
MATHEMATIK IN DER LEHRE - TEACHING MATHEMATICS

https://doi.org/10.1007/s00591-022-00318-x
Math Semesterber (2023) 70:43–56

Counterexamples on compositions

Jürgen Appell · Belén López Brito · Simon Reinwand

Received: 4 September 2021 / Accepted: 28 January 2022 / Published online: 25 March 2022
© The Author(s) 2022

Abstract We give a collection of 16 examples which show that compositions g ıf
of well-behaved functions f and g can be badly behaved. Remarkably, in 10 of
the 16 examples it suffices to take as outer function g simply a power-type or
characteristic function. Such a collection of examples may serve as a source of
exercises for a calculus course.
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Many function classes are stable under the elementary algebraic operations: if two
functions f and g belong to some class, the same is true for the sum f C g, the
difference f � g, the product fg, and the quotient f=g (if defined). Some simple
function classes are also stable under compositions; for example, it is taught in
every first year calculus course that the composition g ı f of two continuous [resp.
Lipschitz continuous resp. differentiable] functions f and g is also continuous [resp.
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Lipschitz continuous resp. differentiable], where the derivative of g ı f in the latter
case may be calculated by the chain rule.

In many cases, however, the situation is more complicated for the composition:
here one usually has to impose an additional condition on one of the functions f
or g to guarantee that a certain property of them carries over to g ı f . The aim of
this survey is to provide a series of counterexamples which illustrate this situation;
such counterexamples may be useful for enriching your calculus course and for
preventing your students from jumping too fast to wrong conclusions.

We note en passant that sometimes quite the opposite may be true: compositions
are well-behaved, but algebraic operations are not. For instance, it is completely
trivial that the composition of two Darboux functions f; g W R ! R (i.e., functions
with the intermediate value property) is again a Darboux function. On the other
hand, the two oscillation functions

f .x/ WD
(
sin

1

x
for x ¤ 0;

1 for x D 0;
g.x/ WD

(
� sin

1

x
for x ¤ 0;

0 for x D 0;

are both Darboux functions, but their sum is the characteristic function f Cg D �f0g
which fails to have the intermediate property. A similar phenomenon is true for the
Luzin property:1 it is again completely trivial that the composition of two functions
f; g W R ! R with the Luzin property has again the Luzin property; on the other
hand, in [11, Exercise 21.G] one can find two functions f; g W Œ0,1� ! R with the
Luzin property whose sum f C g fails to have the Luzin property.

Some of the examples presented in the sequel are “folklore”, some are our own
spontaneous invention. The reader should not be deceived by the simplicity of certain
questions: the answer is sometimes pretty surprising.

1 Continuity and variation

Throughout this paper, we consider functions f which map some interval I into
some interval J , and compose them with functions g W J ! R. We start with
functions of bounded variation, i.e., functions f W Œa; b� ! R whose total Jordan
variation

Var.f I Œa; b�/ WD supP

mX
j D1

jf .tj /� f .tj �1/j

is finite, where the supremum is taken over all partitions P D ft0; t1; :::; tmg (with
variable m) of the interval Œa; b�. Our first example shows that the composition of
two functions of bounded variation need not have bounded variation.

1 Recall that a function has the Luzin property (or property (N)) if it maps nullsets into nullsets. A promi-
nent counterexample is the Cantor function.
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Counterexamples on compositions 45

Example 1 Let f W Œ0,1� ! Œ0,1� be the oscillation function defined by

f .x/ WD
�
x2sin2 1

x
for 0 < x � 1;

0 for x D 0.

A straightforward calculation shows that f is differentiable on Œ0,1� with

f 0.x/ D
�
2xsin2 1

x
� 2 sin 1

x
cos 1

x
for 0 < t � 1;

0 for x D 0.

Consequently, jf 0.x/j � 4 which shows that f 0 is bounded2 on Œ0,1�. This
implies that Var.f I Œ0,1�/ � 4, so f has bounded variation.

