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Abstract
Purpose  To analyze the effect of endplate weakness prior to PLIF or TLIF cage implantation and compare it to the opposite 
intact endplate of the same vertebral body. In addition, the influence of bone quality on endplate resistance was investigated.
Methods  Twenty-two human lumbar vertebrae were tested in a ramp-to-failure test. One endplate of each vertebral body 
was tested intact and the other after weakening with a rasp (over an area of 200 mm2). Either a TLIF or PLIF cage was then 
placed and the compression load was applied across the cage until failure of the endplate. Failure was defined as the first local 
maximum of the force measurement. Bone quality was assessed by determining the Hounsfield units (HU) on CT images.
Results  With an intact endplate and a TLIF cage, the median force to failure was 1276.3N (693.1–1980.6N). Endplate 
weakening reduced axial endplate resistance to failure by 15% (0–23%). With an intact endplate and a PLIF cage, the median 
force to failure was 1057.2N (701.2–1735.5N). Endplate weakening reduced axial endplate resistance to failure by 36.6% 
(7–47.9%). Bone quality correlated linearly with the force at which endplate failure occurred. Intact and weakened endplates 
showed a strong positive correlation: intact-TLIF: r = 0.964, slope of the regression line (slope) = 11.8, p < 0.001; intact-
PLIF: r = 0.909, slope = 11.2, p = 5.5E−05; weakened-TLIF: r = 0.973, slope = 12.5, p < 0.001; weakened-PLIF: r = 0.836, 
slope = 6, p = 0.003.
Conclusion  Weakening of the endplate during cage bed preparation significantly reduces the resistance of the endplate to 
subsidence to failure: endplate load capacity is reduced by 15% with TLIF and 37% with PLIF. Bone quality correlates with 
the force at which endplate failure occurs.
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Introduction

The use of intervertebral cages as part of spinal fusion sur-
gery has increased rapidly in recent years. In the United 
States alone, the rate of lumbar fusion has increased by 
322.6% between 2011 and 2019 [1]. This is because they 
offer biological and mechanical advantages: the insertion 

of bone grafts improves and accelerates bony fusion [2], 
they expand the intervertebral space and facilitate lordosis 
correction [3], and absorb axial compression forces, thereby 
reducing the forces on pedicle screws and rods, which should 
reduce the risk of implant failure [4]. Posterior lumbar inter-
body fusion (PLIF) is used for various degenerative spinal 
conditions including degenerative disc disease, spondylolis-
thesis, spinal stenosis, and transforaminal lumbar interbody 
fusion (TLIF), which is preferred for foraminal stenosis [5].

As the number of fusion surgeries has increased, so have 
the associated complications [6]. Cage subsidence can cause 
pain due to loss of intervertebral height with foraminal nar-
rowing and subsequent nerve root impingement, instru-
mentation failure, pseudoarthrosis, early screw loosening, 
kyphotic deformity, and adjacent segment degeneration [7]. 
Known risk factors include low bone density, posterior cage 
positioning, limited implant contact area and poor endplate 
condition [8]. Weakening of the endplate during cage bed 
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preparation can also cause subsidence [9]. Typically, the 
cage bed is carefully prepared with a rasp to achieve bleed-
ing and eventual bony fusion, but if this is done too aggres-
sively, the endplate may be unknowingly opened [10].

Biomechanical studies have shown that endplate mor-
phology plays an important role: If only the edge of the 
cage rests on the endplate due to the concave shape of the 
lower and upper endplate geometry, subsidence may occur 
due to peak loads [11]; the center of the endplate should 
be avoided as an isolated contact area, as this region is the 
weakest while the posterolateral region is the strongest [12].

Despite knowledge of the importance of cage positioning 
and the influence of endplate weakening, the biomechanical 
effect of endplate weakening has not been quantified yet.

