Skip to main content

Advertisement

Log in

Causal associations between gut microbiota with intervertebral disk degeneration, low back pain, and sciatica: a Mendelian randomization study

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Although studies have suggested that gut microbiota may be associated with intervertebral disk disease, their causal relationship is unclear. This study aimed to investigate the causal relationship between the gut microbiota and its metabolic pathways with the risk of intervertebral disk degeneration (IVDD), low back pain (LBP), and sciatica.

Methods

Genetic variation data for 211 gut microbiota taxa at the phylum to genus level were obtained from the MiBioGen consortium. Genetic variation data for 105 taxa at the species level and 205 metabolic pathways were obtained from the Dutch Microbiome Project. Genetic variation data for disease outcomes were obtained from the FinnGen consortium. The causal relationships between the gut microbiota and its metabolic pathways and the risk of IVDD, LBP, and sciatica were evaluated via Mendelian randomization (MR). The robustness of the results was assessed through sensitivity analysis.

Results

Inverse variance weighting identified 46 taxa and 33 metabolic pathways that were causally related to IVDD, LBP, and sciatica. After correction by weighted median and MR-PRESSO, 15 taxa and nine pathways remained stable. After FDR correction, only the effect of the genus_Eubacterium coprostanoligenes group on IVDD remained stable. Sensitivity analyses showed no evidence of horizontal pleiotropy, heterogeneity, or reverse causation.

Conclusion

Some microbial taxa and their metabolic pathways are causally related to IVDD, LBP, and sciatica and may serve as potential intervention targets. This study provides new insights into the mechanisms of gut microbiota-mediated development of intervertebral disk disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Vergroesen PP, Kingma I, Emanuel KS, Hoogendoorn RJ, Welting TJ, van Royen BJ, van Dieën JH, Smit TH (2015) Mechanics and biology in intervertebral disc degeneration: a vicious circle. Osteoarthr Cartil 23:1057–1070. https://doi.org/10.1016/j.joca.2015.03.028

    Article  Google Scholar 

  2. Freemont AJ (2009) The cellular pathobiology of the degenerate intervertebral disc and discogenic back pain. Rheumatol (Oxford) 48:5–10. https://doi.org/10.1093/rheumatology/ken396

    Article  CAS  Google Scholar 

  3. Khan AN, Jacobsen HE, Khan J, Filippi CG, Levine M, Lehman RA Jr, Riew KD, Lenke LG, Chahine NO (2017) Inflammatory biomarkers of low back pain and disc degeneration: a review. Ann NY Acad Sci 1410:68–84. https://doi.org/10.1111/nyas.13551

    Article  PubMed  Google Scholar 

  4. Ropper AH, Zafonte RD (2015) Sciatica. N Engl J Med 372:1240–1248. https://doi.org/10.1056/NEJMra1410151

    Article  CAS  PubMed  Google Scholar 

  5. Porchet F, Wietlisbach V, Burnand B, Daeppen K, Villemure JG, Vader JP (2002) Relationship between severity of lumbar disc disease and disability scores in sciatica patients. Neurosurgery 50:1253–1259. https://doi.org/10.1097/00006123-200206000-00014

    Article  PubMed  Google Scholar 

  6. Deyo RA, Mirza SK (2016) CLINICAL PRACTICE. Herniated lumbar intervertebral disk. N Engl J Med 374:1763–1772. https://doi.org/10.1056/NEJMcp1512658

    Article  CAS  PubMed  Google Scholar 

  7. Kalichman L, Hunter DJ (2008) The genetics of intervertebral disc degeneration. Familial predisposition and heritability estimation. Joint Bone Spine 75:383–387. https://doi.org/10.1016/j.jbspin.2007.11.003

    Article  PubMed  Google Scholar 

  8. Francisco V, Pino J, González-Gay M, Lago F, Karppinen J, Tervonen O, Mobasheri A, Gualillo O (2022) A new immunometabolic perspective of intervertebral disc degeneration. Nat Rev Rheumatol 18:47–60. https://doi.org/10.1038/s41584-021-00713-z

    Article  CAS  PubMed  Google Scholar 

  9. Ulrich JA, Liebenberg EC, Thuillier DU, Lotz JC (2007) ISSLS prize winner: repeated disc injury causes persistent inflammation. Spine 32:2812–2819. https://doi.org/10.1097/BRS.0b013e31815b9850

    Article  PubMed  Google Scholar 

  10. Wang F, Cai F, Shi R, Wang XH, Wu XT (2016) Aging and age related stresses: a senescence mechanism of intervertebral disc degeneration. Osteoarthr Cartil 24:398–408. https://doi.org/10.1016/j.joca.2015.09.019

    Article  CAS  Google Scholar 

  11. Xin J, Wang Y, Zheng Z, Wang S, Na S, Zhang S (2022) Treatment of intervertebral disc degeneration. Orthop Surg 14:1271–1280. https://doi.org/10.1111/os.13254