Moreover, the function g W Œ0,1� ! R defined by g.y/ WD p
y, being monotone,

also has bounded variation. On the other hand, the total variation of the composition
g ı f is infinite.3 �

Example 1 shows that the composition of a function f of bounded variation and
a Hölder continuous function g with Hölder exponent ˛ D 1=2 may have unbounded
variation. The question arises whether or not we can give such a functions g also
with arbitrary preassigned Hölder exponent ˛ 2 .0,1/. This is in fact possible, as
the following example shows.

Example 2 Fix ˛ 2 .0,1/, and let g.u/ WD u˛. It is clear that g is Hölder
continuous on Œ0,1� with maximal Hölder exponent ˛. We define f W Œ0,1� ! Œ0,1�
by taking, for n 2 N,

f .x/ WD

8̂̂̂
<
ˆ̂̂:
0 for x D 0 or x D 1

2n � 1
;

1

n1=˛
for x D 1

2n
;

linear otherwise:

Then

Var.f I Œ0,1�/ D 2
1X

nD1

1

n1=˛
< 1;

since ˛ < 1. Consequently, f has finite variation on Œ0,1�. On the other hand,

g

�
f

�
1

2n

��
� g

�
f

�
1

2n � 1

��
D 1

n
;

which implies that the total variation of g ı f is infinite. �
A very important class which is related both to continuity and bounded variation

is the set of absolutely continuous functions. This set is a linear space, and even an

2 However, the second term in the derivative shows that f 0 is not continuous on Œ0,1�.
3 The reason for this is essentially the divergence of the harmonic series.
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46 J. Appell et al.

algebra. However, the composition of two absolutely continuous functions need not
be absolutely continuous.

Example 3 Let f and g be the same functions as in Example 1. Having a bounded
derivative, f is Lipschitz continuous on Œ0,1�, hence absolutely continuous. The
function g is not Lipschitz continuous on Œ0,1�, but absolutely continuous. However,
since g ı f has unbounded variation, it cannot be absolutely continuous. �

Note that the composition of two absolutely continuous functions which is not
absolutely continuous, as in Example 3, must have unbounded variation. In fact, the
well-known Banach-Zaretskij theorem (see [2, p. 349] or [3, Theorem 4.6.2]) states
that a function is absolutely continuous if and only if it has bounded variation, is
continuous, and has the Luzin property. Since the last two properties are stable under
compositions, the lack of absolute continuity can be only due to a lack of bounded
variation.

In this connection, it is interesting to observe that g ı f is indeed of bounded
variation if f is increasing and g is of bounded variation, and g ı f is absolutely
continuous if f is increasing and both f and g are absolutely continuous. So it is
not accidental that the inner function f in Example 3 is heavily oscillating.

Monotone functions, and so also functions of bounded variation, by Jordan’s
decomposition theorem [4, Corollary 13.6], are not “too discontinuous”, inasmuch as
they can have only removable discontinuities or discontinuities of first kind (jumps).
Functions with this property are called regular. The next example shows that the
composition of two regular functions need not be regular.

Example 4 Define an oscillation function f W Œ�1,1� ! Œ�1,1� by

f .x/ WD
(
x sin

1

x
for 0 < jxj � 1;

0 for x D 0;

and let g W Œ�1,1� ! R be the restriction of the signum function to Œ�1,1�, i.e.,

g.y/ WD
8<
:

�1 for �1 � y < 0;
0 for y D 0;
1 for 0 < y � 1.

Then f is regular (even continuous), and g is also regular (even monotone). On
the other hand, g ı f , having a discontinuity of second kind at 0, is not regular. �

In view of Example 3 the question arises if, given two absolutely continuous
f and g, we can impose better properties on one of these functions to make g ı
f absolutely continuous. It is very easy to see that a possible such condition4 is
Lipschitz continuity of the outer function g. On the other hand, Example 3 shows
that it does not help to require Lipschitz continuity of the inner function f . The
same example shows that we cannot weaken Lipschitz continuity of g to Hölder
continuity to ensure the absolute continuity of g ı f .
4 In the last section we will see that this condition is sharp.
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Counterexamples on compositions 47

A more general class than continuous functions is that of Baire class one func-
tions, which means pointwise limits of sequences of continuous functions. This
class contains not only all continuous functions, but also all functions of bounded
variation, and even all regular functions. An important result [11, Theorem 11.4]
states that the points of discontinuity of a Baire class one function f W R ! R form
a meager F� set. Consequently, the points of continuity of such a function form
a dense set. This implies that the Dirichlet function f D �Q is not Baire class one.5

Sums, products, and uniform limits of Baire class one functions are again Baire
class one. However, taking compositions one may leave this class.