The aim of this study was to analyze the effect of endplate 
weakening by PLIF and TLIF cages and to compare it to the 
other intact endplate of the same vertebral body. In addi-
tion, the influence of bone quality on endplate resistance was 
investigated. The hypotheses of the present study are that 
(1) endplate weakening significantly affects endplate load 
capacity and that (2) bone quality affects endplate resistance.

Materials and methods

The study was approved by the local ethics committee. 
Twenty-two lumbar vertebrae (three L1, five L2, five L3, 
five L4, four L5) obtained from five fresh-frozen human 
specimens (Science Care, Phoenix, AZ, USA) were tested 
in this study. The median age was 55.4 years (range 36–75, 
two males and three females). Computed tomography (CT) 
scans (SOMATOM Edge Plus, Siemens Healthcare GmbH) 
showed no bony defects or deformities. The lumbar vertebrae 

were isolated, taking care not to damage the endplates. Any 
remnants of the disc were sharply removed. First, one of the 
two endplates was biomechanically tested by immobilizing 
the vertebral bodies in customized 3D-printed clamps in 
a testing machine (Fig. 1A) [13]. The vertebrae were then 
released from the clamps and inverted to test the other end-
plate. To ensure a stable fixation, the vertebral bodies were 
cast in appropriate boxes using polymethylmethacrylate 
(PMMA; Fig. 1B, E) to test the second endplates. The boxes 
were made of polylactic acid (PLA). Two different fixation 
techniques (clamps and potting) were used for practical and 
financial reasons.

Biomechanical experiments

One endplate of each vertebral body was tested in the intact 
state and the other in the weakened state. The endplates were 
weakened with a shaver commonly used to prepare the disc 
space prior to cage insertion. Cortical bone was removed 
over an area of 200 mm2, corresponding to the head of the 
shaver, until cancellous bone was visible in the area where 
the cage was to be placed. Either a PLIF (PLIF; MectaLIF 
Posterior; Fig. 1B) or a TLIF cage (TLIF; MectaLIF Trans-
foraminal; Fig. 1C) was then placed on the intact or weak-
ened endplate. Allocation was randomised. Care was taken 
to ensure that there were equal numbers of vertebrates in the 
PLIF and TLIF groups. The rationale for using a unilateral 
PLIF (uPLIF) cage in our study was to be able to draw more 
appropriate conclusions regarding bilateral PLIF (bPLIF) 
cages (than vice versa) without underestimating the force 
acting on the endplate when using a single cage. Subse-
quently, uniaxial compression load was applied to the cage 
using a static testing machine (Zwick/Roell Allroundline 

Fig. 1   Illustration of a lumbar vertebra undergoing a “ramp to failure” test (A). PLIF cage (B) and TLIF cage (C) mounted in the testing 
machine. Lumbar vertebra with endplate fracture after compression loading using a TLIF cage (D) and a PLIF cage (E)
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10kN and testXpert III software; Fig. 1A). The test setup was 
performed in accordance with the ASTM F2077-18 (Test 
Methods for Intervertebral Body Fusion Devices) standard 
for compression test configuration [14]. The endplate was 
loaded through an open spherical joint to ensure that the 
force was applied uniformly across the cage. In addition, the 
vertebra was mounted on an x-y stage that allowed transla-
tional motion orthogonal to the loading direction (Fig. 1A). 
Prior to biomechanical testing, the posterior bony structures 
were removed using an oscillating saw to ensure that the 
compression force was applied to the cage in isolation. A 
Xforce HP 10kN load cell with an accuracy of ± 0.5% for 
force measurements above 100N, manufactured by the same 
company as the testing machine, was used.

Biomechanical testing protocol

Each vertebral body was tested twice in a ramp-to-failure 
test: (1) the intact endplate on one side, and (2) the weak-
ened endplate on the other side. Eleven of the 22 lumbar 
vertebrae were assigned to the PLIF group and eleven to 
the TLIF group.

The cages were preloaded with ± 20N in the compression 
plane. Compression was applied at a velocity of 5 mm/min 
according to the specifications of the ASTM 2077–18 test 
standard. The force was recorded until 5 mm displacement 
were reached (Fig. 1D–E).