    Article  PubMed  PubMed Central  Google Scholar 

  12. Adak A, Khan MR (2019) An insight into gut microbiota and its functionalities. Cell Mol Life Sci 76:473–493. https://doi.org/10.1007/s00018-018-2943-4

    Article  CAS  PubMed  Google Scholar 

  13. Zmora N, Suez J, Elinav E (2019) You are what you eat: diet, health and the gut microbiota. Nat Rev Gastroenterol Hepatol 16:35–56. https://doi.org/10.1038/s41575-018-0061-2

    Article  CAS  PubMed  Google Scholar 

  14. Stirling A, Worthington T, Rafiq M, Lambert PA, Elliott TS (2001) Association between sciatica and Propionibacterium acnes. Lancet (London, England) 357:2024–2025. https://doi.org/10.1016/s0140-6736(00)05109-6

    Article  CAS  PubMed  Google Scholar 

  15. Hartvigsen J, Hancock MJ, Kongsted A, Louw Q, Ferreira ML, Genevay S, Hoy D, Karppinen J, Pransky G, Sieper J, Smeets RJ, Underwood M (2018) What low back pain is and why we need to pay attention. Lancet (London, England) 391:2356–2367. https://doi.org/10.1016/s0140-6736(18)30480-x

    Article  PubMed  Google Scholar 

  16. Rajasekaran S, Soundararajan DCR, Tangavel C, Muthurajan R, Sri Vijay Anand KS, Matchado MS, Nayagam SM, Shetty AP, Kanna RM, Dharmalingam K (2020) Human intervertebral discs harbour a unique microbiome and dysbiosis determines health and disease. Eur Spine J 29:1621–1640. https://doi.org/10.1007/s00586-020-06446-z

    Article  PubMed  Google Scholar 

  17. Li W, Lai K, Chopra N, Zheng Z, Das A, Diwan AD (2022) Gut-disc axis: A cause of intervertebral disc degeneration and low back pain? Eur Spine J 31:917–925. https://doi.org/10.1007/s00586-022-07152-8

    Article  PubMed  Google Scholar 

  18. Davey Smith G, Hemani G (2014) Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet 23:R89-98. https://doi.org/10.1093/hmg/ddu328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Emdin CA, Khera AV, Kathiresan S (2017) Mendelian randomization. JAMA 318:1925–1926. https://doi.org/10.1001/jama.2017.17219

    Article  PubMed  Google Scholar 

  20. Kurilshikov A, Medina-Gomez C, Bacigalupe R, Radjabzadeh D, Wang J, Demirkan A et al (2021) Large-scale association analyses identify host factors influencing human gut microbiome composition. Nat Genet 53:156–165. https://doi.org/10.1038/s41588-020-00763-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. McCarthy S, Das S, Kretzschmar W, Delaneau O, Wood AR, Teumer A et al (2016) A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet 48:1279–1283. https://doi.org/10.1038/ng.3643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Scholtens S, Smidt N, Swertz MA, Bakker SJ, Dotinga A, Vonk JM, van Dijk F, van Zon SK, Wijmenga C, Wolffenbuttel BH, Stolk RP (2015) Cohort profile: LifeLines, a three-generation cohort study and biobank. Int J Epidemiol 44:1172–1180. https://doi.org/10.1093/ije/dyu229

    Article  PubMed  Google Scholar 

  23. Kurki MI, Karjalainen J, Palta P, Sipilä TP, Kristiansson K, Donner KM et al (2023) FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 613:508–518. https://doi.org/10.1038/s41586-022-05473-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kurki MI, Karjalainen J, Palta P, Sipilä TP, Kristiansson K, Donner K et al (2022) FinnGen: unique genetic insights from combining isolated population and national health register data. MedRxiv. https://doi.org/10.1101/2022.03.03.22271360

    Article  Google Scholar 

  25. Yu XH, Yang YQ, Cao RR, Bo L, Lei SF (2021) The causal role of gut microbiota in development of osteoarthritis. Osteoarthr Cartil 29:1741–1750. https://doi.org/10.1016/j.joca.2021.08.003

    Article  Google Scholar 

  26. Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini JL, McCarthy S, McVean GA, Abecasis GR (2015) A global reference for human genetic variation. Nature 526:68–74. https://doi.org/10.1038/nature15393

    Article  CAS  PubMed  Google Scholar 

  27. Palmer TM, Lawlor DA, Harbord RM, Sheehan NA, Tobias JH, Timpson NJ, Davey Smith G, Sterne JA (2012) Using multiple genetic variants as instrumental variables for modifiable risk factors. Stat Methods Med Res 21:223–242. https://doi.org/10.1177/0962280210394459