Example 5 Let f W Œ0,1� ! Œ0,1� be the Riemann function defined by6

f .x/ WD
8<
:
1

q
for x D p

q
2 Œ0,1� \ Q;

0 for x 2 Œ0,1� n Q:

The function f is Baire class one, and it is continuous precisely at each irrational
point. The characteristic function g WD �.0,1�, being monotone, is also Baire class
one. However, g ı f is the Dirichlet function which is not Baire class one. �

It is easy to see that g ı f is Baire class one if f is Baire class one and g is
continuous, or vice versa.7

Now we pass to semicontinuous functions: f W R ! R is upper semicontinuous
at x0 2 R if

f .x0/ � lim sup
x!x0

f .x/;

and lower semicontinuous at x0 2 R if

f .x0/ � lim inf
x!x0

f .x/:

It is almost trivial to prove that the upper resp. lower semicontinuity of g carries
over to g ı f provided that the inner function f is continuous. Interestingly, in the
reverse order this is false.

Example 6 The oscillation function f W Œ0,1� ! Œ�1,2� defined by

f .x/ WD
�
sin 1

x
for x ¤ 0;

2 for x D 0

5 This may also easily be proved directly.
6 Here we assume, of course, that p and q are coprime, i.e., have no common divisors d > 1.
7 More generally, one may define higher order Baire classes, considering continuous functions as Baire
class zero, and show that g ı f is Baire class m C n if f is Baire class m and g is Baire class n. For
example, the Dirichlet function is Baire class 2.
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is upper semicontinuous. Moreover, the function g defined by g.y/ WD .3�y/.yC1/
is clearly continuous on R. However, for the function g ı f we have

lim sup
x!0

g.f .x// D 4 > 3 D g.f .0//; lim inf
x!0

g.f .x// D 0 < 3 D g.f .0//:

Consequently, g ı f is neither upper nor lower semicontinuous. �
In view of Example 6 we mention that g ı f is upper semicontinuous if f is

upper semicontinuous and g is upper semicontinuous and increasing, or f is lower
semicontinuous and g is upper semicontinuous and decreasing. Similarly, g ı f is
lower semicontinuous if f is lower semicontinuous and g is lower semicontinuous
and increasing, or f is upper semicontinuous and g is lower semicontinuous and
decreasing. Thus, it is not accidental that the function g in Example 6 is not globally
monotone, but only piecewise monotone on .�1; 1� and Œ1;1/.

Splitting the limit for x ! x0 into the unilateral limits x ! x0� and x ! x0C
in the definition of derivatives, one may define one-sided diferentiability. Recall that
the left resp. right derivative of f at x0 2 R is defined by

lim
x!x0�

f .x/ � f .x0/
x � x0 ; lim

x!x0C
f .x/ � f .x0/

x � x0 :

It is worthwhile mentioning that one-sided differentiability does not imply conti-
nuity (unless both the left and right derivative exist). For example, the characteristic
function �.0,1/ is only left differentiable at 0, and only right differentiable at 1.
Concerning compositions, here is an example.

Example 7 This example shows that the composition of two one-sided differen-
tiable functions need not be one-sided differentiable. Let

f .x/ WD
8<
:x

2 cos
1

jxj for x ¤ 0;

0 for x D 0

and g.y/ WD 2�Œ0;1/.y/. Then g is right differentiable at f .0/ D 0, and f is
even differentiable in the classical sense at x0 D 0. The sequence .xn/n defined by
xn D 1=n� converges to 0 from above as n ! 1. However,

g.f .xn// � g.f .0//
xn � 0

D n�

�
g

�
.�1/n

n2�2

�
� 1

�
D .�1/nn�

diverges as n ! 1, and so g ı f is not right differentiable at x0 D 0. Since
f .x/ D f .jxj/, the composition g ı f is not left differentiable at x0 D 0 either. �

