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Abstract A simple method for perfect packing a square by squares of sidelengths
1, 2�t , 3�t , 4�t ; ::: is presented for 1=2 < t � 17=32.
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1 Definitions

There are many questions about packing. In this note, we will describe one problem
of perfect packing.

Let Qn be a square, for n D 1; 2; :::, and let R be a rectangle. We say that
the squares Q1; Q2; ::: can be packed into R if it is possible to apply translations
and rotations to the sets Qn so that the resulting translated and rotated squares are
contained in R and have mutually disjoint interiors. If the area of R is equal to the
sum of areas of the squares, then the packing is perfect.

Example 1 Three squares of sidelength 1=2, three squares of sidelength 1=4, three
squares of sidelength 1=8, ::: (i.e., three squares of sidelength 2�n for n D 1; 2; 3; :::),
of the sum of areas equal to 3

4 C 3
16 C 3

64 C ::: D 3 � P1
nD1

1
4n D 1, can be packed

into the square I of sidelength 1 (see Fig. 1). The sum of areas of squares equals
the area of I , so the packing is perfect.
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Fig. 1 Example 1, perfect packing

Fig. 2 Example 2

Example 2 One square of sidelength 1, one square of sidelength 1=2, one square
of sidelength 1=4, ::: (i.e., squares of sidelength 2�n for n D 0; 1; 2; :::), of the sum of
areas equal to 1 C 1

4 C 1
16 C ::: D 4

3 , cannot be packed into the square of sidelength
2
p
3

3 ; the reason is that 1 C 1
2 > 2

p
3

3 (see Fig. 2). Moreover, the squares cannot be
packed into any rectangle of area 4/3; the smallest rectangle (1 � 3=2) into which
a square of sidelength 1 can be packed together with a square of sidelength 1/2 is
of area greater than 4/3. Consequently, the squares cannot be perfectly packed into
any rectangle.

Given a rectangle R, by the width w.R/ we mean the smaller of the two
sidelengths; the other sidelength h.R/ of R is called the height. We will write
R D w.R/ � h.R/. Clearly, if R is a square, then w.R/ D h.R/.

2 Packing of squares of harmonic sidelengths

In 1966 Moser [9] posed the following well known problem (see also problem LM6
in [10]): find the smallest " � 0 such that the squares of sidelengths 1=2,1=3,1=4; :::

(see Fig. 3) can be packed into a rectangle of area 1
6�2 � 1C " (the sum of areas of

the squares equals 1
6�2 � 1). Obviously, if " D 0, then we get the perfect packing.

This problem is still open. Only some upper bounds are known for ":

� Meir and Moser [8] showed that the squares can be packed into a square of side-
length 5/6 (consequently, " < 1=20). Obviously, this is the smallest possible
square; to pack a square of sidelength 1/2 together with a square of sidelength
1/3, a square of sidelength at least 1/2+1/3=5/6 is needed.

� Jennings ([5]) proved that " < 1=127.
� Ball [1] showed that " < 1=198.
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Fig. 3 Squares of harmonic sidelengths

� Paulhus [11] obtained the very impressive bound " � 1=1244918662. However,
Joós (see [6]) pointed out that the proof given in the article is incorrect. In [3] it is
showed that the Paulhus’ lemma can be refolmulated so that the the upper bound
" � 1=1244918662 remains valid.

The packing method presented in [11] is very easy. Squares of sidelengths
1=2,1=3,1=4; ::: are packed into a rectangle R1 D 1=2 � .�2=3 � 2/. Difficulties
arise only in estimating the effectiveness of this method.

Paulhus’ method [11].

1. The first square is packed into a corner of R1. After packing, the rectangle V2 D
1=2 � .�2=3 � 2 � 1=2/ remains uncovered. We take R2 D fV2g.

2. The square of sidelength 1/3 is packed into a corner of V2. After packing, the
uncovered part of V2 is divided into U3 [ V3, where U3 D .1=2 � 1=3/ � 1=3 and
V3 D .h.V2/ � 1=3/ � 1=2; we take R3 D fU3; V3g.

