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Abstract
Purpose  This systematic review aimed to investigate the reliability of AI predictive models of intraoperative implant sizing 
in total knee arthroplasty (TKA).
Methods  Four databases were searched from inception till July 2023 for original studies that studied the reliability of AI 
prediction in TKA. The primary outcome was the accuracy ± 1 size. This review was conducted per PRISMA guidelines, 
and the risk of bias was assessed using the MINORS criteria.
Results  A total of four observational studies comprised of at least 34,547 patients were included in this review. A mean 
MINORS score of 11 out of 16 was assigned to the review. All included studies were published between 2021 and 2022, with 
a total of nine different AI algorithms reported. Among these AI models, the accuracy of TKA femoral component sizing 
prediction ranged from 88.3 to 99.7% within a deviation of one size, while tibial component sizing exhibited an accuracy 
ranging from 90 to 99.9% ± 1 size.
Conclusion  This study demonstrated the potential of AI as a valuable complement for planning TKA, exhibiting a satisfac-
tory level of reliability in predicting TKA implant sizes. This predictive accuracy is comparable to that of the manual and 
digital templating techniques currently documented in the literature. However, future research is imperative to assess the 
impact of AI on patient care and cost-effectiveness.
Level of evidence III  PROSPERO registration number: CRD42023446868.
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Introduction

In this era of rapid technological evolution, artificial intel-
ligence (AI) and machine learning (ML) have surfaced 
as game changers in diverse medical domains, including 
orthopaedic surgery [1, 2]. These advancements are nota-
bly apparent in total knee arthroplasty (TKA), an effec-
tive orthopaedic procedure that enhances patient quality of 
life and functional recovery [2]. TKA is one of the most 

frequently performed orthopaedic surgeries globally, with 
a projected annual surge of 85%, reaching 1.26 million by 
2030 [3].

AI has found numerous applications within the domain 
of TKA, spanning from preoperative planning to postoper-
ative care and monitoring [3]. In preoperative assessment, 
AI has been proven to offer several significant advantages. 
One study [4] highlighted AI's capabilities in accurately 
predicting parameters such as length of stay, inpatient 
charges, and discharge disposition [4]. Moreover, Schwartz 
et al. [5] demonstrated AI’s success in image recognition 
and classifying knee osteoarthritis using preoperative 
radiographs as accurately as a fellowship-trained arthro-
plasty surgeon [5]. The AI’s strength extends to accurately 
predicting component sizing, alignment, and tibial com-
ponent slope with an impressive accuracy of up to 95%, a 
notable increase from the 72% accuracy seen with conven-
tional methods [6, 7]. Considering the variations in patient 
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anatomy and the wide variety of available implant designs 
and sizes, this precision becomes particularly valuable [6, 
7]. Further demonstrating the utility of AI in preopera-
tive planning for TKA, several studies [8, 9] revealed its 
capacity to employ patient demographic data, such as sex, 
height, weight, age, and ethnicity, to predict implant size 
with greater accuracy compared to radiographic templat-
ing. These findings accentuate the role of AI as an integral 
component in preoperative assessment and optimization 
for TKA. Additionally, Verstraete et al. [10] harnessed 
machine learning models to optimize balance and align-
ment during surgery. These models utilized intraoperative 
data to influence surgical decisions.

In postoperative care following TKA, AI’s utility is sig-
nificant. For instance, Chiang et al. [11] leveraged move-
ment monitoring sensors to continuously track patients’ 
range of motion progress after the surgery. This persistent 
tracking enables early detection of potential issues and 
timely interventions, optimizing the recovery and reha-
bilitation process. Furthermore, the image-based machine 
learning model showed exceptional precision in predict-
ing postoperative complications, mirroring clinical radio-
graphic features. A study by Lau et al. [12] highlighted that 
machine learning models could predict postoperative loos-
ening of knee arthroplasty after TKA with an astounding 
accuracy of up to 95%.

