Skip to main content

Advertisement

Log in

Risk factors for cage subsidence and clinical outcomes after transforaminal and posterior lumbar interbody fusion

  • Original Article
  • Published:
European Journal of Orthopaedic Surgery & Traumatology Aims and scope Submit manuscript

Abstract

Background

Cage subsidence is a very common complication after lumbar interbody fusion. It may compromise vertebral interbody fusion through progressive spinal deformity and consequently cause compression of neural elements. Clinical relevance remains, however, unclear, with few studies on this subject and even less information regarding its correlation with clinical findings. The aim of this study was to identify risk factors for cage subsidence and clinical evaluation after transforaminal (TLIF) and posterior (PLIF) lumbar interbody fusion.

Methods

A retrospective study in patients submitted to TLIF and PLIF between 2008 and 2017 was conducted.

Results

A total of 165 patients were included (123 TLIF and 42 PLIF). Univariate analysis showed an increased risk of cage subsidence in spondylolisthesis comparing with degenerative disk disease (p = 0.007). A higher preoperative lumbar lordosis angle (p = 0.014) and cage placement in L2-L3 (p = 0.012) were associated with higher risk of subsidence. The posterior cage positioning on vertebral endplate was associated with a higher risk of subsidence (p = 0.028) and significant subsidence (p = 0.005), defined as cage migration > 50% of cage height. PLIF presented a higher risk when comparing with TLIF (p = 0.024). Hounsfield unit (HU) values < 135 (OR6; 95% CI [1.95–34]) and posterior positioning (OR7; 95% CI [1.7–27.3]) were independent risk factors for cage subsidence and significant subsidence, respectively, in multivariate analysis. There was a tendency for significant subsidence in degrees ≥ 2 of Meyerding spondylolisthesis (OR4; 95% CI [0.85–21.5]). Significant cage subsidence was not associated with worse clinical results. Other analyzed factors, such as age (p = 0.008), low bone mineral density (BMD) (p = 0.029) and type of surgery (TLIF) (p = 0.004), were associated with worse results.

Conclusion

The present study shows that lower BMD and posterior cage positioning are relevant risk factors for lumbar cage subsidence. Low BMD is also a predictor of poor clinical results, so it must be properly evaluated and considered, through HU values measurement in CT scan, a feasible and reliable tool in perioperative planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability and material

All the data and materials comply with field standards of the journal.

References

  1. Labrom RD, Tan JS, Reilly CW, Tredwell SJ, Fisher CG, Oxland TR (2005) The effect of interbody cage positioning on lumbosacral vertebral endplate failure in compression. Spine 30(19):E556–E561. https://doi.org/10.1097/01.brs.0000181053.38677.c2

    Article  PubMed  Google Scholar 

  2. Schiffman M, Brau SA, Henderson R, Gimmestad G (2003) Bilateral implantation of low-profile interbody fusion cages: subsidence, lordosis, and fusion analysis. Spine J 3(5):377–387. https://doi.org/10.1016/s1529-9430(03)00145-1

    Article  PubMed  Google Scholar 

  3. Abbushi A, Cabraja M, Thomale UW, Woiciechowsky C, Kroppenstedt SN (2009) The influence of cage positioning and cage type on cage migration and fusion rates in patients with monosegmental posterior lumbar interbody fusion and posterior fixation. Eur Spine J 18(11):1621–1628. https://doi.org/10.1007/s00586-009-1036-3

    Article  PubMed  PubMed Central  Google Scholar 

  4. Grant JP, Oxland TR, Dvorak MF (2001) Mapping the structural properties of the lumbosacral vertebral endplates. Spine 26(8):889–896. https://doi.org/10.1097/00007632-200104150-00012

    Article  CAS  PubMed  Google Scholar 

  5. Jost B, Cripton PA, Lund T et al (1998) Compressive strength of interbody cages in the lumbar spine: the effect of cage shape, posterior instrumentation and bone density. Eur Spine J 7(2):132–141. https://doi.org/10.1007/s005860050043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dipaola CP, Bible JE, Biswas D, Dipaola M, Grauer JN, Rechtine GR (2009) Survey of spine surgeons on attitudes regarding osteoporosis and osteomalacia screening and treatment for fractures, fusion surgery, and pseudoarthrosis. Spine J 9(7):537–544. https://doi.org/10.1016/j.spinee.2009.02.005