Data evaluation and statistical analysis

The force at which failure occurred, indicating sintering of 
the cage and therefore fracture of the endplate, was defined 
as the first local maximum of the force measurement 
(Fig. 2). The maximum compressive force that resulted in 
failure of the intact endplate was compared with the force 
that resulted in failure of the weakened endplate using 
paired nonparametric comparisons (Wilcoxon signed-
rank test). Probability density functions were fitted onto 
the failure force results for different cage configurations 
(uPLIF, bPLIF, and TLIF) in order to compare the distri-
butions of forces measured for the intact and the weakened 
endplates. In addition, bone quality was assessed for each 
vertebra from the CT images in Hounsfield units (HU) 
according to Schreiber et al. [15]. The average HU value 
resulting from three elliptical regions of interest within 
the vertebral body on axial slices (below the superior end-
plate, in the middle of the vertebral body, and above the 
inferior endplate) was set as the reference value for the sta-
tus of the vertebral (trabecular) bone. Variable tube volt-
age used during CT acquisition was taken into account by 
adapting the HU according to the results of Afifi et al. [16]. 

Intraclass correlation coefficient (ICC) (Model: two-way 
mixed effect; Definition: absolute agreement, Type: single 
measurement) was: 0.996 [0.991,0.998]. Linear regression 
analysis was then used to investigate the resulting average 
HU value as a factor influencing endplate resistance to 
force through linear regression analysis. The significance 
level α was set to 0.05 and the values are specified as 
median (25th–75th percentile).

Results

Failure force in intact and weakened endplates

With a TLIF cage, the median force at failure was 1276.3N 
(693.1–1980.6N) with an intact endplate. With a weak-
ened endplate, the force at which failure occurred was sig-
nificantly reduced by a median of 15% (0–23%, p = 0.04; 
Fig. 3). The weakened endplates resisted a median force 
of 1149N for TLIF cages.

With a PLIF cage, the median force at failure was 
1057.2N (701.2–1735.5N) with an intact endplate. With 
a weakened endplate, the force at which failure occurred 
was significantly reduced by a median of 36.6% (7–47.9%, 
p = 0.007; Fig.  3). The weakened endplates resisted a 
median force of 1101.7N for PLIF cages.

Bone quality correlated linearly with the force at 
which endplate failure occurred (Fig.  4). Both, intact 
and weakened endplates showed a strong positive cor-
relation: intact—TLIF: r = 0.964, slope of the regression 
line (slope) = 11.8, p < 0.001; intact—PLIF: r = 0.909, 
slope = 11.2, p = 5.5E − 05; weakened—TLIF: r = 0.973, 
slope = 12.5, p < 0.001; weakened—PLIF: r = 0.836, 
slope = 6, p = 0.003.

Fig. 2   Example curves of an intact and weakened endplate with the 
first local maximum (“asterisk”) of the force measurement and subse-
quent cage subsidence
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Discussion

The most important finding of the study is that endplate 
weakening significantly reduced endplate resistance to sub-
sidence of the endplates, which may promote cage migration 
or subsidence. The effect was even more pronounced when 
a uPLIF cage was used (70% (median)–36.6%) compared to 
TLIF cage (83.1% (median)–15%).

Lumbar interbody fusion techniques have evolved rapidly 
over the past few decades, leading to an expansion of indica-
tions [17]. Among these, PLIF and TLIF are the most com-
monly used techniques [18, 19]. They provide solid fusion 
and allow for neural decompression, provide an additional 
fusion interface with a higher fusion rate than bone graft 
alone [20], restore the intervertebral height and help restore 
alignment [21]. From a biomechanical point of view, the 
interbody fusion device is designed to support the anterior 
column and transmit compressive forces [22, 23]. However, 
failure to achieve bony fusion may result in cage migration 

Fig. 3   Absolute and relative 
compression resistance in 
intact and weakened endplates 
with TLIF and PLIF cages 
(*p < 0.05; **p < 0.01)

Fig. 4   Influence of bone quality (measured in Hounsfield Units) on 
endplate resistance force
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or subsidence. Cage subsidence rates reported in the litera-
ture range from 0 to 65% [21, 24–27], with implant contact 
area, endplate condition, and bone mineral density appearing 
to play an important role [8, 28].

