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Abstract
Purpose  Vertebral endplate lesions (EPLs) caused by severe disk degeneration are associated with low back pain. However, 
its pathophysiology remains unclear. In this study, we aimed to develop a vertebral EPL rat model mimicking severe interver-
tebral disk (IVD) degeneration by injecting monosodium iodoacetate (MIA) into the IVDs and evaluating it by assessing 
pain-related behavior, micro-computed tomography (CT) findings, and histological changes.
Methods  MIA was injected into the L4-5 and L5-6 IVDs of Sprague–Dawley rats. Their behavior was examined by measur-
ing the total distance traveled and the total number of rearing in an open square arena. Bone alterations and volume around 
the vertebral endplate were assessed using micro-CT. Safranin-O staining, immunohistochemistry, and tartrate-resistant acid 
phosphatase (TRAP) staining were performed for histological assessment.
Results  The total distance and number of rearing times in the open field were significantly reduced in a time-dependent 
manner. Micro-CT revealed intervertebral osteophytes and irregularities in the endplates at 12 weeks. The bone volume/
tissue volume (BV/TV) around the endplates significantly increased from 6 weeks onward. Safranin-O staining revealed 
severe degeneration of IVDs and endplate disorders in a dose- and time-dependent manner. Calcitonin gene-related peptide-
positive nerve fibers significantly increased from 6 weeks onward. However, the number of osteoclasts decreased over time.
Conclusion  Our rat EPL model showed progressive morphological vertebral endplate changes in a time- and concentration-
dependent manner, similar to the degenerative changes in human IVDs. This model can be used as an animal model of severe 
IVD degeneration to better understand the pathophysiology of EPL.
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Introduction

Low back pain (LBP) is one of the most common health 
problems experienced by approximately 80% of the general 
population [1]. Suzuki et al. [2] identified that 78% of LBP 

cases were classified as specific LBP and that degenerative 
disk disease was a major risk factor for LBP. A previous 
study showed that Modic changes, which are endplate signal 
changes on magnetic resonance imaging (MRI), are associ-
ated with LBP [3]. Nakamae et al. [4] reported that bone 
marrow edema around the vertebral endplate on fat-saturated 
T2-weighted MRI was strongly associated with LBP. Thus, 
vertebral endplate lesions (EPLs) may be a clinical factor 
of LBP.

However, the pathophysiology of EPL remains unclear. 
Although animal models focusing on intervertebral disks 
(IVDs) have been developed [5], only a few models have 
focused on the vertebral endplates, which have reported that 
the changes around the vertebral endplates were not severe 
[6, 7]. Wang et al. reported a rat model where surgically-
induced endplate microfracture caused IVD degeneration, 
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vertebral remodeling, and spinal cord sensitization [8]. 
Morisako et al. [9] developed an EPL model by resecting the 
IVDs. However, controlling the degree of EPL in these mod-
els was an arduous task. Therefore, we aimed to investigate 
severe IVD degeneration and EPL with controllable severity.

Monosodium iodoacetate (MIA) inhibits glyceraldehyde-
3-phosphate dehydrogenase activity in chondrocytes, result-
ing in cell death and apoptosis [10]. Intra-articular injection 
of MIA is commonly used in animal models to induce mor-
phological and histological changes in articular cartilage, 
similar to the changes observed in human osteoarthritis 
[11]. IVDs are cartilage-based structures that resemble the 
articular cartilage in terms of biochemical and cellular com-
position [12]. IVD degeneration and osteoarthritis of the 
articular cartilage are characterized by joint space narrow-
ing, cartilage thinning, development of osteophytes, and sub-
chondral sclerosis [13]. Recently, Suh et al. [14] reported 
that MIA injection into rat IVDs induced severe degenera-
tive changes and also affected the pain behavior.

Hence, we hypothesized that MIA injection into rat 
IVDs would induce severe degenerative changes, resulting 
in EPL. In this study, we aimed to develop and investigate a 
rat model of vertebral EPL that mimics severe IVD degen-
eration and evaluate it by assessing the rat behavior, micro-
computed tomography (CT), and histological findings.

