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Abstract In this manuscript we discuss the notion of (statistical) independence
embedded in its historical context. We focus in particular on its appearance and role
in number theory, concomitantly exploring the intimate connection of independence
and the famous Gaussian law of errors. As we shall see, this at times requires us
to go adrift from the celebrated Kolmogorov axioms, which give the appearance
of being ultimate ever since they have been introduced in the 1930s. While these
insights are known to many a mathematician, we feel it is time for both a reminder
and renewed awareness. Among other things, we present the independence of the
coefficients in a binary expansion together with a central limit theorem for the sum-
of-digits function as well as the independence of divisibility by primes and the
resulting, famous central limit theorem of Paul Erdős and Mark Kac on the number
of different prime factors of a number n 2 N. We shall also present some of the
(modern) developments in the framework of lacunary series that have its origin in
a work of Raphaël Salem and Antoni Zygmund.
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1 Introduction

One of the most famous graphs, not only among mathematicians and scientists, is
the probability density function of the (standard) normal distribution (see Fig. 1),
which has adorned the 10 Mark note of the former German currency for many years.
Although already taking a central role in a work of Abraham de Moivre (26. May
1667 in Vitry-le-Francois; 27. November 1754 in London) from 1718, this curve
only earned its enduring fame through the work of famous German mathematician
Carl Friedrich Gauß (30. April 1777 in Braunschweig; 23. February 1855 in Göttin-
gen), who used it in the approximation of orbits by ellipsoids when developing the
least squares method, nowadays a standard approach in regression analysis. More
precisely, Gauß conceived this method to master the random errors, i.e., those which
fluctuate due to the unpredictability or uncertainty inherent in the measuring pro-
cess, that occur when one tries to measure orbits of celestial bodies. The strength
of this method became apparent when he used it to predict the future location of
the newly discovered asteroid Ceres. Ever since, this curve seems to be the key to
the mysterious world of chance and still the myth holds on that wherever this curve
appears, randomness is at play.

With this article we seek to address mathematicians as well as a mathematically
educated audience alike. One can say that the goal of this manuscript is 3-fold. First,
for those less familiar with it we want to undo the fetters that connect chance and
the Gaussian curve so onesidedly. Second, we want to recall the deep and intimate
connection of the notion of statistical independence and the Gaussian law of errors
beyond classical probability theory, which, thirdly, demonstrates that occasionally
one is obliged to step aside from its seemingly ultimate form in terms of the Kol-
mogorov axioms and work with notions having its roots in earlier foundations of
probability theory.

To achieve this goal we shall, partially embedded in a historic context, present
and discuss several results from mathematics where, once an appropriate form of
statistical independence has been established, the Gaussian curve emerges natu-
rally. In more modern language this means that central limit theorems describe the
fluctuations of mathematical quantities in different contexts. Our focus shall be on
results that nowadays are considered to be part of probabilistic number theory. At
the very heart of this development lies the true comprehension and appreciation of
independence by Polish mathematician Mark Kac (3. August 1914 in Kremenez;
26. October 1984 in California). His pioneering works and insights, especially his

Fig. 1 The Gaussian curve
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collaboration with Hugo Steinhaus (14. January 1887 in Jasło; 25. February 1972 in
Wrocław) and famous mathematician Paul Erdős (26. March 1913 in Budapest; 20.
September 1996 in Warsaw), have revolutionized our understanding and formed the
development of probabilistic number theory for many years with lasting influence.
We refer the reader to [10, 11, 49, 50] for general literature on the subject.

2 The classical central limit theorems and independence–a refresher

In this section we start with two fundamental results of probability theory and the
notion of independence. These considerations form the starting point for future
deliberations.

2.1 The notion of independence

Independence is one of the central notions in probability theory. It is hard to imag-
ine today that this, for us so seemingly elementary and simple concept, has only
been used vaguely and intuitively for hundreds of years without a formal definition
underlying this notion. Implicitly this concept can be traced back to the works of
Jakob Bernoulli (6. January 1655 in Basel; 16. August 1705 in Basel) and evolved
in the capable hands of Abraham de Moivre. In his famous oeuvre “The Doctrine
of Chances” [15] he wrote:

“...if a Fraction expresses the Probability of an Event, and another Fraction
the Probability of another Event, and those two Events are independent; the
Probability that both those Events will Happen, will be the Product of those
Fractions.”

It is to be noted that, even though this definition matches the modern one, neither
the notion “Probability” nor “Event” had been introduced in an axiomatic way. It
seems that the first formal definition of independence goes back to the year 1900 and
the work [12] of German mathematician Georg Bohlmann (23. April 1869 in Berlin;
25. April 1928 in Berlin)1. In fact, long before Andrei Nikolajewitsch Kolmogorov
(25. April 1903 in Tambow; 20. October 1987 in Moscow) proposed his axioms
that today form the foundation of probability theory, Bohlmann had presented an
axiomatization–but without asking for � -additivity. For a detailed exposition of the
historical development and the work of Bohlmann, we refer the reader to an article
of Ulrich Krengel [37].

Roughly speaking, two events are considered to be independent if the occurrence
of one does not affect the probability of occurrence of the other, see also Remark 3.
We now continue with the formal definition of independence as it is used today. Let
.�;A;P/ be a probability space consisting of a non-empty set� (the sample space),

1 It was decades later that Hugo Steinhaus and Mark Kac rediscovered this concept independently of the
other mathematicians [34]. They were unaware of the previous works.
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72 G. Leobacher, J. Prochno

a � -Algebra (the set of events) on �, and a probability measure P W A ! Œ0,1�. We
then say that two events A;B 2 A are (statistically) independent if and only if

PŒA\ B� D PŒA� � PŒB� :

In other words two events are independent if their joint probability equals the product
of their probabilities. This extends to any collection .Ai /i2I of events, which is said
to be independent if and only if for every n 2 N, n � 2, and all subsets J � I of
cardinality n,

P
h\

i2J

Ai

i
D
Y
i2J

PŒAi � :

It is important to note that in this case we ask for way more than just

P
h\

i2I

Ai

i
D
Y
i2I

PŒAi � :

and still much more than pairwise independence. Consequently, we also have to
verify much more: the number of conditions to be verified to show that n given
events are independent is exactly
�n
2

�
C
�n
3

�
C :::C

�n
n

�
D 2n � .nC 1/ :

Having this notion of independence at hand, we define independent random vari-
ables. If X W � ! R and Y W � ! R are two random variables, then we say they
are independent if and only if for all measurable subsets A;B � R,

PŒX 2 A; Y 2 B� D PŒX 2 A� � PŒY 2 B� :

We use the standard notation fX 2 Ag for f! 2 � W X.!/ 2 Ag, PŒX 2 A� for
PŒfX 2 Ag�, and PŒX 2 A; Y 2 B� for PŒfX 2 Ag \ fY 2 Bg�.

This means that the random variables X and Y are independent if and only if
for all measurable subsets A;B � R the events fX 2 Ag 2 A and fY 2 Bg 2 A
are independent. Again, a sequence X1; X2; ::: W � ! R of random variables is said
to be independent if and only if for every n 2 N, n � 2, any subset I � N of
cardinality n, and all measurable sets Ai � R, i 2 I ,

P

�\
i2I

fXi 2 Ai g
�

D
Y
i2I

PŒXi 2 Ai � :

2.2 The central limit theorems of de Moivre-Laplace and Lindeberg

The history of the central limit theorem starts with the work of French mathe-
matician Abraham de Moivre, who, around the year 1730, proved a central limit
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theorem for standardized sums of independent random variables following a sym-
metric Bernoulli distribution [16].2 It was not before 1812 that Pierre-Simon Laplace
(28. March 1749 in Beaumont-en-Auge; 5. March 1827 in Paris) generalized this
result to the asymmetric case [39]. However, a central limit theorem for standardized
sums of independent random variables together with a rigorous proof only appeared
much later in a work of Russian mathematician Alexander Michailowitsch Ljapunov
(06. June 1857 in Jaroslawl; 03. November 1918 in Odessa) from 1901 [43]. Jarl
Waldemar Lindeberg (04. August 1876 in Helsinki; 12. December 1932 Helsinki)
published his works on the central limit theorem, in which he developed his famous
and ingenious method of proof (today known as Lindeberg method), in 1922 [41,
42]. While in a certain sense elementary, this technique can be applied in various
ways. A very nice exposition on Lindeberg’s method can be found in the survey ar-
ticle [20] of Peter Eichelsbacher and Matthias Löwe. For an exhaustive presentation
on the history of the central limit theorem we warmly recommend the monograph
of Hans Fischer [24].

Let us start with the classical central limit theorem of de Moivre, hence restricting
ourselves to the symmetric case p D 1

2 in the Bernoulli distribution.