Several recent studies have reflected the growing interest 
in the application of AI-based tools in knee arthroplasty and 
the broader orthopaedic field [2, 9, 13, 14]. Despite this, 
the literature reveals limitations and gaps. Most studies are 
single-centre explorations with a potentially biased, demo-
graphically specific focus. Compounding this, varied AI 
methodologies and possible overfitting of models hamper 
reliable comparisons and generalizations.

This systematic review aimed to synthesize the best avail-
able evidence, identify research gaps, and facilitate the effec-
tive integration of AI into TKA procedures. We hypothesize 
that AI can enhance the quality of care across all stages of 
TKA, from preoperative planning to postoperative recovery, 
by improving prediction accuracy and personalizing patient 
care.

Methodology

This systematic review was conducted with adherence to 
the Preferred Reporting Items for Systematic Reviews and 
Meta-analyses (PRISMA) guidelines [15]. The protocol was 
pre-registered on the International Prospective Register of 
Systematic Reviews (PROSPERO); registration number: 
CRD42023446868.

Search strategy

Four online databases (Ovid MEDLINE, Embase, Web of 
Science, and Cochrane Library databases) were searched 
from inception to 1 July 2023 to identify all the studies that 
investigated the reliability of AI in predicting accurate intra-
operative TKA component sizes. The following keywords 
were included: Artificial Intelligence OR Machine learning 
AND Orthopaedics AND Total knee arthroplasty.

Eligibility criteria

Studies were considered eligible if they satisfied the fol-
lowing criteria: (1) reporting accuracy or reliability of AI 
in predicting TKA components sizes, (2) all types of TKA 
(regardless of the design or manufacturer), (3) all types of 
AI models (machine or deep learning), and (4) published in 
the English language.

Exclusion criteria included (1) failure to report accuracy 
specifically related to AI in TKA, (2) correlating AI tools 
with other conditions than TKA, (3) studies with incomplete 
or unextractable data for review, and (4) review articles, pre-
clinical, and case reports.

Study screening

Two authors conducted the screening process indepen-
dently and blindly by screening the titles and abstracts of 
the retrieved articles. For studies meeting the pre-specified 
eligibility criteria, full-text review was performed. Any disa-
greement between the two authors was resolved by discus-
sion with a more senior author.

Data abstraction

Two authors independently extracted the data from included 
articles. The following data were collected: studies’ charac-
teristics, patients’ demographics (such as age, sex, and body 
mass index), implant designs, manufacturer, AI model type 
(machine or deep learning) and used algorithms, type of 
AI validation, accuracy measurements in the form of mean 
absolute error (MAE), root-mean-square error (RMSE), 
coefficient of determination (R2), exact size, + -1, + -2 
sizes, and overall accuracy. The primary outcome was + -1 
size accuracy. Secondary outcomes were other measures of 
accuracy.

Quality assessment

Two authors conducted the methodological quality assess-
ment blindly and independently using the Methodological 
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Index for Non-Randomized Studies (MINORS) criteria [16]. 
According to the MINORS criteria, comparative and non-
comparative studies can achieve a maximum score of 24 and 
16, respectively. Comparative studies are graded as very low 
quality (0–6), low quality (7–10), fair quality (11–16), good 
quality (16–20), and high quality (> = 20). Noncompara-
tive studies are grade as very low quality (0–4), low quality 
(5–7), fair quality (8–12), and high quality (> = 13) [16]. 
Table 1 demonstrates the quality assessment of the included 
studies using MINORS criteria.

Results

Evidence synthesis/study selection

A primary search of databases yielded a total of 495 articles. 
After removing duplicates, a total of 302 were subjected 
primary screening by title and abstract. Of the screened 
articles, 12 papers were deemed relevant and subjected to a 
secondary screening process (i.e. full-text evaluation). The 
result of such a process left four articles in the final qualita-
tive synthesis. The PRISMA flowchart is displayed as Fig. 1.