Example 7 shows that g ıf need not be one-sided differentiable if g is one-sided
differentiable and f is even differentiable. The question arises what happens if we
take f one-sided differentiable and g differentiable. Here we have a positive result:
if f W R ! R is one-sided differentiable at x0, and g W R ! R is differentiable at
f .x0/, then g ı f W R ! R is one-sided differentiable (in the same sense as f ) at
x0. We leave the proof to the reader.
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Counterexamples on compositions 49

2 Measurability and integrability

Now we pass to measurable and integrable functions. We start with the Riemann
integral. Here we have Lebesgue’s well-known criterion for Riemann integrability:
a real function is Riemann integrable on a compact interval if and only if it is
bounded and its discontinuity set is a Lebesgue nullset. This implies, for example,
that the Riemann function is integrable, but the Dirichlet function is not, and suggests
the following

Example 8 This example shows that the composition of two Riemann integrable
functions need not be Riemann integrable. Let f W Œ0,1� ! Œ0,1� be the Riemann
function from Example 5, and g W Œ0,1� ! R the characteristic function g.y/ WD
�.0,1�.y/. Then g ı f is the Dirichlet function which is not Riemann integrable. �

From Lebesgue’s criterion it follows that g ı f is Riemann integrable if f is
Riemann integrable and g is continuous. Example 8 shows that the latter condition
is quite subtle: it suffices to make g discontinuous at just one point to destroy the
integrability of g ı f .

Even more interesting is the fact that, as several times before, we cannot change
the order in the composition.

Example 9 Denote by C˛ � Œ0,1� the Cantor set of measure ˛ > 0 (see, e.g., [5,
Example 8.4]), and define f W Œ0,1� ! Œ0,1� by

f .x/ WD dist.x; C˛/ D inf fjx � aj W a 2 C˛g:

Clearly, f is (even Lipschitz) continuous. Composing f with the Riemann in-
tegrable characteristic function g.y/ WD �f0g.y/, we end up with the characteristic
function g ı f D �C˛ of C˛ which is not Riemann integrable, because its disconti-
nuity set C˛ has positive measure.8 �

Let us pass now to the Lebesgue measure and Lebesgue integral. Here we ba-
sically need only two counterexamples: one for two measurable functions whose
composition is not measurable, and one for two integrable functions whose compo-
sition is not integrable. To this end, some preliminary remarks on nonmeasurable
sets are in order.

Recall that the Cantor function � W Œ0,1� ! Œ0,1� associated to the ternary Cantor
nullset C is surjective, continuous, and increasing, but not injective. The strict Cantor
function  W Œ0,1� ! Œ0,1� given by  .x/ WD 1

2 .x C �.x// is even bijective,
continuous, and strictly increasing (see, e.g., [5, Example 8.16]). Being monotone,
the function  has bounded variation; however, it is not absolutely continuous, since
it maps the nullset C into a set of positive measure, so it lacks the Luzin property.

8 Here we use the fact that a characteristic function �D is discontinuous precisely on the boundary @D of
D, and @C˛ D C˛ , since C˛ is closed without interior points.
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50 J. Appell et al.

Choose a nonmeasurable set9 E �  .C/. Since  is a homeomorphism, we
deduce then that D WD  �1.E/ � C, and so D is a nullset.

Example 10 With  , E and D as above, we define f; g W Œ0,1� ! Œ0,1� by
f WD  �1 and g WD �D . Both functions are obviously Lebesgue measurable. On
the other hand, since the composition g ı f D �E is the characteristic function of
a nonmeasurable set, it cannot be measurable. �

Example 10 shows that we may lose measurability of the composition of two
measurable functions even if the inner function is extremely well-behaved. Let us
point out that the composition g ı f of a measurable function f and a continuous
functions g is always measurable, so also here we encounter the usual asymmetry.

Concerning Lebesgue integrability, finding a counterexample is quite easy.

Example 11 Define f W Œ0,1� ! R by

f .x/ WD
(

1p
x

for 0 < x � 1;

0 for x D 0.