Theorem 1 (De Moivre, 1730) Let X1; X2; X3; ::: be a sequence of independent
random variables with a symmetric Bernoulli distribution. Then, for all a; b 2 R

with a < b, we have

limn!1P

�
a �

Pn
kD1Xk � n

2q
n
4

� b

�
D 1p

2�

Z b

a

e� x2
2 dx :

The theorem of de Moivre, when discussed in school for instance, can be nicely
depicted using the Galton Board (also known as bean machine). Let us consider
the experiment of throwing an ideal and fair coin n-times (i.e., head shows up
with probability 1=2). The single throws are regarded to be independent as none of
them influences the other. The number k of heads showing up in that experiment
is a number between 0 and n. The probability that we see heads exactly k-times
is described by a binomial distribution. Now de Moivre’s theorem says that, for
a large number n of tosses tending to infinity, the form of a suitably standardized
histogramm approaches the Gaussian curve.

We have already mentioned at the beginning of this section that under suitable
conditions a central limit theorem for general independent random variables may be
obtained, not only those describing or modeling a coin toss.

We formulate Lindeberg’s central limit theorem. In what follows, we shall denote
by 1A the indicator function of the set A, i.e., 1A.x/ 2 f0; 1g with 1A.x/ D 1 if
and only if x 2 A. The expectation of a random variable X with respect to the
probability measure P is defined as EŒX� WD R

�XdP, if this integral is defined. X

2 A random variable X is Bernoulli distributed if and only if P.X D 0/ C P.X D 1/ D 1. Here
p D P.X D 1/ is the parameter of the Bernoulli distribution and in the case where p D 1

2 , we call the
distribution “symmetric”. In his paper de Moivre did not call them Bernoulli random variables, but spoke
of the probability distribution of the number of heads in coin toss.
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is called centered if and only if EŒX� D 0. If EŒjX j� < 1 we define the variance
by VarŒX� WD E

�
.X � EŒX�/2

�
.

Theorem 2 (Lindeberg CLT, 1922) Let X1; X2; X3; ::: be a sequence of inde-
pendent, centered, and square integrable random variables. Assume that for each
" 2 .0;1/,

Ln."/ WD 1

s2n

nX
kD1

EŒX2
k 1fjXk j>"sng�

n!1�! 0 .Lindeberg condition/;

where s2n WD Pn
kD1VarŒXk�. Then, for all a; b 2 R with a < b, we have

limn!1P

�
a �

Pn
kD1Xk

sn
� b

�
D 1p

2�

Z b

a

e� x2
2 dx :

Lindeberg’s condition guarantees that no single random variable has too much
influence. This immediately becomes apparent when looking at the Feller condition,
which is implied by Lindeberg’s condition. We refrain from discussing or presenting
the details and refer again to [20].

Remark 1 Let us assume that the random variables in Theorem 2 are identi-
cally distributed and have variance VarŒXk� D �2 2 .0;1/ for all k 2 N. Then
Lindeberg’s condition is automatically satisfied:

s2n D
nX

kD1

VarŒXk� D n�2

and therefore, since the random variables Xk are identically distributed, we obtain
for any " > 0 that

Ln."/ D 1

n�2

nX
kD1

E
h
X2

k11fjXkj>"sng
i

D 1

n�2

nX
kD1

E
h
X2

1 11fjX1j>"
p

n�g
i

D 1

�2
E
h
X2

1 11fjX1j>"
p

n�g
i

n!1�! 0;

where the convergence to 0 is a consequence of the Beppo Levi Theorem3.
The previous remark immediately implies the classical central limit theorem for

independent and identically distributed random variables.

3 Which is a version of the monotone convergence theorem.
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Corollary 1 Let X1; X2; X3; ::: be a sequence of independent and identically dis-
tributed random variables with EŒX1� D 0 and VarŒX1� D �2 2 .0;1/. Then, for
all a; b 2 R with a < b, we have

limn!1P

�
a �

Pn
kD1Xkp
n�2

� b

�
D 1p

2�

Z b

a

e� x2
2 dx :

One thing we immediately notice in the general version of Lindeberg’s central
limit theorem is the universality towards the underlying distribution of the random
variables. Hence, the distribution seems to be irrelevant. On the other hand, in both
the central limit theorem of de Moivre and the one of Lindeberg, we require the
random variables to be independent. Could it be that independence is the key to
a Gaussian law of errors? If so, does this connection go deeper and beyond a purely
probabilistic framework? In the remaining parts of this work we want to get to the
bottom of those questions.

2.3 Binary expansion and independence

In this section we will present a first example which a priori is non probabilistic. It
has to do with intervals corresponding to binary expansions of real numbers x 2 Œ0,1�
and a corresponding product rule for their lengths.

For simplicity, we start by reminding the reader of the decimal expansion of
a number x 2 Œ0,1/. One can prove that each number x 2 Œ0,1/ has a non-terminating
and unique decimal expansion (see, e.g., [8]). For example,

2

7
D 0.285714285714:::

and this expression is merely a short way for writing

2

7
D 2

10
C 8

102
C 5

103
C 7

104
C ::: :

Generally, for each x 2 Œ0,1/ there exist unique numbers d1.x/; d2.x/; d3.x/; ::: in
f0; 1; :::; 9g such that

x D d1.x/

10
C d2.x/

102
C d2.x/

103
C ::: :

Analogous to the decimal expansion, each number x 2 Œ0,1/ has a binary
expansion (also known as dyadic expansion), i.e., there are unique numbers
b1.x/; b2.x/; b3.x/; ::: in the set f0,1g such that

x D b1.x/

2
C b2.x/

22
C b3.x/

23
C ::: : (1)

For instance, we can write

2

7
D 0

2
C 1

22
C 0

23
C 0

24
C 1

25
C 0

26
C ::: :
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To guarantee uniqueness in the expansion, we agree to write the expansion in such
a way that infinitely many of the binary digits are zero. As already indicated by the
way we write it, the binary digits are functions in the variable we denoted by x, i.e.,

bk W Œ0,1/ ! f0,1g; x 7! bk.x/:

Sometimes these functions are called Rademacher functions, although Hans
Rademacher (3. April 1892 in Wandsbek; 7. February 1969 in Haverford) de-
fined a slightly different version [45]. The value that bk takes at x not only provides
information about the k-th binary digit of x, but also about x itself. Obviously, if
b1.x/ D 1, then x 2 Œ1=2,1/ or if b2.x/ D 0, then x 2 Œ0,1=4/ [ Œ1=2,3=4/. More
generally, if we define for each k 2 N the set

Bk WD
2k�1[
j D1

h2j � 2

2k
;
2j � 1

2k

�
;

then

bk.x/ D 1Œ0,1/nBk
.x/ D

�
0 W x 2 Bk

1 W x 2 Œ0,1/ n Bk :

These considerations yield the following: if n 2 N, k1; :::; kn 2 N, and "1; :::"n 2
f0,1g, then

�

 
n\

iD1

b�1
ki
."i /

!
D �

	fx 2 Œ0,1/ W bk1 D "1; :::; bkn
D "ng


D
�1
2

�n D
nY

iD1

�
	fx 2 Œ0,1/ W bki

D "i

�

;

where � denotes the 1-dimensional Lebesgue measure (which in this case simply as-
signs the length to an interval). This implies that the binary coefficients as functions
in x 2 Œ0,1/, are independent; a result seemingly discovered by French mathemati-
cian Émile Borel (7. January 1871 in Saint-Affrique; 3. February 1956 in Paris)
in 1909 [13]. In particular, the random variables Xk D bk satisfy the assumptions
of de Moivre’s theorem (Theorem 1) and so we obtain a central limit theorem for
binary expansions bk . Probability in the sense of coin tosses or events has not played
any role in our arguments. (Nevertheless, technically the Xk’s are bona-fide random
variables on the probability space

	
Œ0,1/;B.Œ0,1//; �/.)

2.4 Prime factors and independence

We shall now consider a fundamentally different example of independence in math-
ematics. Take a sufficiently large natural number N 2 N. We note that roughly half
of the numbers between 1 and N are divisible by the prime number 2, namely 2; 4; 6
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Statistical independence in mathematics–the key to a Gaussian law 77

and so on. In the same way, roughly one third of the numbers between 1 and N are
divisible by the prime number 3, namely 3; 6; 9 and so on. If we now consider the
numbers between 1 and N which are divisible by 6, then this is again roughly one
sixth. However, divisibility by 6 is equivalent to both divisibility by 2 and 3 and we
can write this as

1

6
D 1

2
� 1
3

for the corresponding fractions of numbers between 1 and N . But this reminds us
of the multiplication of probabilities–as occurring in the concept of independence!
Of course, the same argument applies for divisibility by general distinct primes p
and q as well as by any finite number of primes. We can say, in this sense, that
divisibility of a number by distinct primes is independent.