Characteristics of included studies

A total of four articles comprised of at least 34,547 patients 
were included in this review. All included studies were pub-
lished between 2021 and 2022. The studies primarily origi-
nated from the USA, the UK, and Belgium. Of the included 
articles, only two reported using the TRIPOD guidelines 
for AI model development and validation. Nine various AI-
based algorithms were used. A total of four models were 
utilized to preoperatively predict femoral and tibial TKA 
implant sizes. On the other hand, one model was developed 
to predict number of corrections made to patient-specific 
or surgeon preoperative plans. Baseline characteristics of 
included studies are presented in Table 2.

Prediction of femoral TKA implants

Kunze et al. [9] investigated the effectiveness of five differ-
ent machine learning (ML) algorithms in the prediction of 
TKA implants. The models were trained on 13,828 patients 
and tested on 3455 patients. The five ML models included 
random forest (RF), support vector machine (SVM), sto-
chastic gradient boosting (SGB), elastic-net penalized linear 
regression (ENPLR), and extreme gradient boosting (XGB). 
The SGB model was the best performing model for femo-
ral component size prediction with a mean absolute error 
and root-mean-squared error (RMSE) values of 2.32 and 
2.94, respectively. The accuracy of model for the implant’s 
± 4 mm size was 83.2%. Moreover, the exact bucket, within 
± 1 bucket, and within ± 2 bucket sizes accuracy of the 
model were as follows: 48.2%, 95.0%, and 99.8%.

Kunze et al. [13] also explored the performance of five 
different ML models in TKA implant prediction. The models 
were tested on 11,777 patients. The authors found that the 
SVM model yielded the best performance parameters for 
femoral implant prediction with a mean absolute error and 
RMSE of 0.73 and 1.06, respectively. The model’s accura-
cies at exact size, within ± 1 size, and within ± 2 sizes of the 
actual implant size were 42.2%, 88.3%, and 97.6%. Height 
was deemed the variable with the highest relative influence 
on component size.

Burge et al. [14] tested the performance utility of a ML-
based 2D–3D pipeline which is able to generate accurate 
predictors of distal femur and proximal tibia bones from 
X-ray images. The model was trained on data provided from 
the Osteoarthritis Initiative (OAI) and Korea Institute of Sci-
ence and Technology Information (KISTI) databases. The 
tool was tested on 78 patients and five different generic TKA 
components including Zimmer Biomet (NexGen), DePuy 
(Sigma), Smith & Nephew (Legion), Maxx Orthopaedics 
(Freedom), and Stryker (Scorpio). The authors demon-
strated that the mean RMSE percent prediction for femoral 
component size was 77.9%. The accuracy reaches 99.7% 
for within ± 1 size metrics. Moreover, the tool was able to 
predict 71.8% of maximum over/under hang; this accuracy 

Table 1   MINORS criteria of the included studies

Study/items A clearly 
stated 
aim

Inclusion of 
consecutive 
patients

Prospective 
collection of 
data

Endpoints 
appropriate to 
the aim of the 
study

Unbiased 
assessment 
of the study 
endpoints

Follow-
up period 
appropriate to 
the aim of the 
study

Loss to 
follow-up less 
than 5%

Prospective 
calculation 
of the study 
size

Total

Kunze [9] 1 1 2 2 0 2 2 0 11
Kunze [13] 2 2 1 2 1 2 2 0 12
Lambrechts 

[2]
2 2 1 2 1 2 2 0 12

Burge [14] 2 1 1 2 0 2 2 0 10
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increased to 99.5% at a ± 1 size metric. A summary of the 
accuracy measurements across various included AI models 
is displayed in Table 3.

Prediction of tibial TKA implants

Kunze et al. [9] demonstrated that the SBG ML model had 
the best performance in predicting tibial component size. 
The model’s mean absolute error and RMSE are as follows: 
2.35 and 3.04, respectively. The accuracy of model for the 
implant’s ± 4-mm size was 83.0%. At the exact bucket, 
within ± 1 bucket, and within ± 2 bucket sizes, the model 
exhibited the following accuracies: 58.4%, 97.8%, and 
99.9%. The SGB predictions of patient’s tibial component 
size were primarily influenced by patients’ biological sex.

