

�
: (18)

The corresponding integrals (17), for odd m, and (18), for even m, will be
evaluated in the next section.

We close this section with some consequences. These formulas deliver several
interesting relations between the sinc integrals and the B-splines. For instance, we
put � D 2 in Eq. (17). Using cos .2t/ D 1 � 2sin2t , we obtain, for even m and
n � m C 2,
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In;m � 2InC2;mC2 D .�1/m=2 �

2mC1 B
.m/
n�1

�n

2
C 1

�
;

which can be considered as a representation of a derivative value of the B-spline in
terms of integrals. It follows that

InC2k;mC2k � 2InC2kC2;mC2kC2 D .�1/m=2Ck �

2mC2kC1
B

.mC2k/

nC2k�1

�n

2
C k C 1

�
:

Multiplying this equation with 2k and summing up, leads to

KX
kD0

�
2kInC2k;mC2k � 2kC1InC2kC2;mC2kC2

�
D

KX
kD0

.�1/m=2Ck �

2mCkC1
B

.mC2k/

nC2k�1

�n

2
C k C 1

�
:

Finally, we infer that

In;m�2KC1InC2.KC1/;mC2.KC1/ D .�1/m=2 �

2mC1

KX
kD0

.�1/k

2k
B

.mC2k/

nC2k�1

�n

2
C k C 1

�
:

4 More general reduction formulas

In this section we demonstrate that the approach of the Sect. 3 can be applied also to
the integrals (5). More generally, we consider, for integers n; m with 0 � m < n,
the Fourier transform (4), i.e.,

In;m .�/ D
Z C1

0

sinnt

tn�m
ei�tdt .� 2 R/ :

For information about earlier appearances of the emerging formulas we refer to the
introductory Sect. 1.

First we state the result in the special case m D 0.

Theorem 1 For integers n � 2 and � 2 R, the value of In;0 .�/ is given by

Z C1

0

sinnt

tn
ei�tdt D �

2
Bn�1

�
� C n

2

�

C i

2n .n � 1/ Š

nX
kD0

.�1/n�k
�n

k

�
.� � n C 2k/n�1log j� � n C 2kj :

In the latter sum and in the following, the expression wplog jwj is to be read as
zero if w D 0 and p > 0.
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Remark 3 Since Bn�1 .z/ D 0, for all real z 62 .0; n/, we infer that the Fourier
transform of the function sincn has purely imaginary values outside of the interval
.�n; n/.

Remark 4 The symmetry Bn�1

�
nC�
2

�
D Bn�1

�
n��
2

�
and the identity

nX
kD0

.�1/n�k
�n

k

�
.� � n C 2k/n�1log j� � n C 2kj D

�
nX

kD0

.�1/n�k
�n

k

�
.�� � n C 2k/n�1log j�� � n C 2kj ;

which can be verified by reversing the order of summation, reflect the fact that
In;m .��/ is the complex conjugate of In;m .�/.

Finally, we give the evaluation of In;m .�/, for arbitrary m � 0.

Theorem 2 For nonnegative integers n; m with n � m � 2 and � 2 R, it holds

In;m .�/ D .�i/m�

2mC1 B
.m/
n�1

�
� C n

2

�

C .�1/mimC1

2n .n � m � 1/ Š

nX
kD0

.�1/n�k
�n

k

�
.� � n C 2k/n�m�1log j� � n C 2kj :

We list resulting evaluations for some real integrals. In the case of even m, we
recover the cosine transform (17) and

Z C1

0

sinnt

tn–m
sin.�t/dt D .–1/m=2

2n.n–m–1/Š

nX
kD0

.–1/n–k.
n

k
/.�–n C 2k/n–m–1logj�–n C 2kj:

In the case of odd m, we recover the sine transform (18) and

Z C1

0

sinnt

tn–m
cos.�t/dt D .–1/.m–1/=2

2n.n–m–1/Š

nX
kD0

.–1/n–k.
n

k
/.�–n C 2k/n–m–1logj�–n C 2kj:

In particular, for � D 0,

Z C1

0

sinnt

tn�m
dt D .�1/.m�1/=2

2n .n � m � 1/ Š

nX
kD0

.�1/n�k
�n

k

�
.2k � n/n�m�1log j2k � nj :

For the proof of the theorems we need three auxiliary results.
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Lemma 1 For nonnegative integers n; m, there are certain real numbers cm, such
that, for x > 0,

�
d

dx

�m

xnlogx D xn�m
�
mŠ

� n

m

�
logx C cm

�
:

The proof by mathematical induction with respect to m is left to the reader.