The contact area between the cage and the endplate 
depends on the morphology of the endplate (i.e., highly 
concave or irregularly shaped endplates reduce the contact 
area), and on the shape and size of the cage. The smaller the 
surface contact area, the higher the stress on the endplate 
[29–31]. Banana-shaped and anatomically contoured cages 
increase the contact surface compared to rectangular cages 
and therefore theoretically have a lower tendency to subside 
[11]. This may explain why the failure load of the uPLIF was 
slightly lower than that of the TLIF in the present study. Due 
to the concavity of the endplates, the PLIF cage often only 
came into contact with the bone at the edges, causing force 
peaks in these areas and resulting in fractures.

Violation of the endplates during cage bed preparation 
appears to have a relevant biomechanical effect: the exposure 
of cancellous bone reduced the failure force by 15% for the 
TLIF and 37% for the PLIF, respectively. To compare the 
distributions of forces measured for the intact and the weak-
ened endplates, and to better assess the potential clinical 
implications of the experimental results, probability density 
functions were fitted to the failure force results for each cage 
configuration (uPLIF, bPLIF, and TLIF; Fig. 5).

Preload and percentage of external load transfer through 
the cage were obtained from previously published biome-
chanical experiments involving axially compressed spinal 
segments with load cell instrumented vertebral cages [32]. 
Specifically, an average preload of up to 328N was meas-
ured (uPLIF 224N; bPLIF 328N; TLIF 317N), and up to 
50% (uPLIF 40%; bPLIF 50%; TLIF 44%) of the external 
compressive load was transmitted through the cage to the 

Fig. 5   Illustration of the prob-
ability density functions of the 
intact and weakened endplate 
for three different cage con-
figurations. For all three cage 
configurations, the cage loads in 
the upright position and during 
physical activity (such as lifting 
an object) are evident, as are 
the areas under the probability 
density function curves: the 
probability of endplate fracture 
is higher in the weakened state 
than in the intact state for all 
configurations
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ventral column of the spine, thus affecting the endplates. 
It was therefore possible to determine the likely loading 
of each cage configuration during upright standing (about 
1000N acting on the spine) and during more vigorous 
daily activities (about 3000N on the spine) and to link 
it to the cage-specific failure forces of intact and weak-
ened endplates [33, 34]. During upright standing, likely 
624N, 828N, and 757N are going through the uPLIF, the 
bPLIF, and the TLIF, respectively. During more vigorous 
activities, the uPLIF, bPLIF and TLIF are subjected to 
1424N, 1828N, and 1637N, respectively. Consequently, 
12% (bPLIF) to 23% (TLIF) of intact endplates would fail 
during upright standing, whereas up to 39% (uPLIF) of the 
weakened endplates could fail under such loads (Fig. 5).

Considering the subsidence rates from clinical studies, 
the mean incidence of subsidence with bPLIF is 15.8% 
(10–65.1%) [21, 25, 35, 36], whereas the mean inci-
dence of subsidence with TLIF is approximately 25.3% 
(0–51.2%) [8, 9, 21, 27, 37–44]. This clinically reported 
difference between TLIF and bPLIF subsidence is con-
sistent with the experimentally determined distributions 
of endplate failure: both indicate a higher propability of 
failure with TLIF than with bPLIF (Fig. 5). In addition, the 
average clinically observed subsidence is within the range 
of endplates predicted to fail during standing (12–24% 
for bPLIF and 23–35% TLIF cages). This suggests that 
subsidence occurring in the early postoperative period 
may be induced by exposure to comparatively low spinal 
loads experienced during upright posture or non-impact 
activities.