Apparently, every second natural number is divisible by 2, so that the numbers
with this property constitute one half of all natural numbers. One could thus think
that a randomly chosen natural number is divisible by 2 with probability 1

2 . In the
same way, this number would be divisible by 3 with probability 1

3 , and an analog
statement would hold for divisibility by every natural number.

It turns out that this notion, although intuitive, is incompatible with Kolmogorov’s
concept of probability in that no probability measure on the naturals with the above
property exists (And, as a consequence, it is impossible to define a uniform measure
on any countably infinite set).

To see this, define, for every pair of numbers n; k with n 2 N and k 2 f1; :::; ng
the set An;k WD fjnC k W j 2 N [ f0gg. For k ¤ n, An;k consists of all natural
numbers which yield remainder k after division by n, while for k D n we have
An;k D An;n, which is the set of all natural numbers that are divisible by n. We
denote by P.N/ the set of all subsets of N.

Lemma 1 Let � be a finite measure on the set P.N/, which satisfies

�.Ap;k/ D �.Ap;p/ (2)

for every prime number p and every k 2 f1; :::; pg. Then �.fmg/ D 0 for every
m 2 N, and therefore �.A/ D 0 for all A � N.

Proof First note that (2) implies �.Ap;k/ D �.N/=p for every prime number p
and all k 2 f1; :::; pg: indeed, if p is a prime number, then

�.N/ D �

� [
k2f1;:::;pg

Ap;k


D

X
k2f1;:::;pg

�.Ap;k/
.2/D p�.Ap;p/ ;

where we used the finite additivity of � to obtain the second equality. Combining
�.N/ D p�.Ap;p/ with (2) gives �.Ap;k/ D �.N/=p for all k 2 f1; :::; pg.
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78 G. Leobacher, J. Prochno

Now fix m 2 N. For every prime number p there exist numbers j 2 N[f0g and
k 2 f1; :::; pg such thatm D jpCk. Thusm 2 Ap;k . From our earlier considerations
it follows

�.fmg/ � �.Ap;k/ D �.N/=p :

Since �.N/ < 1 by assumption, and since there are arbitrarily large primes, it
follows that �.fmg/ D 0. But since � is a measure, and thus is � -additive, we get
�.A/ D P

m2A�.fmg/ D 0 for every A � N. �
So there exists no measure on P.N/ having the desired property (2). But could

it be that we have chosen the domain of � too large? The next proposition shows
that there is no smaller domain containing all Ap;k .

Proposition 1 We have �
	˚
Ap;k W p prime; k 2 f1; :::; pg�
 D P.N/.

Proof We define the set † WD �
	˚
Ap;k W p prime; k 2 f1; :::; pg�
. It is sufficient

to show that fmg 2 † for all m 2 N. To this end fix m 2 N. For every prime p > m
we have m 2 Ap;m, since m D 0 � p Cm. Therefore,

m 2
\

p prime; p>m

Ap;m :

Let ` 2 T
p prime; p>mAp;m. Then there exists a prime p with p > ` so that, since

` 2 Ap;m, ` D 0 � p Cm D m. Thus, fmg D T
p prime; p>mAp;m 2 †. �

Remark 2 Eq. (2) in Lemma 1 formalizes our earlier intuition that if �.Ap;p/

is the fraction of numbers divisible by p then this should equal the fraction of
numbers giving remainder 1 and so on. The Lemma shows us that there cannot be
a non-trivial finite measure � with this property and therefore we cannot assign
meaningful probabilities to those subsets in the framework of Kolmogorov’s theory.
In contrast to the independence of distinct binary digits of a number in Œ0,1/, we
cannot cover the independence of divisibility by distinct primes of a number in N

using Kolmogorov’s notion of independence of random variables.

3 Relative Measures

A possible remedy is a notion related to one of the earlier approaches to probability
theory going back at least to Richard von Mises (19. April 1883 in Lviv; 14. Juli
1953 in Boston) and can be found in early work of Kac and Steinhaus. However,
we were unable to trace the original source. In any case, this approach has to a large
extent been replaced by Kolmogorov’s axiomatization of probability.

One of the central notions in this manuscript shall be referred to as relative
measure and its definition and properties be discussed in the following section.
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3.1 Relative measurable subsets ofN

Definition 1 (Relatively measurable subsets ofN and relative measure) We say
that a subset A � N is relatively measurable if and only if the limit

limN !1
jA\ f1; :::; N gj

N
;

exists. In that case we define the relative measure �R of A as exactly this limit,

�R.A/ WD limN !1
jA \ f1; :::; N gj

N
:

It is easy to see that the collection of relatively measurable subsets of N forms
an algebra and that �R is a non-negative and (finitely-)additive set function on it.
Moreover, it is obvious that every finite subset of N is relatively measurable with
relative measure 0.

The sets An;k , n 2 N and k 2 f0; :::; n � 1g defined in Sect. 2.4 are relatively
measurable with

�R.An;k/ D 1

n
:

It is a direct consequence of Lemma 1 that �R cannot be � -additive. Indeed,

�R

�[
i2N

fig
�

D �R.N/ D 1 ¤ 0 D
X
i2N
�R.fig/ :

On the other hand, we can construct sets which are not relatively measurable.

Example 1 Let a1 D 0 and define

ak WD
�
0 W 22m < k � 22mC1 for some m 2 N0

1 W 22mC1 < k � 22mC2 for some m 2 N0 :

Consider the level set A WD fk 2 N W ak D 1g. Then A is not relatively measurable
because

2�.2mC2/jA\ f1; :::; 22mC2gj D 2�.2mC2/2.1 C 22 C :::C 22mC1/ D

2�.2mC1/ 2
2mC2 � 1

3
! 2

3
2�.2mC1/jA\ f1; :::; 22mC1gj D 2�.2mC1/2.1 C 22 C :::C 22m�1/ D

2�.2m/ 2
2m � 1

3
! 1

3
:

The relative measure allows us to conceive and show the independence of divis-
ibility by different primes in a formal way. In this regard this notion is superior to
a measure in the sense of Kolmogorov. We are now going to prove the indepen-
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dence of Ap;p and Aq;q for different primes p and q. By the fundamental theorem
of arithmetic a number is divisible by p as well as q if and only if it is divisible by
their product pq, and so Ap;p \ Aq;q D Apq;pq . Therefore, we obtain

�R.Ap;p \ Aq;q/ D �R.Apq;pq/ D 1

p � q D 1

p
� 1
q

D �R.Ap;p/�R.Aq;q/ ;

which is the product rule so characteristic for independence. Similarly, one can show
this property for each finite collection of different primes p1; :::; pm.

The following lemma shows that if the indicator function of a subset of the natural
numbers is eventually periodic, then the relative measure of that set is equal to the
average over the period. We shall leave the proof to the reader.

Lemma 2 Consider a set A � N. If there exist k 2 N and n0 2 N such that

8n � n0 W 1A.nC k/ D 1A.n/ ;

then A is relatively measurable and

�R.A/ D jA\ fn0 C 1; :::; n0 C kgj
k

:

Remark 3 (Independence and information) One important property of statistical
independence is that knowledge of one event, say B , does not present any informa-
tion about an independent event A: for independent A;B we have P.AjB/ D P.A/.

A similar situation occurs with numbers: knowledge about divisibility by one
prime does not tell us anything about divisibility by another one. This holds also
true for the digits considered earlier: if we know the k-th digit of a number x 2 Œ0,1/
this does not tell us anything about its `-th digit.

Consider now, for every j 2 N the function ˇj W N ! f0,1g defined by

ˇj .n/ WD
(
0 W b n

2j–1 c is even
1 W b n

2j–1 c is odd ;
(3)

such that ˇj .n/ is the j -th binary digit of n, and

n D
1X

j D1

ˇj .n/ 2
j �1 D

blog2.n/cC1X
j D1

ˇj .n/ 2
j �1 :

To every j 2 N assign the set Bj WD fn 2 N W ˇj .n/ D 1g, i.e. the set of all natural
numbers for which the j -th binary digit equals 1.

It follows from the definition of binary digits that for each j 2 N

Bj D
[

m2N[f0g
f2j �1.2mC 1/; :::; 2j �1.2mC 1/C 2j �1 � 1g ;
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which means that

Bc
j D

[
m2N[f0g

f2jm; :::; 2jmC 2j �1 � 1g ;

and so �R.Bj / D 1
2 . Moreover, for every choice of j; k 2 N with j < k, we have

�R.Bj \ Bk/ D �R.Bj /�R.Bk/, which can be proven using Lemma 2.