Lemma 2 Let n be a positive integer. For each polynomial P of degree less than
n, it holds

nX
kD0

.�1/k
�n

k

�
P .k/ D 0.

Proof A polynomial P of degree less than n in the variable k can be written as
a linear combination of binomial coefficients

�
k
r

�
with 0 � r < n. Then the as-

sertion follows from
Pn

kD0.�1/k
�

n
k

� �
k
r

�
D �

n
r

� Pn
kDr .�1/k

�
n�r
k�r

� D 0 because
n > r .

Lemma 3 For 0 < a < b, it holds

limx!C1
Z b

a

eixz � 1

z
dz D �limx!C1

Z �a

�b

eixz � 1

z
dz D �log

b

a

and

limx!C1
Z b

�a

eixz � 1

iz
dz D � C i log

b

a
:

Proof Let x > 0. We start with the latter formula:

Z b

�a

eixz � 1

iz
dz D

Z bx

�ax

eiz � 1

iz
dz D

Z bx

�ax

sin z

z
dz C i

Z bx

�ax

1 � cos z

z
dz:

For sufficiently small ı > 0, we have

Z bx

�ax

1 � cos z

z
dz D

Z �ı

�ax

1 � cos z

z
dz C

Z ı

�ı

1 � cos z

z
dz C

Z bx

ı

1 � cos z

z
dz

D �
Z ax

ı

1 � cos z

z
dz C 0 C

Z bx

ı

1 � cos z

z
dz

D �log
ax

ı
C log

bx

ı
�

Z bx

ax

cos z

z
dz ! log

b

a
.x ! C1/ :

The other formulas follow in a similar manner.
Now we are in position to prove the theorems.
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Proof of Theorem 1 We have to prove that

In;0 .�/ D �

2
Bn�1

�
� C n

2

�

� i

2n .n � 1/ Š

nX
kD0

.�1/n�k
�n

k

�
.� � n C 2k/n�1log j� � n C 2kj :

(19)

A direct consequence of Eq. (14) is

�
sin t

t

�n

ei�t D 1

2

Z nC�

�nC�

ei tzBn�1

�
z � � C n

2

�
dz:

Integrating with respect to t , we obtain, for x > 0,

Z x

0

sinnt

tn
ei�tdt D 1

2

Z nC�

�nC�

eixz � 1

iz
Bn�1

�
z � � C n

2

�
dz:

Using the representation (15) we obtain
Z x

0

sinnt

tn
ei�tdt D

1

2n .n � 1/ Š

nX
kD0

.�1/k
�n

k

� Z nC�

2k�nC�

eixz � 1

iz
.z � � C n � 2k/n�1dz:

Note that, for k D n, the integration interval has length zero. By the binomial
formula, we have

Z nC�

2k�nC�

eixz � 1

iz
.z � � C n � 2k/n�1dz D .�� C n � 2k/n�1

Z nC�

2k�nC�

eixz � 1

iz
dz

C
n�1X
j D1

�
n � 1

j

�
.�� C n � 2k/n�1�j

Z nC�

2k�nC�

eixz � 1

i
zj �1dz:

By the Riemann–Lebesgue lemma, we obtain

limx!C1
Z nC�

2k�nC�

eixz � 1

i
zj �1dz D i

Z nC�

2k�nC�

zj �1dz D Pn;�;j .k/ ;
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where Pn;�;j is a polynomial of degree at most j in the variable k. Therefore, by

Lemma 2,
Pn

kD0.�1/k
�

n
k

�
.�� C n � 2k/n�1�j Pn;�;j .k/ D 0, for j D 1; :::; n �

1. Hence,

In;0 .�/ D
1

2n .n � 1/ Š
limx!C1

nX
kD0

.�1/k
�n

k

�
.�� C n � 2k/n�1

Z nC�

2k�nC�

eixz � 1

iz
dz:

(20)

Now we study the limits limx!C1
R nC�

2k�nC�
eixz�1

iz
dz, for 0 � k < n. The desired

formula for In;0 .�/ can be deduced from Lemma 3. For each real � 62 .�n; n/, we
have 2k � n C � < n C � < 0 or 0 < 2k � n C � < n C � , such that

limx!C1
Z nC�

2k�nC�

eixz � 1

iz
dz D �1

i
log

ˇ̌
ˇ̌ n C �

2k � n C �

ˇ̌
ˇ̌

implies, by Eq. (20),

In;0 .�/ D i

2n .n � 1/ Š

nX
kD0

.�1/n�k
�n

k

�
.� � n C 2k/n�1log j� � n C 2kj :

