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Abstract
Purpose Sitting balance on an unstable surface requires coordinated out-of-phase lumbar spine and provides sufficient chal-
lenge to expose quality of spine control. We investigated whether the quality of spine coordination to maintain balance in 
acute low back pain (LBP) predicts recovery at 6 months.
Methods Participants in an acute LBP episode (n = 94) underwent assessment of sitting balance on an unstable surface. Seat, 
hip and spine (lower lumbar, lumbar, upper lumbar, thoracic) angular motion and force plate data were recorded. Coordination 
between the seat and hip/spine segments to maintain balance was quantified in the frequency domain to evaluate coordination 
(coherence) and relative timing (phase angle: in-phase [segments move together]; out-of-phase [segments move opposite]). 
Center of pressure (CoP) and upper thorax motion assessed overall balance performance. Hip and spine coordination with the 
seat were compared between those who did not recover (increased/unchanged pain/disability), partially recovered (reduced 
pain/disability) or recovered (no pain and disability) at 6 months.
Results In both planes, coherence between the seat and lower lumbar spine was lower (and in-phase—unhelpful for bal-
ance) at baseline in those who did not recover than those who recovered. Coherence between the seat and hip was higher in 
partially recovered in both planes, suggesting compensation by the hip. LBP groups had equal overall balance performance 
(CoP, upper thorax motion), but non-recovery groups used a less optimal strategy that might have consequences for long-
term spine health.
Conclusion These longitudinal data revealed that individuals with compromised contribution of the lumbar spine to the 
balance during unstable sitting during acute LBP are less likely to recover.

Keywords Low back pain · Lumbar spine · Postural control · Coordination · Risk factors

Introduction

Low back pain (LBP) is a complex multi-factorial condition 
[1] and the leading cause of years lived with disability glob-
ally [2–4], with enormous economic impact [5, 6]. Although 

many individuals with new episodes of LBP recover quickly 
[1], recurrence is common [1, 7–10], and in some cases LBP 
becomes persistent and disabling [9, 11, 12]. Despite con-
siderable efforts, LBP outcomes are not improving, and the 
global burden of LBP is projected to increase even further 
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in coming decades [1, 4]. A better understanding of risk fac-
tors that underlie the transition from acute to chronic LBP 
would provide additional insights into LBP prevention/
management.

Suboptimal loading on spine tissues because of poor 
quality trunk postural control has been suggested as a risk 
factor for the recurrence/persistence of LBP [13–15], but 
convincing evidence has not been forthcoming. Research 
is plagued by four major issues. First, most work has been 
cross-sectional [16–22] and unable to inform a potential role 
in outcome. Second, few studies [20, 21] have investigated 
trunk postural control early in the acute phase of LBP. Third, 
methods have been neither sufficiently challenging nor suf-
ficiently precise to enable isolated consideration of the trunk 
(e.g., whole-body postural control in standing [23–29]) 
without compensation or contribution from other body seg-
ments. Fourth, even studies with unstable sitting paradigm 
have focused on overall balance performance (e.g., center of 
pressure [CoP] motion) [16, 17, 19–22] or straightforward 
kinematic measures of motion (e.g., range of motion) [16, 
30–32] and lacked sophistication to reveal how spine motion 
is coordinated to overcome postural challenges. This study 
was designed to address these issues.

Trunk postural control involves maintenance of postural 
equilibrium (center of mass [CoM] over base of support) and 
upright orientation [33–35]. Both require precise balance 
between movement and stiffness to resist and overcome per-
turbations. Imprecise control could result in excessive spinal 
tissue load due to loss of balance or exaggerated muscle 
activity/responses [36]. There is considerable evidence of 
such changes once LBP has become chronic, with examples 
including delayed postural recovery in individuals who use 
less spine movement to maintain balance [37], increased 
spine stiffness [32, 38, 39] and delayed muscle response [19, 
40].

Evaluation of postural control in unstable sitting 
(Fig. 1) enables interrogation of the trunk’s contribution 
to balance with limited contribution from the limbs [19, 
41, 42], apart from a contribution by the hip. To main-
tain balance, the CoM is maintained close to the CoP via 
movements at the base/seat [43] induced by coordinated 
hip/spine movements [42, 44]. The lumbar spine has a pri-
mary role in maintaining balance in unstable sitting and is 
tightly coupled with seat movement (coherent movement) 
[42] (Fig. 2), but in the opposite direction (out-of-phase) 
to oppose any perturbations or to maintain the CoM close 
to the CoP [42, 45]. Recent work shows that some, but not 
all, individuals with acute LBP have less coherent motion 
between the lumbar spine and seat, and this motion is more 
in-phase, and thus unhelpful to oppose perturbations [46]. 
Movement of the spine with the seat suggests increased 
trunk stiffness because of exaggerated muscle co-contrac-
tion. Although this might represent a protective strategy 

to prevent movement of the painful region with short-term 
benefits [14, 30, 38, 47], the increased tissue load from 
muscle co-contraction and greater potential for balance 
loss might predispose individuals to further problems.