It is well-known that f is Lebesgue integrable on Œ0,1� with integral 2. How-
ever, composing f with the integrable function g.y/ WD y2 gives a nonintegrable
function. �

Note that the function g is even analytic and monotone (on .0;1/). This means
that, in contrast to measurability, requiring stronger properties of the outer function
does not help to ensure that a composition has the same integrability property as the
inner function.

3 Further function classes

In this section we collect some more pathologies on compositions which seem worth
mentioning. Recall that a real function f is globally continuous if and only if10 the
preimage f �1.M/ is open [resp. closed] for each open [resp. closed] subset M .
A completely independent notion is openness or closedness of maps: a function
f is called open [resp. closed] if the image f .M/ is open [resp. closed] for each
open [resp. closed] set M . It is a completely trivial consequence of the definition
that the composition of open [resp. closed] functions is again open [resp. closed].
However, one should not mix up these notions when dealing with two functions, as
the following examples show.

Example 12 Let f; g W R ! R be defined by f .x/ WD x2 and g.y/ WD e�y . Then
f is closed, but not open, while g is open, but not closed. However, the composition
g ı f W R ! R is neither closed nor open, since .g ı f /.R/ D .0,1�. �

9 For instance, we can take as E a modified construction of Vitali’s classical nonmeasurable subset of
Œ0,1�.
10 This is true even in the very general setting of metric and even topological spaces.
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Counterexamples on compositions 51

Example 13 Likewise, let f; g W R ! R be defined by f .x/ WD arctanx and
g.y/ WD y2. Then f is open, but not closed, while g is closed, but not open.
However, the composition g ı f W R ! R is neither closed nor open, since .g ı
f /.R/ D Œ0; �2=4/. �

Another interesting class are functions f with primitive, i.e., f D F 0 for some
differentiable function F . It is well known that every continuous function on an
interval has a primitive, and every function with primitive has the intermediate
value property. An example which shows that inclusions between these classes are
strict is the parameter-dependent oscillation function f� W Œ0,1� ! R defined by

f� .x/ WD
(
sin

1

x
for 0 < x � 1;

� for x D 0.

So the function in Example 6 is f D f2. The function f� is continuous for no
value of � , has the intermediate value property for �1 � � � 1, and has a primitive
only for � D 0. In fact, a primitive of f D f0 is given in explicit form by

F.x/ WD
8<
:x

2 cos
1

x
� 2

Z x

0
t cos

1

t
dt for 0 < x � 1;

0 for x D 0;

as may be verified by a straightforward calculation. We use this function to show
that g ıf need not have a primitive even if f has a primitive and g is very smooth.

Example 14 Let f D f0 W Œ0,1� ! Œ�1,1� be the function we just considered, and
let g.y/ WD y2. We claim that g ı f has no primitive. In fact, it is not hard to verify
that h WD g ı f has the primitive

H.x/ WD x

2
C x2

4
sin

2

x
� 1

2
H

Z x

0
t sin

2

t
dt;

but only on the interval .0,1�. Calculating the derivative of H at zero directly yields

lim
x!0C

H.x/

x
D 1

2
:

This means that H 0.x/ has the “wrong value” in zero, so the square h D f 2 has, in
contrast to f , no primitive. �

It is remarkable that this time also the reverse direction fails: if g has a primitive
and f is even continuous and monotone, it may happen that g ıf has no primitive.
To illustrate this with a counterexample is harder than in Example 14; we briefly
sketch the idea and refer the interested reader for a general discussion and more
examples to Sect. 2.3 of the recent book [10].
Example 15 Let f W Œ0,1� ! Œ0,1� be the continuous increasing Cantor function
which we already considered before Example 10. Being continuous, f has certainly
a primitive. Putting hn WD 3n and ın WD 12�n, we define a function g W Œ0,1� ! R
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52 J. Appell et al.

in such a way that the graph of g over every interval In WD Œ2�n � ın; 2
�n C ın� is

a triangle with vertices .2�n � ın; 0/, .2
�n C ın; 0/, and .2

�n; hn/. The function g
can be given explicity on In by

g.y/ WD

8̂<
:̂
0 for 2�.nC1/ C ınC1 � y < 2�n � ın;
hn

ın
.y � 2�n/C hn for 2�n � ın � y < 2�n;

hn

ı
.2�n � y/C hn for 2�n � y < 2�n C ın:

Finally, we set g.y/ D 0 for y D 0 or 1=2C 1=12 � y � 1. Since the function g
is continuous on Œa; 1� for every a 2 .0,1/, it has a primitive G on .0,1� which may
be calculated through the formula

G.y/ D 1

3
�

Z 1

y

g.t/dt .0 < y � 1/:

However, being unbounded near zero, the function g is certainly not continuous
on the whole interval Œ0,1�. Nevertheless, a somewhat cumbersome computation
shows that we may extend G to a primitive of g on Œ0,1� if we put G.0/ WD 0.