Definition 2 Let .Aj /j 2J be a family of relatively measurable subsets of N. We
say that .Aj /j 2J are independent if and only if for every m 2 N and every subset
I of cardinality m

�R

�\
i2I

Ai

�
D
Y
i2I

�R.Ai / :

Summarizing the preceding thoughts, we obtain the following result.

Proposition 2
1. For n 2 N and k 2 f1; :::; ng , let An;k WD fjnC k W j 2 N [ f0gg . Then the

family
	
Ap;p



p2N;p prime is independent.

2. For every j 2 N let Bj D S
m2N[f0g

f2j–1.2mC 1/; :::; 2j–1.2mC 1/C 2j–1–1g :
Then the family

	
Bj



j 2N is independent.

It is quite interesting that similar results to the ones for expansions of real numbers
in Œ0,1/ with respect to the Lebesgue measure can be obtained for the expansion of
natural numbers with respect to the relative measure on N.

3.2 Relatively measurable sequences and their distribution

In this subsection we shall introduce the notion of a relatively measurable sequence
and, in broad similarity to the way independence is defined in the sense of Kol-
mogorov, we introduce the notion of relatively independent sequences x; y W N ! R

and define a distribution function with respect to relative measures. As we shall see,
such a distribution function does not possess all the properties that—coming from
probability theory—we might expect it to have.

Definition 3 (Relatively measurable sequence) A sequence x W N ! R is said
to be relatively measurable if and only if the pre-image

x�1.I / WD ˚
n 2 N W xn 2 I�

of each interval I � R under x is a relatively measurable subset of N.
To us an interval means a convex subset ofR, in particular singleton sets are inter-

vals. Natural examples of measurable sequences are indicator functions of relatively
measurable sets and their finite sums.
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We shall now introduce what it means for two sequences to be independent with
respect to a relative measure. This is again done via a product rule.

Definition 4 (Independent sequences) Two relatively measurable sequences x; y W
N ! R are said to be �R-independent if and only if for any two intervals I; J � R

we have

�R

	
x�1.I / \ y�1.J /


 D �R

	
x�1.I /



�R

	
y�1.J /



:

This definition can be generalized in an obvious way to any finite number of
relatively measurable sequences.

We now turn to the definition of a (relative) distribution function of a relatively
measurable sequence.

Definition 5 (Distribution function) Let x W N ! R be a relatively measurable
sequence. Then the function

Fx W R ! Œ0,1�; Fx.z/ WD �R

�˚
n 2 N W xn 2 .�1; z�

��

is called the (relative) distribution function of x.
By its very definition such a distribution function resembles a classical distribution

function we know from probability theory. In particular, it is immediately clear that
it is non-decreasing. However, in general not all properties we may expect from
a relative distribution function have to hold.

Example 2 Consider the sequence x W N ! R given by

xn WD

8̂
<̂
ˆ̂:

�n if n D 4k for some k 2 N0

0 if n D 4k C 1 for some k 2 N0
1
n

if n D 4k C 2 for some k 2 N0

n if n D 4k C 3 for some k 2 N0 :

Then it is easy to see that x is relatively measurable and that its relative distribution
function is given by

Fx.z/ D 1

4
1.�1;0/.z/C 2

4
1f0g.z/C 3

4
1.0;1/.z/ :

Hence, Fx is neither left nor right continuous, and we have

limz!�1Fx.z/ > 0 and limz!�1Fx.z/ < 1 .

Note however that for every bounded relatively measurable sequence x

limz!�1Fx.z/ D 0 and limz!�1Fx.z/ D 1 .
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Next we introduce and study the notion of an average of a relatively measurable
sequence.

Definition 6 (Relative average) Let x W N ! R be a relatively measurable se-
quence. Then we define the relative average of x by

M.x/ WD limN !1
1

N

NX
nD1

xn ;

whenever this limit exists.
The following theorem shows that the relative average of a relatively measurable

and bounded sequence can be written in terms of a Stieltjes integral with respect to
the relative distribution function.

Theorem 1 Let x W N ! R be a relatively measurable and bounded sequence.
Then M.x/ exists and

M.x/ D
Z 1

�1
z dFx.z/ : (4)

Proof In this proof we simply write F instead of Fx . By assumption there exists
someK 2 .0;1/ such that �KC1 � xn � K for every n 2 N. The Stieltjes integral
exists since the function id W Œ�K;K� ! R, z 7! z is continuous and F is monotone
on Œ�K;K� and constant on the intervals .�1;�K� and ŒK;1/. Therefore, given
" > 0 there exists a decomposition Z D f�K D t0 < t1 < ::: < tm D Kg of
Œ�K;K� such that O.id ; F;Z/ � U.id ; F;Z/ < ", where U and O denote upper
and lower Riemann-Stieltjes sums, i.e.,

U.id ; F;Z/ D
mX

kD1

tk�1
	
F.tk/ � F.tk�1/



and

O.id ; F;Z/ D
mX

kD1

tk
	
F.tk/� F.tk�1/



:

We observe that

limsupN !1
1

N

NX
nD1

xn D
mX

kD1

limsupN !1
1

N

NX
nD1

1.tk�1;tk �.xn/xn

�
mX

kD1

limsupN !1
1

N

NX
nD1

1.tk�1;tk �.xn/tk

�
mX

kD1

tk
	
F.tk/ � F.tk�1/


 D O.id ; F;Z/ :
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Similarly one can show that liminfN !1 1
N

PN
nD1xn � U.id ; F;Z/, which then

proves the assertion. �
It follows from the properties of Riemann-Stieltjes integrals that

M.x/ D
Z 1

�1
zF 0

x.z/dz ; (5)

whenever Fx is differentiable on R with F 0
x D fx outside some at most finite subset

of R.

Remark 4 We see that measurable sequences behave in many ways like random
variables, and indeed a measurable sequence can be taken as a mathematical model
for a “random number”. As noted before, this kind of model has been put forward
by Austrian mathematician Richard von Mises in the first half of the 20th century.
This model was–at least among the vast majority of probabilists–replaced by Kol-
mogorov’s approach, mainly because of the potent tools from Lebesgue’s measure
theory and the accompanied clean and simple concepts and theorems of convergence.

Nevertheless there is a certain appeal to the alternative, in particular its slim
theoretical foundation. Within this approach one can simply state that a real number
is a Cauchy sequence of rational numbers and a random number is a relatively
measurable sequence of real numbers.

We now assign to everyZ-valued and relatively measurable sequence x a function
�x W Z ! Œ0,1� via

�x.k/ WD �R

	fn 2 N W xn D kg
 :

Then for bounded,Z-valued and relatively measurable sequences we have
P

k2Z�x.k/

= 1 and the well-known convolution formula:

Proposition 3 Let x; y W N ! R be bounded and relatively measurable sequences
taking values in Z. If x and y are �R-independent, then �xCy D �x��y , where

�x��y.k/ WD
X
j 2Z

�x.j /�y.k � j / ; k 2 Z :

All in all, we can say that relatively measurable sequences behave in many ways
like random variables. For instance, the indicator functions of the sets Bj introduced
after Remark 3 form an independent, relatively measurable, bounded, and Z-valued
sequence. Therefore, their sums satisfy

�1B1C:::C1Bm
.k/ D

�m
k

�
2�m ; k 2 Z :
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This means that the partial sums of the indicator functions of the sets Bj satisfy the
central limit theorem of de Moivre (Theorem 1), i.e., for any a; b 2 R with a < b,

limm!1�R

��
n 2 N W a �

Pm
j D11Bj

.n/� m
2p

m
4

� b

�

D limm!1
mP

kD0

	
m
k



2�m1Œa;b�

�
k� m

2p
m
4

�
D 1p

2�

R b

a
e� x2

2 dx :
(6)

Note again that the set considered above is indeed relatively measurable. To see this,
we note that, as was argued before, the sets Bj are all relatively measurable and
hence, because the collection of relatively measurable sets forms an algebra, so are
their complements Bc

j . This immediately implies that the sequences .1Bj
.n//n2N

and their finite sums are relatively measurable.
Thus, for the binary expansion of natural numbers we have the same central

limit theorem as for the binary expansion of real numbers in Œ0,1/. In fact, we can
now formulate a quite interesting version of this, which can be found, for example,
in [18]. Contrary to almost all numbers in Œ0,1/, every natural number has a finite
expansion and hence it is reasonable to define for n 2 N its sum-of-digits function
with respect to the binary expansion,

s2.n/ WD
blog2.n/cC1X

j D1

1Bj
.n/ D

1X
j D1

1Bj
.n/ ; n 2 N :

The following result describes the Gaussian fluctuations of the sum-of-digits func-
tion.