    Article  PubMed  Google Scholar 

  7. Schreiber JJ, Anderson PA, Rosas HG, Buchholz AL, Au AG (2011) Hounsfield units for assessing bone mineral density and strength: a tool for osteoporosis management. J Bone Joint Surg Am 93(11):1057–1063. https://doi.org/10.2106/JBJS.J.00160

    Article  PubMed  Google Scholar 

  8. Lee S, Chung CK, Oh SH, Park SB (2013) Correlation between Bone Mineral Density Measured by Dual-Energy X-Ray Absorptiometry and Hounsfield Units Measured by Diagnostic CT in Lumbar Spine. J Korean Neurosurg Soc 54(5):384–389. https://doi.org/10.3340/jkns.2013.54.5.384

    Article  PubMed  PubMed Central  Google Scholar 

  9. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group. World Health Organ Tech Rep Ser. 1994;843:1–129.

  10. Choi MK, Kim SM, Lim JK (2016) Diagnostic efficacy of Hounsfield units in spine CT for the assessment of real bone mineral density of degenerative spine: correlation study between T-scores determined by DEXA scan and Hounsfield units from CT. Acta Neurochir 158(7):1421–1427. https://doi.org/10.1007/s00701-016-2821-5

    Article  PubMed  Google Scholar 

  11. Zaidi Q, Danisa OA, Cheng W (2019) Measurement techniques and utility of hounsfield unit values for assessment of bone quality prior to spinal instrumentation: a review of current literature. Spine 44(4):E239–E244. https://doi.org/10.1097/BRS.0000000000002813

    Article  PubMed  Google Scholar 

  12. Siu TL, Najafi E, Lin K (2017) A radiographic analysis of cage positioning in lateral transpsoas lumbar interbody fusion. J Orthop 14(1):142–146. https://doi.org/10.1016/j.jor.2016.10.028

    Article  PubMed  Google Scholar 

  13. Marchi L, Abdala N, Oliveira L, Amaral R, Coutinho E, Pimenta L (2013) Radiographic and clinical evaluation of cage subsidence after stand-alone lateral interbody fusion. J Neurosurg Spine 19(1):110–118. https://doi.org/10.3171/2013.4.SPINE12319

    Article  PubMed  Google Scholar 

  14. Tokuhashi Y, Ajiro Y, Umezawa N. Subsidence of metal interbody cage after posterior lumbar interbody fusion with pedicle screw fixation. Orthopedics. 2009;32(4)

  15. Park MK, Kim KT, Bang WS et al (2019) Risk factors for cage migration and cage retropulsion following transforaminal lumbar interbody fusion. Spine J 19(3):437–447. https://doi.org/10.1016/j.spinee.2018.08.007

    Article  PubMed  Google Scholar 

  16. Mi J, Li K, Zhao X, Zhao CQ, Li H, Zhao J (2017) Vertebral body hounsfield units are associated with cage subsidence after transforaminal lumbar interbody fusion with unilateral pedicle screw fixation. Clin Spine Surg 30(8):E1130–E1136. https://doi.org/10.1097/BSD.0000000000000490

    Article  PubMed  Google Scholar 

  17. Formby PM, Kang DG, Helgeson MD, Wagner SC (2016) Clinical and radiographic outcomes of transforaminal lumbar interbody fusion in patients with osteoporosis. Global Spine J 6(7):660–664. https://doi.org/10.1055/s-0036-1578804

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lund T, Oxland TR, Jost B et al (1998) Interbody cage stabilisation in the lumbar spine: biomechanical evaluation of cage design, posterior instrumentation and bone density. J Bone Joint Surg Br 80(2):351–359. https://doi.org/10.1302/0301-620x.80b2.7693

    Article  CAS  PubMed  Google Scholar 

  19. Polikeit A, Ferguson SJ, Nolte LP, Orr TE (2003) Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages: finite element analysis. Eur Spine J 12(4):413–420. https://doi.org/10.1007/s00586-002-0505-8

    Article  PubMed  Google Scholar 

  20. Tay WL, Chui CK, Ong SH, Ng AC (2012) Osteoporosis screening using areal bone mineral density estimation from diagnostic CT images. Acad Radiol 19(10):1273–1282. https://doi.org/10.1016/j.acra.2012.05.017