    Article  PubMed  PubMed Central  Google Scholar 

  28. Milani C, Duranti S, Bottacini F, Casey E, Turroni F, Mahony J, Belzer C, Delgado Palacio S, Arboleya Montes S, Mancabelli L, Lugli GA, Rodriguez JM, Bode L, de Vos W, Gueimonde M, Margolles A, van Sinderen D, Ventura M (2017) the first microbial colonizers of the human gut: composition, activities, and health implications of the infant gut microbiota. Microbiol Mol Biol Rev. https://doi.org/10.1128/mmbr.00036-17

    Article  PubMed  PubMed Central  Google Scholar 

  29. Santisteban MM, Kim S, Pepine CJ, Raizada MK (2016) Brain-gut-bone marrow axis: implications for hypertension and related therapeutics. Circ Res 118:1327–1336. https://doi.org/10.1161/circresaha.116.307709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zaiss MM, Jones RM, Schett G, Pacifici R (2019) The gut-bone axis: how bacterial metabolites bridge the distance. J Clin Investig 129:3018–3028. https://doi.org/10.1172/jci128521

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ren D, Li L, Schwabacher AW, Young JW, Beitz DC (1996) Mechanism of cholesterol reduction to coprostanol by Eubacterium coprostanoligenes ATCC 51222. Steroids 61:33–40. https://doi.org/10.1016/0039-128x(95)00173-n

    Article  CAS  PubMed  Google Scholar 

  32. Yan J, Li S, Zhang Y, Deng Z, Wu J, Huang Z, Qin T, Xiao Y, Zhou J, Xu K, Ye W (2021) Cholesterol induces pyroptosis and matrix degradation via mSREBP1-driven endoplasmic reticulum stress in intervertebral disc degeneration. Front Cell Dev Biol 9:803132. https://doi.org/10.3389/fcell.2021.803132

    Article  PubMed  Google Scholar 

  33. Teng Y, Huang Y, Yu H, Wu C, Yan Q, Wang Y, Yang M, Xie H, Wu T, Yang H, Zou J (2023) Nimbolide targeting SIRT1 mitigates intervertebral disc degeneration by reprogramming cholesterol metabolism and inhibiting inflammatory signaling. Acta Pharm Sin B 13:2269–2280. https://doi.org/10.1016/j.apsb.2023.02.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Precup G, Vodnar DC (2019) Gut Prevotella as a possible biomarker of diet and its eubiotic versus dysbiotic roles: a comprehensive literature review. Br J Nutr 122:131–140. https://doi.org/10.1017/s0007114519000680

    Article  CAS  PubMed  Google Scholar 

  35. Shahi SK, Freedman SN, Murra AC, Zarei K, Sompallae R, Gibson-Corley KN, Karandikar NJ, Murray JA, Mangalam AK (2019) Prevotella histicola, a human gut commensal, is as potent as COPAXONE® in an animal model of multiple sclerosis. Front Immunol 10:462. https://doi.org/10.3389/fimmu.2019.00462

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wang X, Wu Y, Liu Y, Chen F, Chen S, Zhang F, Li S, Wang C, Gong Y, Huang R, Hu M, Ning Y, Zhao H, Guo X (2023) Altered gut microbiome profile in patients with knee osteoarthritis. Front Microbiol 14:1153424. https://doi.org/10.3389/fmicb.2023.1153424

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wells PM, Adebayo AS, Bowyer RCE, Freidin MB, Finckh A, Strowig T, Lesker TR, Alpizar-Rodriguez D, Gilbert B, Kirkham B, Cope AP, Steves CJ, Williams FMK (2020) Associations between gut microbiota and genetic risk for rheumatoid arthritis in the absence of disease: a cross-sectional study. Lancet Rheumatol 2:e418–e427. https://doi.org/10.1016/s2665-9913(20)30064-3

    Article  PubMed  PubMed Central  Google Scholar 

  38. Scher JU, Sczesnak A, Longman RS, Segata N, Ubeda C, Bielski C, Rostron T, Cerundolo V, Pamer EG, Abramson SB, Huttenhower C, Littman DR (2013) Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. Elife 2:e01202. https://doi.org/10.7554/eLife.01202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Maeda Y, Kurakawa T, Umemoto E, Motooka D, Ito Y, Gotoh K, Hirota K, Matsushita M, Furuta Y, Narazaki M, Sakaguchi N, Kayama H, Nakamura S, Iida T, Saeki Y, Kumanogoh A, Sakaguchi S, Takeda K (2016) Dysbiosis contributes to arthritis development via activation of autoreactive T cells in the intestine. Arthritis Rheumatol (Hoboken, NJ) 68:2646–2661. https://doi.org/10.1002/art.39783