3. Assume that n > 3, that the squares of sidelength 1=2,1=3; :::; 1=.n�1/ are packed
into R1 and that the family Rn�1 is defined. We choose the rectangle with the
smallest width fromRn�1 into which the square of sidelength 1=n can be packed.
Denote this rectangle by R. We pack the square into a corner of R. After packing,
we divide the uncovered part of R into Un [ Vn, where Un is the rectangle of
sidelengths 1=n and w.R/ � 1=n and where Vn is the rectangle of sidelengths
w.R/ and h.R/ � 1=n; it is possible that Un is an empty set. We take Rn D
.Rn�1 n fRg/ [ fUn; Vng.

Fig. 4 illustrates the initial stage of the packing process. The first square is
packed into a corner of R1. The second square (of sidelength 1/3) is packed into
a corner of the uncovered area. The family R3 consists of two rectangles: U3 and
V3. Since 1=4 > 1=2 � 1=3, the square of sidelength 1/4 cannot be packed into
U3 (the width w.U3/ D 1=6). It is packed into a corner of V3 of width w.V3/ D
�2=3� 2� 1=2� 1=3 < 1=2 and height h.V3/ D 1=2. After packing, the uncovered
part of V3 is divided into rectangles V4 and U4. Now the family R3 consists of three
rectangles: U3, U4 and V4. Since w.U3/ < 1=5 < w.U4/ < w.V4/, the square of
sidelength 1/5 is packed into U4. From among four rectangles in R5, the rectangle
U3 is the one with the smallest width (w.U3/ D 1=6) into which the square of
sidelength 1/6 can be packed.

Paulhus used computer calculations and checked that at least 109 squares can
be packed into R1. It is highly unlikely that this method would produce a perfect
packing. However, it is not known how many squares can be packed, i.e., which
square stops the packing process with this method.
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Fig. 4 Paulhus’ method

3 Generalization

Let S t
n be a square of sidelength n�t for n D 1; 2; ::: If t � 1=2, then the total

area of the squares is equal to
P1

nD1
1
n2t and the series is divergent. However, if

t > 1=2, then the sum of areas of the squares is finite. Therefore, one can ask
whether S t

1 ; S t
2 ; ::: (for t > 1=2) can be packed perfectly into a rectangle. Obviously,

for t D 1 we get Moser’s original question.
Note that

P1
nD1

1
n2t D �.2t/, where �.s/ is the Riemann zeta function.

Some results for packing are known for t < 1. Chalcraft [2] showed that
S t
1 ; S t

2 ; S t
3 ; ::: can be packed perfectly into a square for all t in the range Œ0.5964,0.6�.

Joos [7] checked that these squares can be also packed perfectly for all t in the range
Œlog32,2=3� (log32 � 0.63). Wästlund [13] proved that S t

1 ; S t
2 ; S t

3 ; ::: can be packed
into a finite collection of squares of the same area as the sum of areas of the squares,
provided 1=2 < t < 2=3. In [4] it is showed that for all t in the range .1=2,2=3�, the
squares S t

1 ; S t
2 ; S t

3 ; ::: can be packed perfectly into a single square. Tao [12] proved
that for any 1=2 < t < 1, and any n0 that is sufficiently large depending on t , the
squares S t

n0
; S t

n0C1; ::: can be packed perfectly into a square. Unfortunately, existing
packing methods and proofs are not very easy. This note presents a simple method
for perfect packing, but only for t slightly greater than 1=2. In particular, the packing
method is not effective for t D 1 (for packing of squares of harmonic sidelength).

4 Perfect packing of squares

Let t be a fixed number from the interval .1=2,17=32� and let S be a square of areaP1
nD1

1
n2t . We will write Sm instead of S t

m. The idea of the packing method is as
follows. For each n � 2, the empty space in S , i.e., the part of S not covered by
packed squares S1; :::; Sn�1, will be divided into 2n � 1 rectangles. Then, as in the
Paulhus’ method, Sn will be packed into a corner of one of these rectangles.

A rectangle R is m-big, provided that w.R/ � 2m�t .
A rectangle R is basic, provided that w.R/ � h.R/ � 2w.R/.
Obviously, each m-big rectangle is also n-big for n > m. Moreover, each basic

rectangle is n-big for sufficiently large value of n.
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Fig. 5 w.R/ � 2m�t ,R D Sm [ Lm [ Bm [ Tm

Lemma 1 Let m be a positive integer and let R be an m-big rectangle. Then R can
be divided into four parts: Sm and three rectangles that are either basic or m-big.