In this way we have constructed two functions f and g with primitives, where
only f is continuous.11 Let us now show that the composition h WD g ı f W Œ0,1� !
R does not have a primitive on Œ0,1�. In fact, suppose that H W Œ0,1� ! R is
differentiable with H 0.x/ D h.x/ for all x 2 Œ0,1�. Since h is continuous on .0,1�
we deduce that

H.1/�H.3�n/ D H

Z 1

3�n

g.f .t//dt �
nX

kD1

Z 2�3�k

3�k

g.f .t//dt

D H

nX
kD1

g.2�k/

3k
D

nX
kD1

hk

3k
D n;

where we used the fact that f satisfies f .Œ3�k ; 2 �3�k �/ D f2�kg. But the continuity
of H on Œ0,1� implies that the first term of this expression tends to H.1/�H.0/ as
n ! 1 which is impossible. �

4 Necessary conditions

Our main objective in the preceding sections may be formulated as follows: if we
consider all functions f W Œa; b� ! R from a certain function class XŒa; b�, can you
give a sufficient condition on a function g W R ! R such that also g ı f belongs to
XŒa; b�? However, even when we have found a satisfactory answer to this question,
it is not clear at all how far this sufficient condition was from being necessary.
In this final section we therefore focus on finding conditions on g which are both

11 Clearly, if we want g ıf to have no primitive, at least one of the functions f or g has to be somewhere
discontinuous.
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Counterexamples on compositions 53

necessary and sufficient. In other words, we want to have a precise condition on g
which guarantees that g ıf 2 XŒa; b� for all f 2 XŒa; b�. To this end, we formally
introduce the perturbation set

P.X/ WD fg W g ı f 2 X for all f 2 Xg

which describes the maximal possible perturbation which does not take functions
from X outside X . For some classes X the description of P.X/ is simple, for some
classes complex, and for some others simply unknown. However, some preliminary
considerations are helpful. For instance, if the identity f .x/ D x belongs to X , then
clearly P.X/ � X . Conversely, if X is closed under compositions, the inclusion
P.X/ � X holds. As a consequence, we immediately deduce that

P.C / D C; P.Lip/ D Lip; P.D/ D D;

where C denotes the class of continuous functions, Lip the class of Lipschitz
continuous functions, and D the class of functions with the intermediate value
property. Denoting by BV the class of all functions of bounded variation, it was
proved in [7] that P.BV / D Liploc . With a similar reasoning one can show that
P.AC/ D Liploc , where AC is the linear space of absolutely continuous functions.
Consequently, whenever a function g W R ! R is not locally Lipschitz, we can find
an absolutely continuous function f such that g ı f is not of bounded variation.
This explains why the function g in Example 1 is not Lipschitz continuous near
zero, and why we cannot choose ˛ D 1 in Example 2.

Denoting by � the set of all functions with primitive, the problem of char-
acterizing P.�/ was open for a long time. It is clear that every affine function
g.y/ D ˛y C ˇ with fixed ˛; ˇ 2 R belongs to P.�/: if F is a primitive of f ,
the function H.x/ WD ˛F.x/ C ˇx is a primitive of h D g ı f . The solution of
this problem is rather surprising [1]: the set P.�/ contains only affine functions!
Consequently, whenever a function g W R ! R is not affine, we can find a function
f with a primitive such that g ı f does not have a primitive. This explains in turn
why even such a well-behaved analytic function like g.y/ D y2 in Example 14 may
destroy the existence of primitives.