Kunze et al. [13] showcased that the ENPLR ML model 
had the best performance in predicting tibial component 
size. The model yielded a mean absolute error and RMSE 
values of 0.70 and 1.03, respectively. The model’s exact 
size accuracy was 43.8%, which increased to 90.0% and 
97.7% at the within ± 1 size and within ± 2 sizes thresh-
olds, respectively. Biological sex was the most influential 
factor in affecting the ENPLR model predictions of tibial 
size.

Burge et al. [14] examination of an ML-based 2D–3D 
pipeline tool revealed that their model is able to predict 
tibial sizes with an 80.5% accuracy in terms of RMSE and 
71.8% in terms of maximum over/under hang. The RMSE 
and maximum over/under hang accuracy increase to 99.7% 
and 99.9% within a ± 1 size threshold, respectively. Patients’ 

Fig. 1   PRISMA flow diagram 
of record identification, screen-
ing, and selection in systematic 
review and meta-analysis
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Table 2   A summary of baseline study characteristics

Study Design, LoE Country No. of patients Implant type Manufac-
turer (Zim-
mer, Stryker, 
DePuy..)

Age (Y) Height (cm) Weight (Kg)

Kunze [13] Case control, III USA 17,283 PS, CR Biomet, Coren-
tic, Exact-
ech, DePuy, 
Stryker, 
Microport, 
and Zimmer

66.3 ± 9.4 169.3 ± 10.8 91.3 ± 21.0

Kunze [9] Case control, III USA 11,777 NR Stryker 66.5 ± 9.5 
(17–94)

169.6 ± 10.8 
(116.8–
210.8)

90.0 ± 19.4 
(30.8–
181.4)

Lambrechts[2] Case control, III Belgium 5409 NR Vanguard, 
Personna, and 
Zimmer

NR NR NR

Burge [14] Case control, III UK 78 NR Zimmer, DePuy, 
Smith and 
Nephew, 
Maxx Ortho-
paedics, and 
Stryker

46 -79 NR NR

Study BMI (kg/m2) Gender 
(M:F)

AI model 
used

No. of algo-
rithms (with 
names)

Type of 
validation

Index test Reference 
standard

Data source Conclusion

Kunze [13] 31.9 ± 6.4 7421:9862 Machine 
learning

5 (stochastic 
gradient 
boosting, 
random 
forest, sup-
port vector 
machine, 
extreme 
gradient 
boost-
ing, and 
elastic-net 
penalized 
logistic 
regression)

Training set 
80% Test 
Set 20%

XR Actual 
sizing 
from OR 
records

Two large 
tertiary 
academic 
and six 
com-
munity 
hospitals

Novel 
machine 
learning 
algorithms 
demon-
strated good 
to excellent 
performance 
for predict-
ing TKA 
component 
size. Patient 
sex appears 
to con-
tribute an 
important 
role in 
predicting 
TKA size
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Table 2   (continued)

Study BMI (kg/m2) Gender 
(M:F)

AI model 
used

No. of algo-
rithms (with 
names)

Type of 
validation

Index test Reference 
standard

Data source Conclusion

Kunze [9] 31.2 ± 5.6 
(13.7–
59.8)

5306:6472 Machine 
learning

5 (stochastic 
gradient 
boosting, 
random 
forest, sup-
port vector 
machine, 
extreme 
gradient 
boost-
ing, and 
elastic-net 
penalized 
logistic 
regression)

Training set 
80% Test 
set 20%

XR Actual 
sizing 
from OR 
records

Two large 
academic 
and three 
com-
munity 
centres

Machine 
learning 
algorithms 
demon-
strated good 
accuracy for 
predicting 
within one 
size of the 
final tibial 
and femoral 
compo-
nents used 
for TKA. 
Patient 
height and 
sex were 
the most 
important 
factors for 
prediction 
femoral and 
tibial com-
ponent size, 
respectively

Lambre-
chts[2]