This study aimed to examine the hypothesis that indi-
viduals with a poorer quality coordination of the hip and 
spine during the early acute phase of LBP are more likely 
to develop persistent long-term pain and disability.

Materials and methods

Participants

Participants were from an established LBP cohort [48] 
and were included only if they were within 2 weeks of 
experiencing an acute episode of non-specific LBP. Par-
ticipants had pain located between thoracolumbar junc-
tion and gluteal crease and lasted for at least 24 h. At the 
time of testing, they presented with pain and/or disability. 
Participants were excluded if they were < 18 or > 50 years 
old, had a serious spinal pathology, or major pain/injury 
in any region in the last year [48]. Cross-sectional seated 
balance data have been published from this cohort [42].

Power calculation

The participants included in this study were from an estab-
lished LBP cohort with a sample size based on a more 
complex statistical analysis that requires a large sample 
size [48]. The analysis for the present study was pre-
planned rather than exploratory. We undertook a power 
analysis based on the mean (1.09) and SD (0.45) of the 
coherence data at baseline for individuals with acute LBP 
[46]. For a power of 0.80 and significance of 5%, we would 
require 66 participants to detect a 20% difference between 
groups with different outcomes at 6 months.

Questionnaires

The Numeric Pain Rating Scale (NPRS) and Roland Mor-
ris Disability Questionnaire (RMDQ) were used to assess 
LBP intensity and LBP-related disability, respectively, 
at baseline and each subsequent fortnight for 6 months 
(Table 1). Both measures were assessed as the average 
score during the last week. Psychological questionnaires 
(Table 1) including the Pain Catastrophizing Scale (PCS) 
and Fear-Avoidance Beliefs Questionnaire (FABQ) were 
assessed at baseline only.
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Experimental setup

Movement of the hip and spine while controlling postural 
balance was evaluated using an unstable sitting paradigm 
[19, 41, 42]. This paradigm (Fig. 1) has: (1) an aluminum 
hemisphere (radius: 250 mm; height of seat: 195 mm) 
attached underneath the seat and enables rotational move-
ment in three degrees of freedom [16, 42]; (2) an adjustable 
footplate attached to the seat (90° knee flexion) for limit-
ing lower limbs’ contribution to balance; and (3) front and 
side rails placed close to the seat. To estimate orientation 
of the spine, pelvis, thigh and seat, non-collinear clusters 
of four reflective markers were attached to the skin over L5/
S1, L2/L3, T12/L1 and T1 spinous processes, and lateral 
left thigh and the back of seat (Fig. 1). Vicon (8-camera, 

at 100 samples/s; T40, Vicon Industries, Inc., New York, 
USA) or OptiTrack (10-camera, at 120 samples/s; Flex 13, 
NaturalPoint, Inc., Corvallis, USA) system was used to track 
3D positions of the markers.

Experimental procedure

Trunk postural control was evaluated at baseline in two 
visual conditions: eyes open and eyes closed. The latter was 
included to render the task more challenging by demanding 
the use of sensory inputs other than vision. Participants were 
instructed to “sit upright as quietly as possible.” Six 30-s tri-
als were recorded, three for each visual condition, each trial 
separated by ~ 30-s rest, and the order of each condition was 

Fig. 1  Experimental setup of 
the unstable sitting paradigm. 
Clusters of reflective mark-
ers were positioned over the 
spinous processes of L5/S1, 
L2/L3, T12/L1, T1, the lateral 
aspect of the left thigh, and 
attached to the back of the seat. 
The force plate was placed 
under the hemisphere. These 
clusters were used to define 
the following segments: hip 
(relative orientation between 
thigh and L5/S1 clusters), lower 
lumbar spine (relative orienta-
tion between L5/S1 and L2/L3 
clusters), lumbar spine (relative 
orientation between L5/S1 
and T12/L1 clusters), upper 
lumbar spine (relative orienta-
tion between L2/L3 and T12/
L1 clusters) and thoracic spine 
(relative orientation between 
T12/L1 and T1 clusters)
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randomized. Safety rail touch/hold was recorded for further 
analysis.

Data analysis

MATLAB (R2019a, Mathworks Inc., Natick, MA, USA) 
was used to analyze data. The x, y, and z coordinates of 
markers were filtered with a Butterworth filter (4th-order, 
bi-directional, low-pass) at 2.5 Hz [16]. OptiTrack data were 
resampled at 100 samples/s using spline interpolation.