Material and methods

Ethical considerations
This study was performed in accordance with the Guide 

for Animal Experimentation and was approved by the Com-
mittee of Research Facilities for Laboratory Animal Science 
(Graduate School of Biomedical & Health Sciences, Hiro-
shima University, Hiroshima, Japan).

Animals and surgery

A total of 72 Sprague–Dawley female rats aged 12 weeks 
were used in this study. During the experiment, the animals 
were housed in a standard 12-h light/dark cycle room with 
free access to food and water. Surgical procedures were 
performed on rats under isoflurane inhalation anesthesia. 
In supine position, the anterior part of the L3-4, L4-5, and 
L5-6 disks was exposed using a transperitoneal approach. 
Normal saline (0.9% NaCl w/v), 0.5 or 1 mg MIA (Sigma‐
Aldrich, St. Louis, MO, USA) (5 μl), was injected into the 
L4-5 and L5-6 IVDs of the rats using a Hamilton syringe 
with a 27G needle into the center of nucleus pulposus not 
to injure the cartilage endplate at a depth of 3.0 mm guided 
by a needle stopper. After injection, the surface of the disk 
was washed with 10 ml of saline. All the rats recovered from 
the surgery without any adverse events and were returned 

to their cages. L3-4 disk, only exposure and not injected 
anything was defined as sham. All the behavioral tests were 
performed before surgery and 3, 6, 8, and 12 weeks after the 
surgery. In each group, eight rats were sacrificed at 3, 6, and 
12 weeks after the surgery.

Behavioral tests

The open-field test was performed twice for each rat in a 
square arena (100 cm long, 100 cm wide, and 60 cm high) 
just before surgery and at each time point to assess pain-
related behavior, in accordance with a previous study [15]. 
All tests were performed between 7 and 12 PM. Each rat was 
placed at a corner of the testing arena and allowed to freely 
explore the arena. The movements of the rats were moni-
tored and recorded for 6 min. The total distance traveled 
by the rat in the arena and the number of rearing times get-
ting up by hind legs were calculated using specific devices 
(SMART, Panlab SL, Barcelona, Spain). The total distance 
was assessed by calculating the variation between each 
period and before surgery. All post-injury data were ana-
lyzed as percentage change from pre-injury values.

Micro‑computed Tomography

The bone volume fraction of the vertebral endplate was 
analyzed using high-resolution micro-CT (Skyscan 1176, 
Burker BioSpin) at 114-μA scanning intensity and 250-ms 
integration time. The rats were sacrificed, and the spine from 
thoracic to sacral region was removed, fixed, and placed in 
micro-CT for imaging at 3, 6, and 12 weeks after surgery. 
The micro-CT imaged the vertebral body every 0.3°, with a 
complete rotation of over 360°. Shooting one slice required 
approximately 1.156 s. Cross-sectional images were recon-
structed using N Recon, a system within Skyscan 1176 with 
a slice width of 8.75 μm. The sagittal plane of the spine 
was used for evaluation. Bone volume/tissue volume (BV/
TV, %), trabecular thickness (Tb.Th, mm), and bone mineral 
density (BMD, g/cm3) around the endplate were assessed 
within a width of 300 μm from the endplate (Fig. 1). In the 
sham models, we assessed the area around the endplate at 
the L3-4 level and in other models, we assessed the area 
around the endplate at the L4-5 and L5-6 level.