Here we used that
Pn

kD0.�1/n�k
�

n
k

�
.� � n C 2k/n�1log jn C �j D 0, by

Lemma 2. Next let us consider the case �n � � � n. We can exclude the case
when the lower integration limit 2k � n C � takes the value zero. If 2k D n � � ,
the integral

R nC�

2k�nC�
eixz�1

iz
dz has factor zero and does not occur in Eq. (20). In the

case �n < � � n the limit limx!C1
R nC�

2k�nC�
eixz�1

iz
dz depends on the conditions

2k > n � � or 2k < n � � . By Eq. (20) and Lemma 3, we infer that

In;0 .�/ D �i

2n .n � 1/ Š

nX
kD0

.�1/k
�n

k

�
.�� C n � 2k/n�1log j� � n C 2kj

C �

2n .n � 1/ Š

X
2k<n��

.�1/k
�n

k

�
.�� C n � 2k/n�1:

Note that, by Lemma 2 and Eq. (13), the latter sum is equal to

�
X

2k>n��

.�1/k
�n

k

�
.�� C n � 2k/n�1 D 2n�1

nX
kD0

.�1/n�k
�n

k

� �
k � n � �

2

�n�1

C

D 2n�1 .n � 1/ ŠBn�1

�
n � �

2

�
:

The remaining case � D �n can be deduced by taking advantage of the fact
that In;0 .��/ is the complex conjugate of In;0 .�/, as was mentioned in Remark 4.
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Instead of this, we treat the case � D �n by direct calculation. For � D �n,
Eq. (20) reads

In;0 .�n/ D 1

2n .n � 1/ Š
limx!C1

nX
kD0

.�1/k
�n

k

�
.2n � 2k/n�1

Z 0

2k�2n

eixz � 1

iz
dz:

Since .2n � 2k/n�1 D 0, for k D n, and 2k �2n � �2, for 0 � k < n, Lemma 2
and Lemma 3 imply that

In;0 .�n/

D 1

2n .n � 1/ Š
limx!C1

nX
kD0

.�1/k
�n

k

�
.2n � 2k/n�1

Z �2

2k�2n

eixz � 1

iz
dz

D 1

2n .n � 1/ Š

nX
kD0

.�1/k
�n

k

�
.2n � 2k/n�1 1

i
log

�
2n � 2k

2

�
;

which is the desired value of In;0 .�/, for � D �n, since Bn�1 .n/ D 0.

Proof of Theorem 2 When we differentiate the formula for In;0 .�/, which is given
in Theorem 1, m times with respect to � , the general case follows after application
of Lemma 1 and Lemma 2.

5 A further approach

In this section the method presented and developed in [11, Art. 1031] is used. If p

and q are positive integers and 2 � q � p, the integral

Ip;p�q D
Z C1

0

sinpt

tq
dt

can be investigated by a method which does not entail the successive calculation of
previous results of the same form leading up to this integral, as was done in [11,
Art. 1023]. Taking advantage of the identity

Z C1

0
zq�1e�tzdz D � .q/

tq
.Rq > 0; Rt > 0/

we obtain

Ip;p�q D 1

� .q/

Z C1

0

Z C1

0
zq�1e�tz .sinpt/ dzdt:
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For p � 2, repeated application of the recursive formula

Z C1

0
e�at sinptdt D p .p � 1/

p2 C a2

Z C1

0
e�at

�
sinp�2t

�
dt .a > 0/

leads to

Ip;p�q D pŠ

� .q/

Z C1

0

zq�1

z
�
z2 C 22

� �
z2 C 42

� � � � .z2 C p2/
dz if p is even,

and

Ip;p�q D pŠ

� .q/

Z C1

0

zq�1�
z2 C 12

� �
z2 C 32

� �
z2 C 52

� � � � .z2 C p2/
dz if p is odd.

These integrals can be evaluated by partial fraction decomposition (see [11, Arts.
162 to 165]). In the two cases p; q both even or p; q both odd the emerging integrals
are of the form

R C1
0

1
z2Ck2 dz D �

2k
, but in the remaining cases the integrals are

logarithmic.
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