The relative orientation between clusters was determined 
by multiplying the cranial cluster quaternion by the con-
jugate of the caudal cluster quaternion at each sample to 
extract the following segments: hip (relative orientation 
between thigh and L5/S1 clusters), lower lumbar spine (rela-
tive orientation between L5/S1 and L2/L3 clusters), lum-
bar spine (relative orientation between L5/S1 and T12/L1 
clusters), upper lumbar spine (relative orientation between 

L2/L3 and T12/L1 clusters) and thoracic spine (relative ori-
entation between T12/L1 and T1 clusters). Further details 
regarding the methods have been described previously [42]. 
Cross-spectral (frequency domain) analysis was performed 
to quantify the relation between changes in global seat ori-
entation and changes in angle of the hip and spine regions in 
sagittal and frontal planes. This analysis enables the extrac-
tion of two outcome measures: phase angle and coherence. 
Phase angle describes the relative change of two signals 
to each other at different frequencies and has two distinct 
relations: in-phase and out-of-phase [49]. In-phase relation 
indicates that the phase difference between two signals is 
closer to 0º (both signals tend change together; same direc-
tion), and out-of-phase relation indicates that the phase dif-
ference between two signals is closer to 180º (one signal has 
approximately half a cycle delay relative to the other; oppo-
site direction). Coherence describes the correlation between 
two signals and enables the determination of whether phase 

Fig. 2  Simplified depiction of coherent spine control in unstable sit-
ting. Trunk postural control in anterior–posterior and medio-lateral 
directions is shown to illustrate the coherent lumbar out-of-phase 
strategy to maintain equilibrium during unstable sitting. In the sagit-
tal plane, to restore equilibrium when the seat is tilted forward, the 
lumbar spine is extended and coherently moved out-of-phase (in the 
opposite direction to the seat), and the center of mass (CoM) of upper 

body in relation to the center of pressure (CoP) is returned to the 
equilibrium point. In the frontal plane, to restore equilibrium when 
the seat is tilted to the right, the lumbar spine is laterally flexed to the 
left and coherently moved out-of-phase (in the opposite direction to 
the seat), and similar to the sagittal plane, the CoM of upper body in 
relation to the CoP is returned to the equilibrium point
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angle has a consistent (coherence = 1) or inconsistent (coher-
ence = 0) relation [50]. Coherence significance threshold was 
set at 0.4856 [50]. Data from the three 30-s trials for each 
visual condition were combined; then, the means of both 
phase angle (using circular mean) and coherence were deter-
mined in the 0–0.5 Hz frequency band.

Motion at the base (CoP) and upper thorax were calcu-
lated to assess overall balance performance. Force plate data 
sampled at 2000 samples/s were filtered using a Butterworth 
filter (4th-order, bi-directional, low-pass) at 20 Hz cutoff fre-
quency and then decimated at 100 samples/s. The mean CoP 
position was subtracted, and the root-mean-square amplitude 
 (RMSdisplacement) and velocity  (RMSvelocity) of the CoP in sag-
ittal and frontal planes were calculated. Normalized upper 
thorax motion was calculated as sway path of the mean T1 
cluster position normalized to spine length (the distance 
between T1 cluster and seat surface).

Statistical analysis

Statistical analyses were performed using StataIC 16 
(Release 16, StataCorp LLC, College Station, TX). A 
P-value < 0.05 was considered significant.

Participants were categorized based on their 6-month 
pain and disability status into three groups: (1) Unrecov-
ered—increased or unchanged pain/disability from baseline 
at 6 months (n = 15), (2) Partially recovered—decreased 
but not fully resolved pain and/or disability from baseline 
(n = 60), and (3) Recovered—no pain/disability at 6 months 

(n = 19). Six-month pain/disability status was calculated by 
averaging the final three (weeks 20, 22 and 24) NPRS and 
RMDQ scores.

Questionnaire data were compared between unrecovered, 
partially recovered and recovered groups using Fisher’s exact 
tests (for categorical variables) or one-way ANOVAs (for 
continuous variables) with Bonferroni post hoc analyses.