Histological analysis

The harvested spinal columns were fixed in 4% paraform-
aldehyde for 3 days at 4 °C, decalcified in 18.5% ethyl-
enediaminetetraacetic acid for 1 week, and subsequently 
embedded in paraffin. Mid-sagittal sections of 5-μm thick-
ness of the spinal column were stained using the Safranin-
O Fast-Green technique. Histological changes in the IVD 
were analyzed using a scoring system for rat IVD [16] 



European Spine Journal	

Fig. 1   Bone volume/tissue 
volume (BV/TV, %), trabecular 
thickness (Tb.Th, mm), and 
bone mineral density (BMD, g/
cm3) around the endplate were 
assessed within a width of 
300 μm from the endplate

and in the vertebral endplates were scored using a grade 
of age-related histological changes in the endplate [17]. 
Disk height measurements were taken from the caudal 
aspect of the cartilaginous endplate to the cranial aspect 
of the cartilaginous endplate. For each image, an average 
of three measurements made from three areas of the disk 
space for one section from each rat: one from the ante-
rior, one from the central, and one from the posterior side 
[18]. Disk height was analyzed as percentage change from 
sham models. Two spine surgeons who were blinded to the 
experiment assigned the scores for histological changes. 
Other sections were used for immunohistochemistry and 
tartrate-resistant acid phosphatase (TRAP) staining. TRAP 
staining was performed using a commercially available 
kit (Wako Pure Chemical Industries Ltd., Osaka, Japan) 
in accordance with the manufacturer’s protocol. Six fields 
(200 × 200 µm each) around the vertebral endplate were 
randomly selected, and the number of TRAP-positive cells 
was counted using ImageJ (National Institution of Health). 
The number of TRAP-positive cells with multiple nuclei 
was also counted using ImageJ [19].

Immunohistochemical analysis

Each section was immunostained with a rabbit anti-cal-
citonin gene-related peptide (CGRP) antibody (1:500, 
ab139264, Abcam, Cambridge, UK) and chicken anti-
68 kDa neurofilament-L (NF-L) antibody (1:500, ab72997, 
Abcam). Corresponding secondary antibodies were added 
to the sections and incubated in the dark for 1 hour. Sec-
ondary antibodies (1:500) used for CGRP and NF-L were 
Alexa Fluor 488-conjugated anti-rabbit IgG and Alexa Fluor 
568-conjugated anti-chicken IgG. Sections were counter-
stained with 4',6-diamidino-2-phenylindole (DAPI) for 
immunofluorescence staining. Six fields (500 × 500 µm each) 
around the vertebral endplate were randomly selected, and 
ImageJ was used to calculate the percentage of the CGRP-
positive region to the area of each field.

Statistical analysis

All results were expressed as mean and standard devia-
tion. All data were analyzed using JMP® 15 software (SAS 
Institute Inc., Cary, NC, USA). The sham and the control 
disks were analyzed using the Mann–Whitney test. One-way 
analysis of variance (ANOVA) with Tukey–Kramer post-hoc 
test was used for multiple group comparisons. Statistical 
significance was set at p < 0.05.

Results

Behavioral testing

Compared to the control models, the MIA 0.5 mg and 1 mg 
injection models showed a significant reduction in the total 
distance and percentage change from pre-injury values trave-
led in the open-field test at 8 weeks after surgery, which 
continued up to 12 weeks (Fig. 2a, b). The MIA 0.5 mg 
injection models showed a significant reduction in the num-
ber of rearing times and percentage change from pre-injury 
values from 6 weeks, while the MIA 1 mg injection models 
showed a significant decrease in the number of rearing times 
and percentage change from pre-injury values from 3 weeks. 
This reduction in the number of rearing times continued in 
both the models up to 12 weeks. The number of rearing 
times decreased significantly at 3, 6, and 8 weeks in the MIA 
1 mg injection models in comparison with the MIA 0.5 mg 
injection models. The number of rearing times percentage 
change from pre-injury values decreased significantly at 
8 weeks in the MIA 1 mg injection models in comparison 
with the MIA 0.5 mg injection models (Fig. 2c, d).