NR NR Machine 
learning

3 (multi-task 
LASSO 
(MTL), 
LASSO, 
and group 
LASSO)

Training set 
70% Test 
set 30%

MRI Actual 
sizing 
from OR 
records

39 expe-
rienced 
surgeons 
from 38 
hospitals

A machine 
learning-
based 
preoperative 
plan, which 
captures 
surgical 
prefer-
ences in a 
patient- and 
surgeon-
specific 
manner, has 
the potential 
to reduce 
the time 
needed to 
modify the 
preoperative 
plan prior to 
approval

Burge [14] NR 33:45 Machine 
learning

1 (ML-
based 
2D–3D 
pipeline)

Training 
set 90% 
Validation 
set 10% 
Test set 
(additional 
subjects 
78) 44%

XR & MRI Actual 
sizing 
from OR 
records

Osteoar-
thritis 
Initiative 
(OAI) and 
KISTI

Higher 
prediction 
accuracies 
than gener-
ally reported 
for manual 
templating 
techniques

LoE Level of evidence, BMI Body mass index, ML Machine learning, and (Y) Years
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age did not correlate with the model’s prediction accuracy 
(Table 3).

Prediction of patient‑specific preoperative planning 
corrections

Lambrechts et al. [2] tested the performance of ML models 
in the prediction of preoperative planning corrections for 
the femur–tibia joint interface. The ML models were vali-
dated on a dataset comprised of 5409 patients undergoing 
TKA. A 70:30% ratio was utilized for training/cross valida-
tion and testing, respectively. ML-based models included 
multi-task LASSO (MTL), LASSO, and group LASSO. All 
three models were supplemented with either support vector 
regression (SVR) or least absolute deviation support vector 
machines (LAD–SVR) for conducting regression analysis. 
The authors found that, only average, AI-based preoperative 
plans resulted in a 39.7% improvement compared to manu-
facturer preoperative plans. Improvement was measured 
as the percentage reduction in correction in the AI-based 
model compared to that of the manufacturer (3.76 vs. 7.13). 
The best ML model was the combination of LASSO with 
LAD–SVR among most cases. Nonetheless, all included 
models resulted in significant improvements compared to 
the manufacturers’ plans. Interestingly, there was a moderate 
positive correlation between number of corrections made 
by surgeons on the manufacturer’s plan and performance 
improvement using ML. Overall, compared to manufac-
turer plans, AI-based plans resulted in significantly higher 
implant accuracy of 82.2% and 85% for both femoral and 
tibial implant sizes, respectively.

Discussion

The main findings of this review were that the accuracy of 
predicting TKA femoral component sizing spanned from 
88.3 to 99.7% within a one size deviation, while the accuracy 
for tibial component sizing ranged from 90 to 99.9% ± 1 size. 
As Kunze et al. have demonstrated, predictive AI modelling 
has the ability to more accurately predict component siz-
ing, in comparison with pre-existing statistical modelling 
from manufacturers [9]. The advantage of AI in this context 
is the ability to incorporate multiple discrete, ordinal, and 
continuous variables into the predictive model, with underly-
ing machine learning refining the model contemporaneously. 
This provides an opportunity for real-time model refinement, 
and thus, AI can accommodate both for changing surgical, 
implant, and patient factors [17]. Within this review, pre-
dictive AI model accuracy in estimating component sizing 
has been demonstrated across substantial datasets; a finding 
which merits further research focuses from the wider ortho-
paedic community [2, 9, 14].

Utilization of predictive AI-driven modelling in TKA can 
be seen as an opportunity to economize procedure-related 
costs. Within TKA surgery, AI modelling in the preopera-
tive context could enable TKA surgery to be delivered in 
resource-constrained environments. By processing demo-
graphic and radiographic data across a single population, 
there remains the inherent possibility of streamlining sur-
gical implant kits and thus reducing commercial cost to 
health-care providers [18]. Without the need for an extensive 
implant inventory, TKR surgery could be considered even 
more accessible than present, with a reduction in implant 
costs allowing for more equitable access to elective ortho-
paedic care [19, 20].