Theorem 2 (Central limit theorem for the sum-of-digits function) For all b 2 R,
we have

�R

�n
n 2 N W s2.n/ � b

r
1

4
log2.n/C 1

2
log2.n/

o�
D 1p

2�

Z b

�1
e� x2

2 dx :

We recall the following lemma from probability theory.

Lemma 3 Let F W R ! Œ0,1� be a continuous cumulative distribution function
and let .Fn/n2N be a sequence of non-decreasing functions Fn W R ! Œ0,1� with
limn!1Fn.x/ D F.x/ for all x 2 R. Then Fn ! F uniformly on R.

We are now able to prove the central limit theorem for the sum-of-digits function.
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Proof (Proof of Theorem 2) Let " 2 .0;1/. For b 2 R let us write ˆ.b/ WD
1p
2�

R b

�1e
� x2

2 dx. It follows from de Moivre’s central limit theorem (see Eq. (6))

and Lemma 3 that there exists m0 2 N such that for all m � m0 and every b 2 R,

� "

6
< �R

��
n 2 N W

Pm
j D11Bj

.n/ � m
2q

m
4

� b

�
�ˆ.b/ < "

6
:

Moreover, for each m � m0, we have
ˇ̌
ˇ̌
ˇ̌
�
0 � n < 2m W

mX
j D1

s2.n/ D k

�ˇ̌ˇ̌
ˇ̌ D

ˇ̌
ˇ̌
ˇ̌
�
0 � n < 2m W

mX
j D1

1Bj
.n/ D k

�ˇ̌ˇ̌
ˇ̌ D

�m
k

�

and therefore,

2�m
ˇ̌
ˇ
n
0 � n < 2m W s2.n/ � b

r
1

4
mC 1

2
m
oˇ̌
ˇ 2

�
ˆ.b/� "

6
; ˆ.b/C "

6

�
:

Now let ` 2 N with 2�` < "
3 and j 2 f1; :::; 2`g. For every m � `Cm0,

1

j 2m�`

ˇ̌
ˇ
n
2m � n < 2m C j 2m�` W s2.n/ � b

r
1

4
log2.n/C 1

2
log2.n/

oˇ̌
ˇ

� 1

j 2m�`

ˇ̌
ˇ
n
2m � n < 2m C j 2m�` W s2.n/ � b

r
1

4
mC 1

2
m
oˇ̌
ˇ

D
jX

iD1

2m�`

j 2m�`
2�.m�`/

ˇ̌
ˇ
n
0 � n < 2m�` W s2.n/ � b

r
m

4
C m

2
� s2.i/

oˇ̌
ˇ :

Since m � ` � m0,

2�.m�`/
ˇ̌
ˇ
n
0 � n < 2m�` W s2.n/ � b

r
m

4
C m

2
� s2.i/

oˇ̌
ˇ

� ˆ
�
b

r
m

m � ` C ` � 2s2.i/p
m � `

�
� "

6
� ˆ

�
b

r
m

m � ` � `p
m � `

�
� "

6
:

Therefore,

1

j 2m�`

ˇ̌
ˇ
n
2m � n < 2m C j 2m�` W s2.n/ � b

r
1

4
log2.n/C 1

2
log2.n/

oˇ̌
ˇ

� ˆ
�
b

r
m

m � ` � `p
m � `

�
� "

6
;
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and in the same way,

1

j 2m�`

ˇ̌
ˇ
n
2m � n < 2m C j 2m�` W s2.n/ � b

r
1

4
log2.n/C 1

2
log2.n/

oˇ̌
ˇ

D 1

j 2m�`

ˇ̌
ˇ
n
2m � n < 2m C j 2m�` W s2.n/ � b

r
1

4
.mC 1/C 1

2
.mC 1/

oˇ̌
ˇ

� ˆ
�
b

r
mC 1

m � ` C 1 C `p
m � `

�
C "

6
:

Now for fixed b 2 R there exists m1 2 N with m1 � m0 C ` such that for all
m � m1

ˆ.b/� "

3
<

1

j 2m�`

ˇ̌
ˇ
n
2m � n < 2m C j 2m�` W s2.n/ � b

r
1

4
log2.n/C 1

2
log2.n/

oˇ̌
ˇ

< ˆ.b/C "

3
:

Note that this equation holds in particular for j D 2`, so that

ˆ.b/� "
3
<

1

2m

ˇ̌
ˇ
n
2m � n < 2mC1 W s2.n/ � b

r
1

4
log2.n/C

1

2
log2.n/

oˇ̌
ˇ < ˆ.b/C "

3
:
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Now let N > 2m1 3
"
, and let m D blog2.N /c. Then 2m C .j � 1/2m�` � N <

2m C j 2m�` for some j 2 f1; :::; 2`g. Then,
1

N

ˇ̌
ˇ
n
0 � n < N W s2.n/ � b

r
1

4
log2.n/C 1

2
log2.n/

oˇ̌
ˇ

D 1

N

ˇ̌
ˇ
n
0 � n < 2m1 W s2.n/ � b

r
1

4
log2.n/C 1

2
log2.n/

oˇ̌
ˇ

C
m�1X

kDm1

2k

N

1

2k

ˇ̌
ˇ
n
2k � n < 2kC1 W s2.n/ � b

r
1

4
log2.n/C 1

2
log2.n/

oˇ̌
ˇ

C 1fj ¤�1g
.j � 1/2m�`

N

1

.j � 1/2m�`

ˇ̌
ˇ
n
2m � n < 2m C .j � 1/2m�` W s2.n/

� b

r
1

4
log2.n/C 1

2
log2.n/

oˇ̌
ˇ

C 1

N

ˇ̌
ˇ
n
2m C .j � 1/2m�` � n < N W s2.n/ � b

r
1

4
log2.n/C 1

2
log2.n/

oˇ̌
ˇ

� "

3
C 1

N

m�1X
kD0

2k
	
ˆ.b/C "

3


C 1fj ¤�1g
.j � 1/2m�`

N

	
ˆ.b/C "

3


C 2m�` 1

N

<
"

3
C 2m C .j � 1/2m�`

N

	
ˆ.b/C "

3


C "

3
� ˆ.b/C " ;

where we have used that since 2�` < "
3 , we also have 2m�` 1

N
� 2m�` 1

2m < "
3 . In

the same way we get

1

N

ˇ̌
ˇ
n
0 � n < N W s2.n/ � b

r
1

4
log2.n/C 1

2
log2.n/

oˇ̌
ˇ

� 1

N

m�1X
kDm1

2k
�
ˆ.b/� "

3

�
C 1fj ¤�1g

.j � 1/2m�`

N

�
ˆ.b/� "

3

�

D 2m � 2m1 C .j � 1/2m�`

N

	
ˆ.b/� "

3




D
 
1 � N � 2m C 2m1 � .j � 1/2m�`

N

!�
ˆ.b/� "

3

�

D ˆ.b/� 2m1

N
� "

3
� N � 2m � .j � 1/2m�`

N

> ˆ.b/� 2
"

3
� 2m�`

N
> ˆ.b/� " ;

which proves the result. �
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3.3 Uniform distribution mod 1 and Weyl’s theorem

In this section we address a famous theorem of Hermann Weyl (9. November 1885
in Elmshorn; 8. December 1955 in Zürich). Before we start, let us remind the reader
that the fractional part of a number x 2 R is defined as

fxg WD x � bxc

where

bxc WD maxfk 2 Z W k � xg :

If we are given a sequence x W N ! R and a set B � Œ0,1/, then we define another
set by setting

Ax;B WD ˚
n 2 N W fxng 2 B� :

The sequence x D .xn/n2N is said to be uniformly distributed modulo 1 (we simply
write mod 1) if and only if for all a; b 2 R with 0 � a < b � 1, we have

�R

	
Ax;Œa;b/


 D b � a :

In particular, this means that for each uniformly distributed sequence .xn/n2N the
sequence .fxng/n2N is relatively measurable.

Weyl’s theorem [51, 52], also known as Weyl’s criterion, says that a sequence
.xn/n2N of real numbers is uniformly distributed mod 1 if and only if for every
h 2 Z n f0g the following condition is satisfied,

limN !1
1

N

NX
nD1

e2�ihxn D 0 .

In an extended and multivariate version this theorem reads as follows.