Generalized Estimating Equations (GEEs) using 
exchangeable methods (with robust estimation of standard 
errors) were performed to analyze the outcomes of coordina-
tion between the movement of each segment in relation to 
seat movement (phase angle, coherence) and the outcomes 
of overall balance performance  (RMSdisplacement,  RMSvelocity, 
normalized upper thorax motion). The analysis was per-
formed separately for each Segment (only for phase angle 
and coherence; hip, lower lumbar, lumbar, upper lumbar, 
thoracic) and Plane (sagittal, frontal) to compare between 
Group (recovered, partially recovered, unrecovered) and 
Visual Condition (eyes open, eyes closed) with their inter-
actions entered as fixed factors. Body mass index (BMI) 
[18, 41, 42, 51] and the frequency at which participants 
touched the safety rail [42] were included as confounding 
variables. BMI was mean-centered, phase angle values were 
transformed to absolute values, and coherence values were 
Fisher-transformed before analyses to achieve normal dis-
tribution. Non-significant interactions were omitted from 
models. In case of significant interactions involving Group, 
Bonferroni post hoc analyses were performed. Similar GEEs 
were performed to include additional covariates to determine 

Table 1  Pain, disability and psychological questionnaires

 NPRS Numeric Pain Rating Scale, RMDQ Roland Morris Disability Questionnaire, PCS Pain Catastrophizing Scale, FABQ Fear-Avoidance 
Beliefs Questionnaire, FABQ-PA Fear-Avoidance Beliefs Questionnaire—Physical Activity, FABQ-W Fear-Avoidance Beliefs Questionnaire—
Work

Questionnaire Description Score range

NPRS This scale assesses the pain intensity using an 11-point 
numerical rating scale. It ranges from 0 (representing one 
pain extreme; “no pain”) to 10 (representing the other pain 
extreme; “worst pain possible”)

(0 to 10):
A higher score represents a higher pain level

RMDQ This questionnaire assesses the physical disability caused by 
LBP using the 28-item version of RMDQ. Each item has two 
answer options: “YES” (1 = applicable) and “NO” (0 = not 
applicable)

(0 to 28):
A higher score represents a higher level of LBP-related dis-

ability

PCS This scale assesses the participant’s tendency to catastrophize 
about pain using an 13-item on a five-point Likert scale. Each 
item has five answer options, ranging from “0” (not at all) to 
“4” (all the time)

(0 to 52):
A higher score represents a higher level of pain catastrophizing

FABQ This questionnaire assesses the participant’s fear avoidance 
beliefs about physical activity and work using an 16-item 
on a seven-point Likert scale. Each item has seven answer 
options, ranging from “0” (completely disagree) to “6” 
(completely agree)

FABQ-PA subscale (0 to 30):
A higher score represents higher fear-avoidance beliefs related 

to physical activity
FABQ-W subscale (0 to 66):
A higher score represents higher fear-avoidance beliefs related 

to work
FABQ total scale (0 to 96):
A higher score represents higher fear-avoidance beliefs
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the relationship between coordination outcomes and pain/
disability change scores (degree of recovery from baseline 
to 6 months with respect to pain/disability).

To further investigate the relationship between measures 
(pain/disability change score) and coordination outcomes 
(phase angle, coherence), independent of our allocation to 
recovery groups (recovered, partially recovered, unrecov-
ered), we conducted pairwise correlation analyses separately 
for each Segment and Plane.

Results

Participant characteristics

Data from 94 participants who completed follow-up pain/
disability testing at 6 months were analyzed (Table 2). 
At baseline, LBP groups differed in BMI (post hoc: unre-
covered < recovered [P = 0.029]) and PCS scores (post 
hoc: unrecovered [P < 0.001] and partially recovered 

[P = 0.011] > recovered). According to our recovery defini-
tion, LBP groups differed in terms of absolute pain/disability 
scores and pain/disability change scores at 6 months (post 
hoc: unrecovered [all, P < 0.001] and partially recovered [all, 
P < 0.05] > recovered, unrecovered [all, P < 0.001] > par-
tially recovered).

Sagittal hip/spine coordination

Coherence between the seat and lower lumbar spine segment 
was lower in partially recovered (P = 0.015) and unrecovered 
(P = 0.009) groups than in the recovered group, regardless 
of visual condition (Table 3, Fig. 3; Supplementary Table 1 
[post hoc results]), suggesting less consistent contribution 
of the lower lumbar spine to balance control. In contrast, 
coherence between the seat and hip segment was higher in 
the partially recovered than the recovered group during eyes 
open (P = 0.046; Table 3, Fig. 3; Supplementary Table 1), 
suggesting compensation by the hip for this group. In con-
junction with lower coherence of the lower lumbar spine, 

Table 2  Characteristics of 
recovered, partially recovered 
and unrecovered participants

Abbreviations: LBP low back pain, BMI body mass index, NPRS Numeric Pain Rating Scale, RMDQ 
Roland Morris Disability Questionnaire, PCS Pain Catastrophizing Scale, FABQ-PA Fear-Avoidance 
Beliefs Questionnaire—Physical Activity, FABQ-W Fear-Avoidance Beliefs Questionnaire—Work, FABQ 
Fear-Avoidance Beliefs Questionnaire
Statistics: Fisher’s exact test was performed for categorical data, and one-way ANOVA was performed 
for continuous data. P-values of statistically significant differences between the LBP groups (P < 0.05) are 
printed bold