Micro‑CT findings

No obvious changes were observed in sham and control 
models at each week and either the MIA injection models 
at 3 weeks. However, at 6 weeks, erosion occurred at the 
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center of the vertebral endplates in both MIA 0.5 mg and 
1 mg injection models. Furthermore, in the MIA 1 mg injec-
tion models, irregularities of the entire vertebral endplates 
and disappearance of the growth plates were observed. At 
12 weeks, intervertebral osteophyte formation and irregu-
larities of the endplates were observed in both the MIA 
injection models, with more irregularities being evident 
in the MIA 1 mg injection models (Fig. 3a, b). In the BV/
TV, Tb. Th, and BMD, no obvious changes were observed 
between sham and control models at each week. In the MIA 
0.5 mg and 1 mg injection models, the BV/TV, Tb. Th, and 
BMD increased significantly at 6 and 12 weeks compared 

Fig. 3   a. b Micro-computed tomography findings of the interverte-
bral disks and endplates. At 6 weeks, erosion occurred at the center 
of the endplates in both monosodium iodoacetate (MIA) 0.5 mg and 
1 mg injection models. Furthermore, in MIA 1 mg injection models, 
irregularities of the entire vertebral endplates and disappearance of 
the growth plates were observed. At 12 weeks, intervertebral osteo-
phyte and irregularities of the endplates were observed in both MIA 
0.5 mg and 1 mg injection models, with more irregularities evident 
in the endplates of the MIA 1 mg injection models. (c) The bone vol-
ume/tissue volume (BV/TV) ratio around the endplate. d The trabecu-
lar thickness (Tb.Th) around the endplate. e The bone mineral density 
(BMD) around the endplate

◂

Fig. 2   Results of the open-field test: a total distance traveled and b 
percentage change from pre-injury values occurred. c The number 
of times rearing and d percentage change from pre-injury values 

occurred. The total distance was assessed by calculating the variation 
between each period and before surgery
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to the control models. The BV/TV and Tb. Th increased 
significantly at 6 weeks in the MIA 1 mg injection models 
in comparison with the MIA 0.5 mg injection models. The 
BMD increased significantly at 12 weeks in the MIA 1 mg 
injection models in comparison with the MIA 0.5 mg injec-
tion models (Fig. 3c, d, e).

Histological analysis

Safranin-O staining showed reduced disk height in the MIA 
injection models, with cracks and microfractures in the end-
plates and growth plates. At 6 weeks, disk degeneration pro-
gressed in the MIA 0.5 mg and 1 mg injection models, with 
more advanced cracks and microfractures. At 12 weeks, the 
disks and endplates showed a high degree of degeneration, 
and the disks were almost scarred. The cartilaginous end-
plates thinned considerably or were obliterated, with severe 
degeneration observed particularly in the MIA 1 mg injec-
tion models (Fig. 4a, b). The IVD scores were significantly 
higher in the control models than in the sham models at 
each week. In the endplate scores, no obvious changes were 
observed between sham and control models at each week. 
The IVD and endplate scores were significantly higher in 
the MIA injection models than in the control models at each 
week. The IVD score was significantly higher in the MIA 
1 mg injection models than in the MIA 0.5 mg injection 
models at 3 weeks. Moreover, the endplate score was signifi-
cantly higher in the MIA 1 mg injection models at 12 weeks 
(Fig. 4c, d). The disk height and percentage change from 
sham models were significantly higher in the MIA injection 
models than in the control models at each week. The disk 
height was significantly higher in the MIA 1 mg injection 
models than in the MIA 0.5 mg injection models at 3 and 
6 weeks (Fig. 4e, f). In the total number of TRAP-positive 
cells and the number of TRAP-positive cells with multiple 
nuclei, no obvious changes were observed between sham and 
control models at each week. The total number of TRAP-
positive cells and the number of TRAP-positive cells with 
multiple nuclei were significantly reduced in the MIA 1 mg 
injection models compared to the control models at 3 weeks, 
and it significantly decreased in the MIA 0.5 mg and 1 mg 
injection models at 6 and 12 weeks, respectively (Fig. 5a, b, 
c, d). Immunostaining for CGRP showed that the percent-
age of CGRP-positive areas around the vertebral endplate 
was significantly higher in the MIA 0.5 and 1 mg injection 
models than in the control models at 6 and 12 weeks. The 
percentage of CGRP-positive areas was significantly higher 
in the MIA 1 mg injection models compared to the MIA 
0.5 mg injection models (Fig. 6a, b).