Theorem 3 Let m 2 N and consider sequences x1; :::; xm W N ! R . Then the
following are equivalent:

1. Every sequence xk , k 2 f1; :::; mg is uniformly distributed mod 1 and fx1g; :::; fxmg
are �R-independent;

2. For each m-tuple .h1; :::; hm/ 2 Zm n f0g,

limN !1
1

N

NX
nD1

e2�i.h1x
1
nC:::Chmxm

n / D 0 I
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3. For every continuous function  W Œ0,1�m ! R,

limN !1
1

N

NX
nD1

 .fx1ng; :::; fxm
n g/ D

Z

Œ0,1�m
 .z1; :::; zm/dz1:::dzm I

4. For every Riemann integrable function  W Œ0,1�m ! R,

limN !1
1

N

NX
nD1

 .fx1ng; :::; fxm
n g/ D

Z

Œ0,1�m
 .z1; :::; zm/dz1:::dzm :

An important consequence is that for each ˛ 2 R the sequence .n˛/n2N is
uniformly distributed mod 1 if and only if ˛ is irrational, and that for ˛1; :::; ˛m 2 R

the sequences f˛1ngn2N; :::; f˛mngn2N are uniformly distributed mod 1 and �R-
independent if and only if 1; ˛1; :::; ˛m are linearly independent over Q.

Remark 5 Theorem 3 is also of practical interest, as it provides us with a method
for numerical integration of a Riemann integrable function  on Œ0,1�m. Note that,
if we only know that the coordinate sequences are uniformly distributed mod 1 and
�R-independent, we cannot say anything about the speed of convergence of the
sums towards the integral.

The concept of discrepany of a sequence measures the speed with which a se-
quence in Œ0,1/m approaches the uniform distribution on Œ0,1/m. Sequences with a
“high” speed of convergence are informally called low-discrepancy sequences and
give rise to a class of numerical integration algorithms called quasi-Monte Carlo
methods. For more information about these sequences and algorithms see [17, 19,
38, 40].

Definition 7 (Finitely measurable function) We say that a function g W I ! R

is finitely measurable if and only if the pre-image of each interval J � R under
g can be written as the union of finitely many subintervals, i.e., there exists k 2 N

and subintervals I1; :::; Ik of I such that

g�1.J / D I1 [ :::[ Ik :

Examples of finitely measurable functions are the monotone functions and the
functions g with the following so-called Dirichlet property:

A function g W Œa; b� ! R is said to have the Dirichlet property if and only if it
is continuous on Œa; b� and has only finitely many local extreme points.

A concrete example of a finitely measurable function thus is cos.2� �/ W Œ0,1� !
R, z 7! cos.2�z/.

Proposition 4 Let m 2 N and x1; :::; xm W N ! R be sequences. Consider finitely
measurable functions g1; :::; gm W R ! R. If x1; :::; xm are relatively measurable and
�R-independent, then the sequences g1.x1/; :::; gm.xm/ are relatively measurable
and �R-independent.
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The previous result, whose proof is left to the reader, has the following interesting
corollary.

Corollary 2 Let 1; ˛1; :::; ˛m 2 R be linearly independent over Q. Then the se-
quences

	
cos.2�˛1n/



n2N; :::;

	
cos.2�˛mn/



n2N are relatively measurable and �R-

independent.

Proof We have already concluded, as a consequence of Weyl’s theorem, that
the sequences f˛1ngn2N; :::; f˛mngn2N are uniformly distributed mod 1 and �R-
independent. Hence, by Proposition 4 the sequences

	
cos.2�f˛1ng/


n2N; :::;
	
cos.2�f˛mng/


n2N

are �R-independent as well and thus the sequences

	
cos.2�˛1n/



n2N; :::;

	
cos.2�˛mn/



n2N :

�

Proposition 5 Let x; y W N ! R be bounded and relatively measurable sequences
with continuous and increasing distribution functions Fx and Fy respectively. If x
and y are �R-independent, then the distribution function FxCy of x C y is given by
the convolution of Fx and Fy , i.e.,

FxCy.z/ D Fx � Fy.z/ D
Z 1

�1
Fx.z � 	/dFy.	/ D

Z 1

�1
Fy.z � 
/dFx.
/ :

Proof It is comparably easy to see that the sequences .Fx.xn//n2N and
.Fy.yn//n2N are uniformly distributed mod 1. Proposition 4 implies that they
are �R-independent. Observe that the restriction of Fx to the closure of ft 2 R W
Fx.t/ 2 .0,1/g is continuous and increasing and therefore has an inverse, which we
denote by Gx . Denote by Gy the corresponding inverse function of Fy . We have

�R.x C y � z/ D limN !1
NX

nD1

1.�1;z�.xn C yn/

D limN !1
NX

nD1

1.�1;z�

�
Gx

	
Fx.xn/


CGy

	
Fy.yn/


�

.�/D
Z

Œ0,1�2
1.�1;z�

	
Gx.
/CGy.	/



d
 d	

D
Z

R2
1.�1;z�.
 C 	/dFx.
/dFy.	/

D
Z 1

�1

Z z��

�1
dFx.
/dFy.	/ D

Z 1

�1
Fx.z � 	/dFy.	/ ;
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where we have used in .�/ that .Fx.xn//n2N and .Fy.yn//n2N are uniformly dis-
tributed mod 1 and independent. �

If we consider, for instance, the sequence x D 	
cos.2�˛n/



n2N with irrational

˛, then, since .˛n/n2N is uniformly distributed mod 1,

Fx.z/ D �R.x � z/ D limN �>1
1

N

NX
nD1

1.�1;z�

	
cos.2�˛n/




D
Z 1

0
1.�1;z�

	
cos.2�
/



d


D 2
Z 1

2

0
1.�1;z�

	
cos.2�
/



d
 D 1

�

Z �1

1
1.�1;z�.	/arccos

0.	/d	

D 1

�

Z 1

�1
1.�1;z�.	/arcsin

0.	/d	 D 1Œ�1,1�.z/
1

�
arcsin.z/C 1.1;1/.z/ :

This means that the distribution function of the sequence
�
cos.2�˛1n/ C ::: C

cos.2�˛mn/
�

n2N is given by F �m
x . Therefore, we obtain a central limit theorem for

partial sums of cosines with linearly independent frequencies, i.e., with 1; ˛1; ˛2; :::
linearly independent over Q,

limm!1�R

��
n 2 N W a � cos.2�˛1n/C :::C cos.2�˛mn/p

m=2
� b

�

D 1p
2�

Z b

a

e� �2

2 d
 :

3.4 Relatively measurable subsets of .0;1/–the continuous setting

The deliberations of the previous subsection can quite effortlessly be lifted to a con-
tinuous setting. A continuous version of a relative measure on Lebesgue measurable
subsets of R can be defined as the limit

�R.A/ WD lim
T !1

1

T

Z T

0
1A.x/ dx

if it exists. In analogy to the case of sequences, one obtains a continuous version of
Weyl’s theorem (see also [38, Chap. 9]) and thus the independence of functions of
uniformly distributed functions. An example is again given by the cosines with lin-
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early independent frequencies (cf. [34]), i.e., if 1; ˛1; ˛2; ::: are linearly independent
over Q, then for all m 2 N and all s1; :::; sm 2 R,

�R

�n
t 2 .0;1/ W cos.2�˛1t/ � s1; � � �; cos.2�˛mt/ � sm

o�

D
mY

j D1

�R

�˚
t 2 .0;1/ W cos.2�˛j t/ � sj

��
:

Those considerations then yield a central limit theorem of the form

limm!1�R

 (
t 2 .0;1/ W a � cos.2�˛1t/C :::C cos.2�˛mt/p

m=2
� b

)!

D 1p
2�

Z b

a

e� �2

2 d
 :

The original approach to this result is, as we find, more complicated and can be
found in [34]. The latter is presented in a more accessible way in [32, Chap. 3].

4 The Erdős-Kac Theorem

This section is devoted to a famous theorem of Paul Erdős and Mark Kac. One can
say that this result marks the birth of what is today known as probabilistic number
theory. The close link between probability theory and number theory illustrated by
this theorem can hardly be overrated and turned out to be extremely fruitful.

We shall start with the original heuristics of Mark Kac, which led him to conjec-
ture the result he later proved together with Paul Erdős.

4.1 Heuristics–Independence & CLT

A guiding idea of Mark Kac has been that if there is some sort of independence,
then there is the Gaussian law of errors at play. Exactly this maxim underlies the
Erdős-Kac theorem. The object of interest is the number of different prime factors
of a given number.