Characteristic Mean ± Standard Deviation P-value

Recovered Partially recovered Unrecovered

Demographics (at baseline)
Age (years) 30.63 ± 8.87 29.08 ± 7.90 27.27 ± 6.68 0.473
Sex (n; male/female) (8/11) (33/27) (8/7) 0.660
Height (m) 1.74 ± 0.06 1.73 ± 0.09 1.75 ± 0.10 0.783
Weight (kg) 79.47 ± 15.66 72.04 ± 14.27 70.4 ± 15.57 0.121
BMI (kg/m2) 26.24 ± 4.72 23.83 ± 3.84 22.65 ± 3.11 0.022
Clinical Features (at baseline)
Previous LBP (n; yes/no) (16/3) (56/3) (0/15) 0.188
Pain (NPRS) 4.11 ± 1.85 5.20 ± 2.02 4.47 ± 1.46 0.068
Disability (RMDQ) 5.47 ± 4.11 6.95 ± 4.51 6.13 ± 4.10 0.415
Pain catastrophizing (PCS) 5.37 ± 4.17 14.59 ± 9.74 14.4 ± 8.77  < 0.001
Fear-avoidance—activity (FABQ-PA) 13.16 ± 6.41 15.17 ± 5.55 14.6 ± 3.76 0.386
Fear-avoidance—work (FABQ-W) 9.89 ± 9.45 11.58 ± 8.57 9.73 ± 10.19 0.666
Fear-avoidance—total (FABQ) 23.05 ± 11.66 26.75 ± 10.27 24.33 ± 11.09 0.378
Clinical Features (at 6 months)
Absolute pain score (NPRS) 0 2.63 ± 2.14 5.25 ± 1.82  < 0.001
Absolute disability score (RMDQ) 0.12 ± 0.33 3.10 ± 3.55 8.08 ± 5.73  < 0.001
Pain change score from baseline (%)  − 1  − 0.36 ± 0.27 0.11 ± 0.12  < 0.001
Disability change score from baseline (%)  − 0.96 ± 0.09  − 0.40 ± 0.41 0.09 ± 0.27  < 0.001
Balance-Related Features (at baseline)
Bar touch—eyes closed (n; yes/no) (5/14) (18/41) (6/9) 0.724
Bar touch—eyes open (n; yes/no) (0/19) (5/55) (1/14) 0.492
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participants in the unrecovered group moved the lumbar 
spine segment more toward the same direction as the seat 
(moving further to in-phase; e.g., lumbar flexion during for-
ward seat tilt; unhelpful for balance recovery), in contrast to 
out-of-phase movement (helpful for balance recovery) by the 
recovered group, regardless of visual condition (P = 0.009, 
Table 3, Fig. 3; Supplementary Table 1). There was a small, 
but significant, positive relationship between lumbar coher-
ence and disability change score (P = 0.028; Supplementary 
Table 2 and Fig. 1 [relationships results using GEE models]).

Frontal hip/spine coordination

Similar to the sagittal plane, coherence between the seat and 
lumbar spine segment was lower in the unrecovered than the 
recovered group, regardless of visual condition (P = 0.006; 
Table 3, Fig. 4; Supplementary Table 1). Coherence between 
the seat and hip segment was higher in the partially recov-
ered than the recovered group, regardless of visual condi-
tion (P = 0.023; Table 3, Fig. 4; Supplementary Table 1). 
Participants in the unrecovered group used less out-of-phase 
movement of the lumbar spine segment with the seat (e.g., 
lumbar left lateral flexion during right seat tilt) than partici-
pants in the recovered group, regardless of visual condition 
(P = 0.024, Table 3, Fig. 4; Supplementary Table 1). There 
was a significant negative relationship between lumbar 
coherence and pain change scores (P = 0.002; Supplemen-
tary Table 2 and Fig. 1), suggesting that higher coherence is 
associated with greater improvement in pain.