Proof Case 1, when w.R/ > 5m�t . The rectangle R is divided into: Sm, Bm, Lm

and Tm (see Fig. 5, left), where Bm D m�t � m�t , Lm D .2m�t / � .h.R/ � m�t /

and Tm D .w.R/ � 2m�t / � h.R/. Clearly, Bm is basic. Moreover, Lm and Tm are
m-big. It is possible that Tm is m-big and basic at the same time.

Case 2, when w.R/ � 5m�t . Let Bm and Lm be rectangles of sidelengths m�t

and .w.R/ � m�t /=2. Obviously, Bm and Lm are basic.
By h.R/ � w.R/ � 2m�t we get h.R/ � m�t � w.R/ � m�t � 1

2w.R/. Let Tm

be a rectangle of sidelengths w.R/ and h.R/ � m�t . Observe that Tm is either m-
big (provided h.R/ � m�t � 2m�t ) or basic (provided h.R/ � m�t � 2w.R/). It
is possible that Tm is m-big and basic at the same time. The rectangle R is divided
into Sm, Lm, Bm and Tm (see Fig. 5, middle and right).

Packing method.

1. The first square is packed into a corner of S . After packing S1, the uncovered
part of S is divided into L1 [ B1 [ T1 (as in the proof of Lemma 1) and we take
R1 D fL1; B1; T1g.

2. Assume that n > 1, that the squares S1; :::; Sn�1 are packed into S and that the
familyRn�1 is defined. We choose one of n-big rectangles fromRn�1 in any way.
Denote this rectangle by R. We pack Sn into a corner of R. After packing Sn we
divide the uncovered part of R into Ln [ Bn [ Tn (as in the proof of Lemma 1)
and we take Rn D .Rn�1 n fRg/ [ fLn; Bn; Tng.

Fig. 6 illustrates the initial stage of the packing process. The first square is packed
into a corner of S . We have four possibilities; for example, we pack S1 into the
lower left corner. Since w.L1/ � 2 � 2�t as well as w.T1/ � 2 � 2�t , both rectangles
L1 and T1 are 2-big. We have eight possibilities for packing S2: either in one of the
corners of L1 or in one of the corners of T1. We choose one of them.

Clearly, Rn�1 contains 2n � 1 rectangles with mutually disjoint interiors, for any
n � 2. Each rectangle from Rn�1 is either n-big or basic.
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Fig. 6 Packing method

Fig. 7 Sum of areas of rectan-
gles

Theorem 1 For each t in the range 1=2 < t � 17=32, the squares S t
n can be

packed perfectly into the square S .

Proof Let t be a fixed number from the interval .1=2,17=32�. The area of S is
equal to

P1
iD1

1
i2t

D �.2t/ � �.17=16/ > 16. Consequently, w.S/ > 2 � 1
1t
, i.e., S

is 1-big. We pack S t
1 ; S t

2 ; ::: into S by our method. To prove Theorem 1 it suffices
to show that for any n there is an n-big rectangle in Rn�1 (into which S t

n can be
packed).

First we estimate the sum of areas of rectangles in Rn�1, i.e., the area of the
uncovered part of S after packing S t

n�1. This value is equal to the sum of areas of
unpacked squares S t

n; S t
nC1; ::: (which is equal to the sum of areas of rectangles of

sidelengths 1 and 1
i2t

, for i D n; n C 1; n C 2; :::), i.e., is equal to (see Fig. 7)

1

n2t
C 1

.n C 1/2t
C::: >

Z C1

n

1

x2t
dx D 1

2t � 1
n1�2t � 1

2 � 17
32 � 1

n1�2t D 16n1�2t :

Assume that there is an integer n such that S t
n cannot be packed into S by our

method. This implies that there is no n-big rectangle in Rn�1. Then all rectangles
in Rn�1 are basic and the width of each such rectangle is smaller than 2n�t . The
area of each such rectangle is smaller than .2n�t / � 2.2n�t / D 8n�2t . Since 2n � 1
rectangles are in Rn�1, it follows that the total area of rectangles in Rn�1 is smaller
than .2n � 1/ � 8n�2t < 16n1�2t , which is a contradiction.

Consequently, S t
1 ; S t

2 ; ::: can be packed into S .

Remark 1 The same packing method permits a perfect packing of S t
1 ; S t

2 ; ::: into
any rectangle R of area �.2t/, provided w.R/ � 2 and 1=2 < t � 17=32.
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