Biomechanically, bone quality correlated positively with 
the absolute resistance force of the endplate: the higher the 
mean intracorporal HU values, the more axial compression 
force had to be applied until a fracture occurred in both the 
intact and weakened states. An increase of 10 HU in the 
mean intracorporal HU of an intact vertebral body resulted 
in an increase of 100N in the failure force (slope of the 
regression lines is approximately 10, Fig. 4). While this 
appears to be unchanged in a weakened vertebral body with 
the use of a TLIF cage, endplate weakening appears to be 
more detrimental with the use of a PLIF cage (Fig. 4). Rea-
sons for this phenomenon could be the different positioning 
area for TLIF and PLIF, with a more “peripheral” placement 
of TLIF and the slightly larger contact area of TLIF.

This biomechanical understanding can guide clinical 
practice: in osteoporotic spines, where there is a higher 
risk of screw loosening and cage subsidence [9], bone den-
sity should be optimized preoperatively whenever possible 
[45], cages with large footprints should be preferred over 
small cages, and great care should be taken to preserve the 
endplates.

Some authors claim that neither fusion rates nor clinical 
outcomes are affected by cage subsidence [46], however, 

many of the advantages that come with a cage, as men-
tioned above, are lost with subsidence.

Overall, we believe that endplate preparation should be 
performed with caution, as cortical bone compromise is 
associated with significant loss of resistance to axial com-
pression (Fig. 6). In addition, ventral force transmission 
is further compromised by the previous disc dissection 
required for cage insertion [47]. This results in increased 
stress at the screw-bone interface. Park et al. [9] demon-
strated a correlation between cage positioning, endplate 
injury, single cage use, and cage migration. Cage migra-
tion did not result in subsidence in all cases. However, the 
rate of non-fusion and screw loosening was significantly 
higher in patients with cage subsidence. Understanding 
these biomechanical relationships can be used to improve 
clinical decision-making.

This in vitro biomechanical study has several limitations. 
Firstly, an isolated axial compression force was applied to 
the vertebral body. This is a simplified model that does not 
represent the complex movement of the spine. However, we 
know that the axial compression force is the main loading 
direction for all loading cases, therefore it is an appropri-
ate study scenario. Secondly, the endplates were weakened 
with a shaver until cancellous bone was visible. It is possi-
ble that in some cases a little more substance was removed 
than in others. However, since the endplate in the cage area 
was completely removed during shaving, the effect of a lit-
tle more or less depth should be negligible compared to the 
effect of a missing endplate. Thirdly, the degrees of freedom 
in our setup always allowed the cage to align perfectly with 
the endplate. In vivo, it is possible that a cage is loaded more 
unilaterally and collapses more quickly. However, in another 
study, it was found that under high loads, the cage is mostly 
loaded relatively evenly (anterior vs posterior load distribu-
tion) [32]. Fourthly, HU are widely used to assess bone qual-
ity, but the absolute values vary between scanners and they 
are notoriously difficult to compare between studies. How-
ever, within this study only relative comparisons between 
the samples were drawn, which are justifiable from our point 
of view, as the imaging parameters were the same. Lastly, 
we have tried to position the cages in the same area of the 
endplate, but small variations may have been unavoidable.

Conclusion

Weakening of the endplate during cage bed preparation 
significantly reduces the resistance of the endplate to sub-
sidence to failure: endplate load capacity is reduced by 
15% with TLIF and 37% with PLIF. Bone quality corre-
lates with the force at which endplate failure occurs.
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Fig. 6   Illustrative visualiza-
tion of lumbar vertebral body 
segments without and with a 
cage, with cage subsidence and 
after successful bony fusion. 
Compared to the intervertebral 
disc, an inserted cage increases 
the stiffness of the construct 
and thus the force transmis-
sion to the underlying screws. 
With bony fusion, the stiffness 
is further increased. If cage 
subsidence is present, the cage 
cannot transmit interbody forces 
and the stiffness of the anterior 
column decreases
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