Pairwise correlations between hip/spine 
coordination and pain/disability change scores

Pain (all, P < 0.001) and disability (all, P < 0.05) change 
scores were negatively correlated with coherence between 
the lower lumbar spine and seat, in both planes (Supple-
mentary Table 3 and Figs. 2 and 3 [Pairwise correlations 
results]), i.e., greater improvement in clinical outcomes 
in those with higher coherence. Pain change scores were 
also negatively correlated with phase angle (all, P < 0.05) 
and coherence (all, P < 0.05) of the lumbar spine with the 
seat in both planes (Supplementary Table 3 and Figs. 2 and 
3), i.e., greater improvement in clinical outcomes in those 
with coherent and out-of-phase movement. Further, pain 
change score was negatively correlated with phase angle of 
the upper lumbar spine (P = 0.042; Supplementary Table 3 
and Fig. 2) and disability change score was negatively cor-
related with the coherence of thoracic spine (P = 0.005; 
Supplementary Table 3 and Fig. 3) in the frontal plane.

Overall balance performance

No significant between-group differences were found for 
 RMSdisplacement,  RMSvelocity and normalized upper tho-
rax motion (Table 4, Fig. 5), which implies that all LBP 
groups had similar success in overall balance performance.

Table 3  Main effects and 
interactions of GEE models on 
spectral analysis of phase angle 
and coherence

Abbreviations: GEE Generalized Estimating Equations
Statistics: GEE model was performed for each segment and direction. P-values of statistically significant 
main effects or interactions (P < 0.05) are printed bold

Segment Main effects and 
interactions

Phase angle Coherence

Sagittal Frontal Sagittal Frontal

Hip Group 0.388 0.986 0.836 0.041
Vision 0.071 0.024  < 0.001  < 0.001
Group × Vision Omitted Omitted 0.007 Omitted

Lower Lumbar Group 0.074 0.500 0.002 0.200
Vision 0.286 0.001 0.056  < 0.001
Group × Vision Omitted Omitted Omitted Omitted

Lumbar Group 0.012 0.007 0.150 0.010
Vision 0.963 0.002 0.063  < 0.001
Group × Vision Omitted Omitted Omitted Omitted

Upper Lumbar Group 0.196 0.212 0.537 0.354
Vision 0.037 0.071  < 0.001  < 0.001
Group × Vision Omitted Omitted Omitted Omitted

Thoracic Group 0.481 0.475 0.168 0.597
Vision 0.004  < 0.001  < 0.001  < 0.001
Group × Vision 0.030 Omitted Omitted Omitted
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Discussion

This study is the first to show that a less optimal use of lum-
bar spine motion to maintain balance in the acute phase of 
LBP predicts persistence of symptoms in the longer term. 
Our experimental balance task provided sufficient chal-
lenge to expose differences in the strategy for spine con-
trol between outcome groups, and our innovative analysis 
methods revealed inter-related observations that corroborate 
this novel interpretation. Detailed analyses in the frequency 
domain using GEE models revealed that, compared to par-
ticipants who had recovered at 6 months, those who did not 
fully recover used: (i) less consistent motion of the lumbar 
spine (lower coherence with seat movement) to counter-
act balance disturbance from seat movement, (ii) lumbar 
spine motion that was more in-phase with the seat and thus 
unhelpful for balance recovery and (iii) more consistent 
motion of the hip, perhaps as a compensation for poor coor-
dination of the lumbar spine. Further corroborating the out-
comes, pairwise correlations showed that lower coherence 
of the lumbar spine and movement more toward in-phase is 
correlated with lesser improvement (pain/disability change 
scores) at 6 months. These findings have implications for the 
interpretation of underlying mechanisms for the recurrence/
persistence of LBP with potential relevance for the design of 
targeted approaches to LBP treatment.

Interpretation of differences between sub‑groups 
in spine coordination strategy

Our findings suggest that the overall balance performance 
measured from conventional time domain analyses such as 
CoP motion was similar between LBP groups, but how this 
was achieved (coordination strategy) differed between the 
recovery groups (recovered, partially recovered, unrecov-
ered). Recent individual participant data meta-analysis has 
shown greater RMS CoP displacements in individuals with 
acute and persistent LBP compared to pain-free individuals 
(Alshehri et al., 2023 unpublished data), but no differences 
within the LBP population have been shown. A benefit of 

detailed frequency domain analysis of the spine and seat 
movement is the capacity to understand how spine motion 
is coordinated to achieve balance. Previous work has shown 
that although pain-free individuals use coherent out-of-
phase motion of the lumbar spine in both planes to maintain 
balance [42], coherent motion is generally less in individuals 
with acute LBP [46], but with some within-group variation 
of coherence. The present analysis extends this observation 
to show that this variation relates to recovery. The less con-
sistent more in-phase motion of the lumbar spine in the sag-
ittal plane is unhelpful for balance recovery as it moves with 
the seat. Failure to move opposite to perturbations might be 
a consequence of a strategy to limit spine movement, thus 
prioritizing spine protection over balance control. This strat-
egy would increase spine stiffness due to increased muscle 
co-activation [38, 52, 53] and/or enhanced control of lower 
trunk admittance (i.e., less displacement per unit of applied 
force as a result of higher position, velocity and acceleration 
feedback gains) from higher reflex gains [39]. Alternatively, 
if spine proprioception is impaired/reduced, as is common 
in LBP [54–57], it would reduce the ability of spine mus-
cles to adequately respond to balance disturbances [19, 40], 
and thus spine movement might be limited to avoid error. 
Here successful balance was enabled by greater coordination 
(higher coherence) between the hip and seat. Similar com-
pensation strategies for reducing spine movement through 
use of the lower limbs have been shown in other balance 
paradigms such as multidirectional support surface trans-
lations in standing [58] and when healthy individuals are 
exposed to experimental pain [59].