With the inherent possibility of utilizing AI in TKA to 
streamline implant inventory, tangible environmental ben-
efits could also be realized [18, 21]. Currently, the use of 
TKA kits with an extended implant inventory present both 
increased manufacturing and sterilization costs, both for 
implant makers and consumers [18, 21]. Preoperative AI 
modelling executed with a high degree of accuracy could 
support the production of demographic-specific implant kits 
and thus keep the need for extensive surgical inventory in 
TKR for either complex deformity or revision operations.

The use of substantial datasets in all included studies 
enhances the credibility of study conclusions. By utilizing 
large datasets, the AI modelling was able to understand both 
a wider demographic than traditional manufacturer informa-
tion and incorporate more clinically relevant demographic 
data into the existing AI structure [22]. Given the advent and 
utility of registry data in global orthopaedics, utilizing exist-
ing registry frameworks to enable AI-related research should 
allow for rapid research into this field [23]. The ability of 
AI to harness ‘big data’ through pre-existing joint registries, 
both retrospectively and prospectively, should help to prove 
AI’s utility in this sphere, and provide further demographic 
data to solidify existing models [24, 25].

Fundamentally, variability in alignment and operative 
principles from within the orthopaedic community presents 
a unique challenge when developing an all-encompassing AI 
model in TKR surgery [2, 26]. The variability in operative 
principles employed by each surgeon may add uncertainty 
to any AI model, as the reasoning for intraoperative deci-
sions that are fed back into the model is inconsistent between 
individual surgeons [2, 26]. A possible future endeavour 
would focus on developing models for distinct groups of 
TKA surgeons, for examples those practicing with a specific 
implant, alongside, for instance, utilizing mechanical align-
ment principles. In this context, repeatable and consistent 
intraoperative decision-making could be incorporated into 
existing AI infrastructure.

Future work should focus on well-designed randomized 
studies that compare traditional techniques to AI preopera-
tive planning, with a focus on both eventual implant choice 
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and ultimately subsequent patient outcomes. Currently, AI 
applicability in TKA can be seen as a possible cost-saving 
solution; however, the tangibility of clinical benefit remains 
unclear within the published literature. AI in TKA surgery 
should be outcomes-focused, with consideration given both 
to patient-reported outcome measures and radiological out-
comes [27]. Further, current AI models presented within this 
review lack rigorous external validation, and this should be 
sought prior to widespread clinical use.

Within the included literature, references are made to a 
theoretical intraoperative time saving using AI prediction; 
however, these data have not been captured within these 
studies. Further, AI in TKA has been employed primarily 
in predicting implant sizing in primary TKA. Extrapolation 
of these results to patients with severe deformity or requir-
ing revision TKA patients warrants caution, as these patient 
cohorts present unique perioperative surgical considerations 
[28].

Limitations of the current literature

The applicability of AI-based models in TKA is still in 
its infancy due to the following limitations: First, lack of 
external validation of proposed models. Second, failure to 
account for other factors affecting TKA implants such as 
tibial slope, degree of constraint, revision components, etc. 
Third, AI-based model should be validated for a number of 
commonly used manufacturers, which may not be the case 
for most studies. Fourth, the sampling strategies of included 
studies may not represent all TKA patients; thus, future stud-
ies should attempt to account for patient heterogeneity. Fifth, 
most studies lack a control group/intervention by which the 
results of AI-based predictions are compared against. Sixth, 
there is significant variability in terms of model develop-
ment and reporting. Therefore, black-box models may not 
be relevant for all TKA populations. Finally, inter- and intra-
surgeon variability was not account for in any of the pro-
posed models.

Conclusion

This study highlights AI’s potential as a valuable adjunct to 
TKA planning, demonstrating a reliable ability to predict 
implant sizes comparable to the accuracy of manual tem-
plating methods found in the current literature. However, it 
remains crucial for future research to evaluate AI’s impact 
on patient care and cost-effectiveness.
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