Discussion

Our study showed that MIA injection into the rat IVDs 
induced time- and concentration-dependent histological and 
structural degenerative changes in the IVDs and vertebral 
endplates. This model also demonstrated the pain-related 
behavioral patterns and increased expression of pain-related 
neuropeptides around the vertebral endplates.

Previous studies have reported that MIA induced in vivo 
and in vitro cartilage matrix degradation and chondrocyte 
apoptosis [20, 21]. Intra-articular injection of MIA has been 
reported to induce degenerative changes in the articular car-
tilage in a time- and concentration-dependent manner [22]. 
Suh et al. [14] injected MIA 0.4 mg and 4 mg into rat IVDs 
and assessed disk degeneration for up to 6 weeks. We also 
injected high-dose MIA (e.g., 1.5 and 3 mg) into the rat 
IVDs to develop severe IVD degeneration and EPL. How-
ever, the rats often died. Therefore, MIA 0.5 mg and 1 mg 
were selected for long-term observation in the current study.

In this study, we observed reduced disk height after MIA 
injection into the rat IVDs during each period. Disk height 
narrowing is an indicator of aging associated IVD degen-
eration [23]. In addition, IVD degeneration and endplate 
disorder progressed with increase in time and concentra-
tion. These results were consistent with the degeneration of 
human lumbar spine [24]. In particular, severe IVD degener-
ation and endplate disorder occurred 12 weeks after surgery 
in the MIA injection models. Long-term observations may 
induce more advanced IVD degeneration and EPL compared 
to the previous animal models [14].

The BV/TV, Tb.Th, and BMD around the endplate signif-
icantly increased in the MIA injection models from 6 weeks 
onward, suggesting osteosclerosis around the vertebral end-
plate. A previous study showed that severe disk degeneration 
and vertebral endplate osteosclerosis were associated with 
LBP [4]. Osteosclerosis may reflect the progression of IVD 
degeneration. In addition, we observed erosion at the center 
of the endplates at 6 weeks and intervertebral osteophytes 
at 12 weeks in the MIA injection models. Erosion at the 
center of the endplates suggests that the MIA had infiltrated 
around the vertebral endplates. Intervertebral osteophytes 
may reflect the process of spinal degeneration, often seen in 
IVD degeneration [25].

We focused on CGRP in the vertebral endplate because 
it plays an important role in bone metabolism and is a pain-
related peptide [26]. CGRP has been reported to promote 
osteoblast proliferation and differentiation of bone marrow 
stromal cells for bone formation [27]. Our study showed that 
although the number of osteoclasts decreased over time in 
the MIA injection models, CGRP-positive nerve fibers sig-
nificantly increased from 6 weeks onward. A previous study 
reported that CGRP-positive nerve fibers and the number of 
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Fig. 4   a, b Histopathological 
findings following Safranin-O 
fast green staining. Safranin-O 
staining showed reduced disk 
height in the monosodium 
iodoacetate (MIA) injec-
tion models, with cracks and 
microfractures in the endplates 
and growth plates. At 6 weeks, 
disk degeneration progressed in 
MIA 0.5 mg and 1 mg injection 
models, with more advanced 
cracks and microfractures. 
At 12 weeks, the disks and 
endplate tissue demonstrated 
a high degree of degenera-
tion, and the disks were almost 
scarred. The cartilaginous 
endplates thinned consider-
ably or were obliterated, with 
severe degeneration particularly 
observed in the MIA 1 mg 
injection models (a. Scale bars, 
200 μm. b. Scale bars, 100 μm.) 
(c, d) The intervertebral disk 
(IVD) and endplate score were 
significantly higher in the MIA 
injection models compared to 
control models every week. 
The IVD score was signifi-
cantly higher in the MIA 1 mg 
injection models than in the 
MIA 0.5 mg injection models at 
3 weeks. Moreover, the endplate 
score was significantly higher 
in the MIA 1 mg injection 
models at 12 weeks. (e, f) The 
disk height and percentage 
change from sham models were 
significantly higher in the MIA 
injection models than in the 
control models at each week. 
The disk height was signifi-
cantly higher in the MIA 1 mg 
injection models than in the 
MIA 0.5 mg injection models at 
3 and 6 weeks
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Fig. 4   (continued)
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TRAP-positive cells in the subchondral bone were signifi-
cantly higher than those in the control knee MIA injection 
rat model [28]. IVDs are similar to articular cartilage in cel-
lular composition but differ in structure. Nutrients diffuse 
by gradient concentration from the capillary bed, through 