In the frontal plane, results are generally similar, or even 
more robust. In this plane, the hip can only make a trivial 
contribution and balance is more dependent on spine move-
ment. Previous work has shown that in this plane, most 
lumbar coherence values exceed the significance threshold, 
which implies that the lumbar spine is more important for 
frontal plane balance control during unstable sitting than 
other segments [42]. Despite this importance, unrecovered 
participants adopted a less consistent and less out-of-phase 
lumbar strategy which again implies limitation of spine 
motion either to protect or limit error.

Potential relevance of differences in spine 
coordination strategy for LBP recovery

Current data cannot confirm whether the strategy adopted 
in the acute period is causally related to the persistence of 
LBP or related to some other factor that explains both the 
different strategy and poor outcome. However, there is rea-
son to speculate that the less optimal strategy might cause 
persistence. One possible explanation is that if the lesser 
spine motion is related to increased muscle co-contraction 
to either protect the spine from further injury or to limit 

Fig. 3  Sagittal plane marginal mean differences in phase angle and 
coherence with seat movements between the three LBP groups. The 
differences in phase angle and coherence between recovered (green), 
partially recovered (orange) and unrecovered (red) groups for each 
segment (hip, lower [L.] lumbar, lumbar, upper [U.] lumbar, thoracic) 
and visual condition (eyes closed [EC], eyes open [EO]) are shown in 
both planes (sagittal plane, frontal plane). Error bars represent 95% 
confidence intervals. In-phase (0°) relation indicates that the segment 
moves in the same direction as the seat, and out-of-phase (180°) rela-
tion indicates that the segment moves in the opposite direction to the 
seat. The significance threshold for coherence (0.4856) is shown in 
the horizontal dashed gray line. Higher coherence values indicate 
more consistent hip/spine phase relation with seat movements. Brack-
ets indicate P < 0.05 between groups
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error secondary to poor proprioception, this would increase 
spine loading as has been speculated [14] and shown in 
other tasks in cross-sectional studies [47, 60]. Even though 
it is challenging to entirely ascertain the existence of ongo-
ing noxious stimulation or microtrauma on spine tissues, 
the plausibility of a causal relationship between pain per-
sistence in LBP and spine tissue loading cannot be refuted 
[61]. Connective tissues are richly innervated with nocicep-
tive neurons [62]. Nociceptive inputs are driven, primarily, 
by the activation of specialized peripheral sensory neurons 
(nociceptors) [63]. In the spine, ongoing nociceptive inputs 
in response to increased spine tissue loading may initiate 
changes in the central nervous system that drive pain per-
sistence [64]. In this case, the restricted (restrained) spine 
motion might maintain the activation of nociceptive inputs 
that might persist beyond an acute injury phase. Other lon-
gitudinal work has related cumulative low back loads to the 
occurrence of LBP [65], although in that work loading was 
related to the position (e.g., working in a trunk-flexed pos-
ture) and the frequency of task performance (e.g., number of 
lifts during work). Another possibility is that the suboptimal 
balance strategy adopted by the unrecovered group renders 
balance control less robust with greater potential for balance 
loss, excessive spine motion, excessive spine loading dur-
ing recovery and injury. These alternatives require further 
exploration.

The present findings provide additional interpretation of 
the few longitudinal studies that have investigated the rela-
tionship between trunk postural control and the development 
or recurrence/persistence of LBP. One study showed greater 
risk of developing future LBP in athletes with delayed deac-
tivation of trunk muscle activity after quick force release in 
a semi-seated position [66]. This evidence of augmented 
activity could relate to the restrained uncoherent, more in-
phase spine motion after perturbations in our study. Other 
data showed that symptom-free adults with greater CoP 
displacements during vibration of the soleus muscles (for 
proprioception disturbance) in standing (similar to individu-
als with LBP), had a higher risk of developing or having a 
recurrent course of LBP [67]. Greater response to soleus 

vibration has been attributed to a reliance on an ankle rather 
than lumbar spine strategy for balance control [68], which 
concurs with less lumbar contribution in the present study. 
Together these data support the notion that compromised 
dynamic control of the lumbar spine is a risk factor for the 
persistence of LBP.