Let us consider the following indicator functions. For each prime number p and
every n 2 N, we define

Ip.n/ D
�
1 W if p divides n
0 W if p does not divide n:
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Given a natural number n 2 N, we denote by !.n/ the number of different prime
factors of n. The indicator functions allow us to express !.n/ as follows,

!.n/ D
X

p prime

Ip.n/ :

From Sect. 2.4 we already know that this collection of indicator functions is �R-
independent. We now want to provide a plausibility argument, and here we follow
Mark Kac’s original heuristics, that suggests these indicator functions also satisfy
Lindeberg’s condition. In analogy to the central limit theorem of Lindeberg, this
suggests that the properly normalized sum of indicator functions follows a Gaussian
law of errors. For this we note first that for all x 2 R with x � 2 we have

X
p prime,

p�x

1

p
> ln ln x � 1

2
; (7)

see [28, Kap. 3]. As we already explained in the first part of Sect. 2.4, essentially
a fraction of 1=p of the numbers is divisible by the prime p, i.e., we may say that
a number n 2 N is divisible by p with probability 1=p. In other words, the indicator
functions Ip.n/ behave like Bernoulli random variables with parameter 1=p and are
independent. But then the expectation is 1=p and the variance 1=p.1 � 1=p/. What
does it mean for Lindeberg’s condition? Well, using the notation of Theorem 2, we
have for all n � 2

sn D
vuut

X
p prime

p�n

VarŒIp.n/� D
vuuut

X
p prime

p�n

1

p

�
1 � 1

p



� 1p
2

vuuut
X

p prime
p�n

1

p

.7/� 1p
2

r
ln ln n � 1

2
:

So if " 2 .0;1/, then for sufficiently large n 2 N, we have

E
h
Ip.n/

2 11fjIp.n/j>"sng
i

� P
�
Ip.n/ > "sn

�

� P
h
Ip.n/ >

"p
2

p
ln ln n � 1=2

i
D 0.

The latter holds since Ip.n/ only takes the values 0 and 1. Therefore, Lindeberg’s
condition in Theorem 2 is satisfied. Together with the independence of the indicator
functions Ip.n/, p prime as well as property (7), this suggests that the sequence

!.n/–ln ln np
ln ln n

; n 2 N
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satisfies a central limit theorem. Indeed, for every m 2 N let cm D P
p prime; p�m

1
p

and d 2
m D P

p prime; p�m
1
p

	
1� 1

p



. Further let, !m.n/ WD P

p prime; p�mIp.n/. Then

for every a; b 2 R with a < b,

limm!1�R

�n
n 2 N W a � !m.n/� cm

dm

� b
o

D 1p
2�

Z b

a

e�x2=2 dx ;

which appears as Lemma 1 in [22]. This means that

limm!1limN !1
1

N

ˇ̌
ˇ̌nn 2 f1; :::; N g W a � !m.n/� cm

dm

� b
oˇ̌ˇ̌

D 1p
2�

Z b

a

e�x2=2 dx :

If one could show that the two limits may be taken simultaneously, then we would
obtain

limN !1
1

N

ˇ̌
ˇ̌nn 2 f1; :::; N g W a � !N .n/� cN

dN

� b
oˇ̌ˇ̌ D 1p

2�

Z b

a

e�x2=2 dx :

Together with the (proper) asymptotics for !N .n/; cN ; dN , this would give

limN !1
1

N

ˇ̌
ˇ̌nn 2 f1; :::; N g W a � !.n/� ln ln Np

ln ln N
� b

oˇ̌ˇ̌ D 1p
2�

Z b

a

e�x2=2 dx :

Of course, this is merely a heuristic argument, not a proof. In any case, the heuristic
and conjecture just presented leads us in the following subsection to the ingenious
and famous central limit theorem of Erdős-Kac [22].

4.2 The CLT of Erdős-Kac

After having presented the heuristic of Mark Kac, let us tell the anecdote about
the origin of the Erdős-Kac theorem as described by Mark Kac himself in his
autobiography [33].

“I knew very little number theory at the time, and I tried to find a proof along
purely probabilistic lines but to no avail. In March 1939 I journeyed from Bal-
timore to Princeton to give a talk. Erdős, who was spending the year at the
Institute for Advanced Study, was in the audience but he half-dozed through
most of my lecture; the subject matter was too far removed from his interests.
Toward the end I described briefly my difficulties with the number of prime divi-
sors. At the mention of number theory Erdős perked up and asked me to explain
once again what the difficulty was. Within the next few minutes, even before the
lecture was over, he interrupted to announce that he had the solution.”

When once asked about their famous result, Mark Kac replied the following
(see [14] and [33]):

K



96 G. Leobacher, J. Prochno

“It took what looks now like a miraculous confluence of circumstances to pro-
duce our result.... It would not have been enough, certainly not in 1939, to bring
a number theorist and a probabilist together. It had to be Erdős and me: Erdős
because he was almost unique in his knowledge and understanding of the num-
ber theoretic method of Viggo Brun,... and me because I could see independence
and the normal law through the eyes of Steinhaus.”

We will now formulate the central limit theorem of Erdős and Kac.

Theorem 1 (Erdős-Kac, 1940) Let a; b 2 R with a < b. Then

limN !1
1

N

ˇ̌
ˇ̌
�
n 2 f1; :::; N g W a � !.n/ � ln ln Np

ln ln N
� b

�ˇ̌
ˇ̌ D 1p

2�

Z b

a

e�x2=2 dx :

In other words, for large N 2 N the proportion of natural numbers in the set
f1; :::; N g for which the suitably normalized number of different prime factors is
between a and b is close to a Gaussian integral from a to b. In short: the number
of prime factors of a large, suitably normalized number follow a Gaussian curve.

Providing a formal proof for Theorem 1 would go beyond the scope of this
paper. The original argument of Erdős and Kac use number theoretic methods of
sieve theory (more precisely Brun’s sieve). Another proof is due to Alfréd Rényi
(20. March 1921 in Budapest; 1. February 1970 Budapest) and Pál Turán (18.
August 1910 in Budapest; 26. September 1976 Budapest) and can be found in [46].
Let us mention that Godfrey Harold Hardy (7. February 1877 in Cranleigh; 1.
December 1947 in Cambridge) and Srinivasa Ramanujan (22. December 1887 in
Erode; 26. April 1920 in Kumbakonam) prove in their paper [27] from 1917 that
for all " 2 .0;1/

limN !1
1

N

ˇ̌
ˇ̌
�
n 2 f1; :::; N g W

ˇ̌
ˇ !.n/
ln ln N

� 1
ˇ̌
ˇ � "

�ˇ̌
ˇ̌ D 0 .

This means that for large N 2 N if we pick a number n 2 f1; :::; N g at random
(with respect to the uniform distribution), then the number !.n/ of different prime
factors is of order ln lnN .

Remark 6 Even though Pál Turán already noticed that the result of Hardy and
Ramanujan can be obtained from an inequality for the second moment of !.n/
together with an application of Chebychev’s inequality [9], one can say that the
Erdős-Kac Theorem marks the beginning of probabilistic number theory. Also the
work [23] of Paul Erdős and Aurel Wintner (8. April 1903 in Budapest; 15. January
1958 in Baltimore) has been one of the pioneering contributions to this complex of
problems.

We close this section with the statement of a corollary that gives a different
version of the Erdős-Kac theorem, in which N in the loglog terms is replaced by n,
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which looks more natural in our setup, because it directly states that the distribution

function of the sequence
	

!.n/�ln ln np
ln ln n

�
n2N is that of the standard normal one.

Corollary 3 Let a; b 2 R with a < b. Then

limN !1
1

N

ˇ̌
ˇ̌
�
n 2 f1; :::; N g W a � !.n/� ln ln np

ln ln n
� b

�ˇ̌
ˇ̌ D 1p

2�

Z b

a

e�x2=2 dx :

Proof Clearly, for every b 2 R, we have

limsupN !1
1

N

ˇ̌
ˇ̌
�
n 2 f1; :::; N g W !.n/ � ln ln np

ln ln n
� b

�ˇ̌
ˇ̌

� limN !1
1

N

ˇ̌
ˇ̌
�
n 2 f1; :::; N g W !.n/� ln ln Np

ln ln N
� b

�ˇ̌
ˇ̌ D ˆ.b/ ;

where ˆ.t/ D 1p
2�

R t

�1e
�x2=2 dx for all t 2 R as before. First note that, by The-

orem 1, the distribution functions FN with FN .t/ WD 1
N

jf1 � n � N W !.n/ �
t
p
ln lnN C ln lnN gj converge pointwise to ˆ, and therefore also uniformly on R,

by Lemma 3.
Now fix b 2 R and let K 2 .0;1/ be such that e� K

2 < "
3 . Let N0 2 N be

such that for all N � N0 and all t 2 R we have FN .t/ 2 .ˆ.t/ � "
3 ; ˆ.t/ C "

3 /,
ˆ.b– K

ln ln N
/ > ˆ.b/– "

3 ,
p
ln lnN > b, and ln lnN > 0. With this

1

N

ˇ̌˚
n 2 f1; :::; N g W !.n/ � b

p
ln ln N C ln ln N �K�ˇ̌

� ˆ
	
b � K

ln ln N


 � "