the cartilaginous endplate and dense disk matrix, to inner 
disk cells, while metabolic wastes move oppositely [29]. 
The differences in these results and structure suggest that 
after MIA injection into the IVDs, MIA infiltrates the EPL 
and induces TRAP-positive cell death. In this respect, MIA 

Fig. 5   Histological findings 
following tartrate-resistant acid 
phosphatase (TRAP) staining. a 
Weak magnification (scale bar, 
200 μm) (b) strong magnifica-
tion (scale bar, 100 μm). c, d 
In the total number of TRAP-
positive cells and the number 
of TRAP-positive cells with 
multiple nuclei, no obvious 
changes were observed between 
sham and control models at 
each week. The total number 
of TRAP-positive cells and 
the number of TRAP-positive 
cells with multiple nuclei were 
significantly reduced in the 
MIA 1 mg injection models 
compared to the control models 
at 3 weeks, and it significantly 
decreased in the MIA 0.5 mg 
and 1 mg injection models at 6 
and 12 weeks, respectively
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injection into the IVD model differed from the intra-articular 
injection model.

In both MIA models, the total distance was significantly 
reduced 8 weeks after surgery and was maintained until 
12 weeks. Rearing time also significantly decreased from 
6 weeks in MIA 0.5 mg injection models and after 3 weeks 
in MIA 1 mg injection models, which manifested more 
quickly than the reduction in total distance. Rearing has 
been reported to be more sensitive than the total distance 
observed in the knee MIA injection model in rats [15, 30]. 
Our results indicate that the lumbar spine is not loaded in the 
horizontal activity, whereas rearing involves weight distribu-
tion on the lumbar spine.

There are several limitations to this study. First, we 
used the rats aged 12 weeks that is skeletally-immature. 
We cannot deny the possibility that MIA might impact the 
growth plate and cartilage endplate instead of pure cartilage 

endplate. Second, gender difference may affect the result 
of EPL. Third, the current model of MIA injection into the 
IVDs did not really mimic the clinical setting of vertebral 
endplate lesion. Further research is needed to clarify the 
influence of MIA injection into the rat IVDs.

Conclusion

The current study aimed to develop a vertebral EPL rat 
model mimicking severe IVD degeneration by injecting MIA 
into the IVDs and evaluating it by assessing pain-related 
behavior, micro-CT findings, and histology. This model 
showed progressive morphological EPL changes in a time- 
and concentration-dependent manner, similar to the degen-
erative changes in human IVDs. We observed significantly 

Fig. 5   (continued)
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increased CGRP-positive nerve fibers around the vertebral 
endplate and pain-related behavior in MIA injection models. 
This model can be used as an animal model of severe IVD 
degeneration for better understanding of the pathophysiol-
ogy of EPL and developing new treatment strategies involv-
ing bone metabolism.
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Fig. 6   a Representative images 
of immunostaining of calcitonin 
gene-related peptide (CGRP) 
(green), neurofilament-L (NF-
L) (red), and 4′,6-diamidino-
2-phenylindole (DAPI) (blue) 
around the endplates (scale bars, 
100 μm). b Immunostaining for 
CGRP showed that the percent-
age of CGRP-positive areas 
around the vertebral endplates 
was significantly higher in the 
monosodium iodoacetate (MIA) 
0.5 and 1 mg injection models 
than in the control models at 6 
and 12 weeks. The percentage 
of CGRP-positive areas was 
significantly higher in the MIA 
1 mg injection models than 
in the MIA 0.5 mg injection 
models
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