Clinical implications

These findings have several implications. First, assessment 
of the balance strategy in acute LBP might provide a method 
to predict clinical outcomes. Although plausible, it is critical 
to acknowledge that LBP is a multifactorial condition and 
many other biological, psychological and social features will 
contribute to the prediction of outcome and the trajectory 
of pain. Previous analyses of this LBP cohort have identi-
fied relationships between baseline biological (e.g., inflam-
matory profiles [69] and central sensitization signs [70]), 
psychological (e.g., depressive symptoms) and social (e.g., 
impending compensation [71]) features. A multifactorial 
analysis is likely to provide the most accurate prediction 
of outcome.

Second, the trunk’s contribution to balance control 
is potentially modifiable by training. Other features of 
trunk motor control are modifiable with exercise [72, 73]. 
Although it is possible that improving the trunk’s contribu-
tion to balance control might promote clinical improvement, 
consideration of other features due to the multidimensional 
nature of LBP is likely to be essential for greater improve-
ment in clinical outcomes. Of course, the potential efficacy 
of any intervention depends on the confirmation of a causal 
link between the balance strategy and clinical outcomes.

Methodological considerations

Several methodological issues must be mentioned. First, 
recovery outcome was determined at 6 months and analyses 
over a longer term (e.g., 12 months) are worthy of consid-
eration. Second, although based on previous analyses [48], 
definitions of recovery are somewhat arbitrary. Different 
outcomes might be identified if different thresholds were 
specified. Third, LBP sub-group (based on recovery groups) 
sizes varied and some were small. Greater confidence would 
be gained from replication of our results in an independent 
cohort. Fourth, phase angle data have a robust meaningful 
interpretation when the coherence is above the significance 
threshold and a less meaningful interpretation when the 
coherence is low or below the significance threshold. This 
limitation requires consideration for interpretation of the 
findings of the lower lumbar and lumbar spine in the sagittal 
plane where coherence was not high. Fifth, although a rela-
tively large number of variables were included in the analy-
sis, a small (but quite consistent) set of variables showed an 

Fig. 4  Frontal plane marginal mean differences in phase angle and 
coherence with seat movements between the three LBP groups. The 
differences in phase angle and coherence between recovered (green), 
partially recovered (orange) and unrecovered (red) groups for each 
segment (hip, lower [L.] lumbar, lumbar, upper [U.] lumbar, thoracic) 
and visual condition (eyes closed [EC], eyes open [EO]) are shown in 
both planes (sagittal plane, frontal plane). Error bars represent 95% 
confidence intervals. In-phase (0°) relation indicates that the segment 
moves in the same direction as the seat, and out-of-phase (180°) rela-
tion indicates that the segment moves in the opposite direction to the 
seat. The significance threshold for coherence (0.4856) is shown in 
the horizontal dashed gray line. Higher coherence values indicate 
more consistent hip/spine phase relation with seat movements. Brack-
ets indicate P < 0.05 between groups
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effect of group. Sixth, we did not measure whether spinal 
alignment (e.g., the radiological measure of sagittal balance) 
influenced the trunk postural control measures. Although we 
cannot exclude that this might influence our outcomes, this 
would not change the major findings of this study.

Conclusions

Using innovative methods and analyses, this study pro-
vides novel data indicating that the trunk’s contribution 

Table 4  Main effects and 
interactions of GEE models on 
balance performance measures

Abbreviations: GEE Generalized Estimating Equations, RMS root-mean-square
Statistics: GEE model was performed for each segment and direction. P-values of statistically significant 
main effects or interactions (P < 0.05) are printed bold

Segment RMSdisplacement RMSvelocity Normalized upper 
thorax motion

Sagittal Frontal Sagittal Frontal Sagittal Frontal

Group 0.235 0.158 0.481 0.269 0.310 0.336
Vision  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001
Group × Vision Omitted Omitted Omitted Omitted Omitted Omitted

Fig. 5  Mean differences in 
overall balance performance 
between the three LBP 
groups. The differences in 
 RMSdisplacement,  RMSvelocity and 
normalized upper thorax motion 
between recovered (green), 
partially recovered (orange) 
and unrecovered (red) groups 
for each visual condition (eyes 
closed [EC], eyes open [EO]) 
are shown in both planes (sagit-
tal plane, frontal plane). Error 
bars represent 95% confidence 
intervals
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to balance control in acute LBP is related to outcome at 6 
months. These findings have potential relevance for treat-
ment design and prediction of outcome.
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