    Article  PubMed  Google Scholar 

  21. Rand T, Seidl G, Kainberger F et al (1997) Impact of spinal degenerative changes on the evaluation of bone mineral density with dual energy X-ray absorptiometry (DXA). Calcif Tissue Int 60(5):430–433. https://doi.org/10.1007/s002239900258

    Article  CAS  PubMed  Google Scholar 

  22. Franck H, Munz M, Scherrer M (1995) Evaluation of dual-energy X-ray absorptiometry bone mineral measurement–comparison of a single-beam and fan-beam design: the effect of osteophytic calcification on spine bone mineral density. Calcif Tissue Int 56(3):192–195. https://doi.org/10.1007/bf00298608

    Article  CAS  PubMed  Google Scholar 

  23. Kim KS, Yang TK, Lee JC (2005) Radiological changes in the bone fusion site after posterior lumbar interbody fusion using carbon cages impacted with laminar bone chips: follow-up study over more than 4 years. Spine 30(6):655–660. https://doi.org/10.1097/01.brs.0000155421.07796.7f

    Article  PubMed  Google Scholar 

  24. Lee N, Kim KN, Yi S et al (2017) Comparison of outcomes of anterior, posterior, and transforaminal lumbar interbody fusion surgery at a single lumbar level with degenerative spinal disease. World Neurosurg 101:216–226. https://doi.org/10.1016/j.wneu.2017.01.114

    Article  PubMed  Google Scholar 

  25. Penta M, Fraser RD. Anterior lumbar interbody fusion. A minimum 10-year follow-up. Spine 1997;22(20):2429–2434. doi:https://doi.org/10.1097/00007632-199710150-00021

  26. Choi JY, Sung KH (2006) Subsidence after anterior lumbar interbody fusion using paired stand-alone rectangular cages. Eur Spine J 15(1):16–22. https://doi.org/10.1007/s00586-004-0817-y

    Article  PubMed  Google Scholar 

  27. Liljenqvist U, O’Brien JP, Renton P (1998) Simultaneous combined anterior and posterior lumbar fusion with femoral cortical allograft. Eur Spine J 7(2):125–131. https://doi.org/10.1007/s005860050042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. de Kunder SL, van Kuijk SMJ, Rijkers K et al (2017) Transforaminal lumbar interbody fusion (TLIF) versus posterior lumbar interbody fusion (PLIF) in lumbar spondylolisthesis: a systematic review and meta-analysis. Spine J 17(11):1712–1721. https://doi.org/10.1016/j.spinee.2017.06.018

    Article  PubMed  Google Scholar 

  29. Goh JC, Wong HK, Thambyah A, Yu CS (2000) Influence of PLIF cage size on lumbar spine stability. Spine 25(1):35–39. https://doi.org/10.1097/00007632-200001010-00008

    Article  CAS  PubMed  Google Scholar 

  30. Kumar MN, Baklanov A, Chopin D (2001) Correlation between sagittal plane changes and adjacent segment degeneration following lumbar spine fusion. Eur Spine J 10(4):314–319. https://doi.org/10.1007/s005860000239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kuslich SD, Ulstrom CL, Griffith SL, Ahern JW, Dowdle JD. The Bagby and Kuslich method of lumbar interbody fusion. History, techniques, and 2-year follow-up results of a United States prospective, multicenter trial. Spine 1998;23(11):1267–1278 https://doi.org/10.1097/00007632-199806010-00019

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

All authors cooperated equally for the work.

Corresponding author

Correspondence to Tiago Amorim-Barbosa.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Ethical approval

The protocol was approved by the institutional review board of the hospital and the study is in agreement with the Declaration of Helsinki.

Consent to participate

All patients gave informed consent to participate.

Consent for publication

The authors authorize the publication of the present work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amorim-Barbosa, T., Pereira, C., Catelas, D. et al. Risk factors for cage subsidence and clinical outcomes after transforaminal and posterior lumbar interbody fusion. Eur J Orthop Surg Traumatol 32, 1291–1299 (2022). https://doi.org/10.1007/s00590-021-03103-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00590-021-03103-z

Keywords

Navigation