To conclude, we remark that it is also interesting to slightly change our point of
view and consider the following question: suppose f W I ! J is continuous and
onto, and g ı f W I ! R has a property we are interested in; for which properties
can we infer that g W J ! R has then the same property? In the paper [9] the
authors study this problem for continuous functions and Darboux functions. It is
well-known that such properties may be recognized, at least in part, by looking at
the graph

�.f / WD f.x; f .x// W x 2 I g
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of f . Thus, f is continuous if and only if �.f / is pathwise connected,12 and f is
a Darboux function if �.f / is connected. The converse of the latter assertion is not
true, since one may construct rather counter-intuitive Darboux functions f W R ! R

with disconnected graph. Now, in [8] and [9] the following four interesting results,
among others, are stated, proved, and discussed:

� If I and J are compact, f W I ! J is continuous and onto,13 and g ı f W I ! R

is continuous, then also g is continuous.
� If f W I ! J is continuous and onto, and g ı f W I ! R has a connected graph,

then also g has a connected graph.
� If f W I ! J is continuous and onto, and g ı f W I ! R is a Darboux function,

then also g is a Darboux function.
� If f W I ! J is a Darboux function and onto, g W J ! R is a Darboux function,

and g ı f W I ! R is continuous, then also g is continuous.

The proof of the first assertion is an immediate consequence of the closed graph
theorem, while the proof of the second assertion follows from the equality

ˆ.�.g ı f // D f.f .x/; g.f .x/// W x 2 I g D f.y; g.y// W y 2 J g D �.g/;

where ˆ W I 	 R ! J 	 R is defined by ˆ.x; y/ WD .f .x/; y/, and we again used
the surjectivity of f for the second equality sign. The third and fourth assertions,
however, require more sophisticated arguments.

We point out that also in the last of the above four statements we have a certain
asymmetry in the following sense: if f W I ! J is a Darboux function, and both
g W J ! R and g ı f W I ! R are continuous, we cannot deduce that also f is
continuous. A corresponding counterexample may be found in [8].

Finally, we remark that compositions of functions with connected graph are dif-
ficult to handle. Here we mention two positive results: first, if f W I ! J is
continuous, and g W J ! R has a connected graph, then also g ı f W I ! R has
a connected graph [6]; second, if f W I ! J has a connected graph, and g W J ! R

is continuous, then also g ı f W I ! R has a connected graph [9]. In the paper [9]
the authors also construct a function f on the “comb space” with infinitely many
teeth

X WD .Œ0,1� 	 f0g/[ f.0,1/g [
1[

nD1

.f1=ng 	 Œ0,1�/

and a connected graph with a squeezed shifted oscillation function g W Œ0,1� ! R

with connected graph such that the composition g ı f W X ! R does not have
a connected graph. Of course, it would be nice to have an example where not only
g, but also f is defined on an interval. Unfortunately, we have been unable to find
such an example.

12 Here we may replace “pathwise connected” by “connected and closed”.
13 We need the surjectivity of f , since otherwise g might be continuous on f .I /, but not on J n f .I /.
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The described problem of drawing conclusions from a property of a composition
gıf to properties of the factors f and g is of interest even for much simpler classes
of maps. For example, we mention some results for f; g W R ! R which are almost
trivial, but even hold for maps between arbitrary topological spaces:

� If g ı f is open, and g is injective and continuous, then also f is open.
� If g ı f is open, and f is surjective and continuous, then also g is open.

The same is true with “open” replaced with “closed”. One may easily show
that these assertions are not true without the injectivity requirement for g or the
surjectivity requirement for f . This is our last example.

Example 16 Define f W R ! R and g W R ! R by

f .x/ WD
8<
:
x � 1 for x < 0;
0 for x D 0;
x C 1 for x > 0;

g.y/ WD
8<
:
y C 1 for y < �1;
0 for �1 � y � 1
y � 1 for y > 1.

Then g is continuous and .g ı f /.x/ D x is open (and even a homeomorphism
on R). However, g is not injective, and f is not open.

Define f W R ! R and g W R ! R by f .x/ WD ex and g.y/ WD y2. Then f is
continuous and .g ı f /.x/ D e2x is open (and even a homeomorphism between R

and .0;1/). However, f is not surjective, and g is not open. �
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