3
> ˆ

	
b

 � 2"

3
:

If we denote N1 WD supfn 2 N W bp
ln ln N C ln ln N �K > b

p
ln ln nC ln ln ng,

then

1

N

ˇ̌˚
n 2 f1; :::; N g W !.n/ � b

p
ln ln nC ln ln n

�ˇ̌

� 1

N

ˇ̌˚
n 2 fN1 C 1; :::; N g W !.n/ � b

p
ln ln nC ln ln n

�ˇ̌

� 1

N

ˇ̌˚
n 2 fN1 C 1; :::; N g W !.n/ � b

p
ln ln N C ln ln N �K�ˇ̌

� 1

N

ˇ̌˚
n 2 f1; :::; N g W !.n/ � b

p
ln ln N C ln ln N �K�ˇ̌ � N1

N

> ˆ.b/� 2"

3
� N1

N
:

Now, let us compare N and N1. We observe that if

b.
p
ln lnN –

p
ln lnN1/C ln lnN –ln lnN1 > K ;
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then

.
p
ln lnN C

p
ln lnN1/.

p
ln lnN–

p
ln lnN1/C ln lnN –ln lnN1 > K ;

which implies that

2.ln lnN –ln lnN1/ > K :

Hence, we have

ln lnN –
K

2
> ln lnN1

and so N e
�

K
2 > N1. Therefore,

N1

N
< N e�

K
2 �1 < N�K=2 < e�K=2 <

"

3
;

which completes the proof. �
A similar calculation shows that the two formulations of the Erdős-Kac theorem

are actually equivalent.

5 Some complementary considerations–The case of lacunary series

What we have seen so far shows the power of the concept of relative measure in
number theory and how it can naturally (in large parts along the lines of classical
probability theory) lead us to central limit theorems for number theoretic quantities,
even where the axiomatic framework of Kolmogorov is not applicable. On the other
hand, we have seen, when studying binary expansions, that Kolmogorov’s theory
is a powerful tool as well and allows us to obtain information about the Gaussian
fluctuations of number theoretic quantities. A common spirit of both, and eventually
a key to a Gaussian law, has always been a notion of independence.

In what follows, we complement the previous considerations by showing that
lacunary series, for instance those that are formed with functions cos.2�nk �/ W
Œ0,1� ! R and quickly increasing gap sequence .nk/k2N, behave in many ways
like independent random variables, and that this almost-independence or weak form
of independence may still lead to fascinating results within the axiomatic theory of
Kolmogorov.

Already in Sect. 2.3 on binary expansions we noted that Hans Rademacher intro-
duced in [45] what is known today as Rademacher functions. Those functions are
defined in the following way,

rk.t/ D sign.sin.2k�t//; t 2 Œ0; 1�; k 2 N ;
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where for x 2 R,

sign.x/ WD
8<
:

�1 W x < 0
0 W x D 0
C1 W x > 0.

Rademacher studied the convergence behavior of series

1X
kD1

akrk.t/; t 2 Œ0,1�; .ak/
1
kD1 2 RN ; (8)

and proved that such series converge for almost all t 2 Œ0,1� if
1X

kD1

a2k < C1 : (9)

The necessity of square integrability was obtained by Alexander Khintchine (19.
July 1894 in Kondyrjowo; 18. November 1959 in Moscow) and Andrei Kolmogorov
in their 1925 paper [35], showing that if

1X
kD1

a2k D C1; (10)

then the series (8) diverges for almost all t 2 Œ0,1�.
Starting in the 1920s, Stefan Banach (30. March 1892 in Krakow; 31. August 1945

in Lviv), Andrei Kolmogorov, Raymond Paley (7. January 1907 in Bournemouth;
7. April 1933 near Banff), Antoni Zygmund (25. December 1900 in Warsaw; 30.
May 1992 in Chicago) and others studied the convergence behavior of trigonometric
series

1X
kD1

akcos.2�nkt/; t 2 Œ0,1�; .ak/
1
kD1 2 RN ; (11)

where the sequence .nk/
1
kD1 satisfies the Hadamard gap condition

nkC1

nk

> q > 1

for all k 2 N (see [7, 36, 44, 53]). For such series one can obtain results similar
to those for Rademacher series (8). Kolmogorov could prove in [36] that the square
summability condition (9) is also sufficient for almost everywhere convergence of
lacunary series. The necessity of (9) has been shown by Zygmund in [53].

An important analogy between Rademacher series and lacunary series, in par-
ticular in view of our article, remained unnoticed for a long time. In Sect. 2.3 we
proved that the Rademacher functions (more precisely a version of them) are inde-
pendent. In particular, given any sequence .ak/

1
kD1 of real numbers, the functions
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akrk , k 2 N are independent (but no longer identically distributed), and we have
for all k 2 N that

EŒakrk� D 0 and VarŒakrk� D a2k :

Using the notation from Lindeberg’s theorem (see Theorem 2), we see that

s2n D
nX

kD1

VarŒakrk� D
nX

kD1

a2k :

But this means that for " 2 .0;1/, Lindeberg’s condition for the weighted
Rademacher functions reads as follows,

1
nP

kD1
a2

k

nX
kD1

E

"
.akrk/

211n
jakrk j�"

pPn
kD1a2

k

o
#

D 1
nP

kD1
a2

k

nX
kD1

a2k P

"
jakj � "

vuut
nX

kD1

a2
k

#
:

For Lindeberg’s condition to be satisfied, we require the right-hand side to converge
to 0 as n ! 1. A moment’s thought, however, reveals that this is the case whenever

1X
kD1

a2k D C1 and max1�k�njakj D o

 vuut
nX

kD1

a2
k

!
: (12)

Therefore, under condition (12), we obtain that, for all t 2 R,

limn!1�
 �
x 2 Œ0,1� W

nX
kD1

akrk.x/ � t

vuut
nX

kD1

a2
k

�!
D 1p

2�

Z t

�1
e� y2

2 dy :

It was not before 1947 that Raphaël Salem (7. November 1898 in Saloniki; 20. June
1963 in Paris) and Antoni Zygmund proved in [47] that for Hadamard gap sequences
the functions

	
cos.2�nk �/


k2N follow a central limit theorem, i.e., for all t 2 R,

limN !1�
�n
x 2 .0,1/ W

NX
kD1

cos.2�nkx/ � t
p
N=2

o
D 1p

2�

Z t

�1
e� y2

2 dy :

For sequences with very large gaps, i.e., those satisfying the stronger condition

nkC1

nk

k!1�! C1 ;

such a central limit theorem had been obtained in 1939 by Mark Kac in [29].
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Around the same time as Salem and Zygmund, Mark Kac [30] (see also [31, 32]
and the references therein) obtained a central limit theorem for functions f W R ! R

of bounded variation on Œ0,1� satisfying

f .t C 1/ D f .t/ and
Z 1

0
f .t/dt D 0 .

He showed that for such functions

limN !1�
�n
x 2 .0,1/ W

NX
kD1

f .2kx/ � t�
p
N
o

D 1p
2�

Z t

�1
e� y2

2 dy

whenever

�2 WD
Z 1

0
f .t/2 dt C 2

1X
kD1

Z 1

0
f .t/f .2kt/dt ¤ 0 . (13)

This already indicates that the functions f .2k �/, k 2 N do not behave like indepen-
dent random variables. In fact, in that case we would expect something like

�2 D
Z 1

0
f .t/2 dt ¤ 0

rather than condition (13). After further progress had been made by Gapoškin [25]
and Takahashi [48], Gapoškin eventually discovered a deep connection between the
validity of a central limit theorem and the number of solutions of a certain Dio-
phantine equation [26], i.e., whether a central limit theorem holds or not depends
not only on the growth rate of the sequence .nk/k2N, but also critically on its num-
ber theoretic properties. In 2010 Christoph Aistleitner and István Berkes presented
a paper in which they obtained both necessary and sufficient conditions under which
a sequence f .nk � /k2N follows a Gaussian law of errors [1].

Please note that the preceding paragraph is not intended to be exhaustive. Still
it indicates the development of the subject, highlights some fascinating results, and
shows how analytic, probabilistic, and number theoretic arguments and properties
intertwine.

Remark 7 The results presented in this final section are not restricted to central
limit phenomena. Beyond the normal fluctuations one can also prove laws of the
iterated logarithm for lacunary series and we refer the reader to the work of Erdős
and Gál [21], Aistleitner and Fukuyama [4, 5], Aistleitner, Berkes, and Tichy [2, 3],
and the references cited therein. The study of large deviation principles for lacunary
sums has recently been initiated by Aistleitner, Gantert, Kabluchko, Prochno, and
Ramanan in [6].
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