    Article  CAS  Google Scholar 

  40. Wang Z, Wu H, Chen Y, Chen H, Wang X, Yuan W (2021) Lactobacillus paracasei S16 alleviates lumbar disc herniation by modulating inflammation response and gut microbiota. Front Nutr 8:701644. https://doi.org/10.3389/fnut.2021.701644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Qi X, Yun C, Pang Y, Qiao J (2021) The impact of the gut microbiota on the reproductive and metabolic endocrine system. Gut microb 13:1–21. https://doi.org/10.1080/19490976.2021.1894070

    Article  CAS  Google Scholar 

  42. Ren Z, Li A, Jiang J, Zhou L, Yu Z, Lu H, Xie H, Chen X, Shao L, Zhang R, Xu S, Zhang H, Cui G, Chen X, Sun R, Wen H, Lerut JP, Kan Q, Li L, Zheng S (2019) Gut microbiome analysis as a tool towards targeted non-invasive biomarkers for early hepatocellular carcinoma. Gut 68:1014–1023. https://doi.org/10.1136/gutjnl-2017-315084

    Article  CAS  PubMed  Google Scholar 

  43. Parker BJ, Wearsch PA, Veloo ACM, Rodriguez-Palacios A (2020) The genus alistipes: gut bacteria with emerging implications to inflammation, cancer, and mental health. Front Immunol 11:906. https://doi.org/10.3389/fimmu.2020.00906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Moreno-Arrones OM, Serrano-Villar S, Perez-Brocal V, Saceda-Corralo D, Morales-Raya C, Rodrigues-Barata R, Moya A, Jaen-Olasolo P, Vano-Galvan S (2020) Analysis of the gut microbiota in alopecia areata: identification of bacterial biomarkers. J Eur Acad Dermatol Venereol 34:400–405. https://doi.org/10.1111/jdv.15885

    Article  CAS  PubMed  Google Scholar 

  45. Cui Y, Zhang L, Wang X, Yi Y, Shan Y, Liu B, Zhou Y, Lü X (2022) Roles of intestinal Parabacteroides in human health and diseases. FEMS Microbiol Lett. https://doi.org/10.1093/femsle/fnac072

    Article  PubMed  PubMed Central  Google Scholar 

  46. Jia J, Nie L, Liu Y (2020) Butyrate alleviates inflammatory response and NF-κB activation in human degenerated intervertebral disc tissues. Int Immunopharmacol 78:106004. https://doi.org/10.1016/j.intimp.2019.106004

    Article  CAS  PubMed  Google Scholar 

  47. Liu X, Jiang C, Liu G, Wang P, Shi M, Yang M, Zhong Z, Ding S, Li Y, Liu B, Cao Y (2020) Sodium butyrate protects against oxidative stress in human nucleus pulposus cells via elevating PPARγ-regulated Klotho expression. Int Immunopharmacol 85:106657. https://doi.org/10.1016/j.intimp.2020.106657

    Article  CAS  PubMed  Google Scholar 

  48. Palmnäs-Bédard MSA, Costabile G, Vetrani C, Åberg S, Hjalmarsson Y, Dicksved J, Riccardi G, Landberg R (2022) The human gut microbiota and glucose metabolism: a scoping review of key bacteria and the potential role of SCFAs. Am J Clin Nutr 116:862–874. https://doi.org/10.1093/ajcn/nqac217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rodriguez J, Neyrinck AM, Zhang Z, Seethaler B, Nazare JA, Robles Sánchez C, Roumain M, Muccioli GG, Bindels LB, Cani PD, Maquet V, Laville M, Bischoff SC, Walter J, Delzenne NM (2020) Metabolite profiling reveals the interaction of chitin-glucan with the gut microbiota. Gut Microb 12:1810530. https://doi.org/10.1080/19490976.2020.1810530

    Article  CAS  Google Scholar 

  50. Cox LM, Maghzi AH, Liu S, Tankou SK, Dhang FH, Willocq V, Song A, Wasén C, Tauhid S, Chu R, Anderson MC, De Jager PL, Polgar-Turcsanyi M, Healy BC, Glanz BI, Bakshi R, Chitnis T, Weiner HL (2021) Gut microbiome in progressive multiple sclerosis. Ann Neurol 89:1195–1211. https://doi.org/10.1002/ana.26084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lee T, Clavel T, Smirnov K, Schmidt A, Lagkouvardos I, Walker A, Lucio M, Michalke B, Schmitt-Kopplin P, Fedorak R, Haller D (2017) Oral versus intravenous iron replacement therapy distinctly alters the gut microbiota and metabolome in patients with IBD. Gut 66:863–871. https://doi.org/10.1136/gutjnl-2015-309940

    Article  CAS  PubMed  Google Scholar 

  52. Pinart M, Dötsch A, Schlicht K, Laudes M, Bouwman J, Forslund SK, Pischon T, Nimptsch K (2021) Gut microbiome composition in obese and non-obese persons: a systematic review and meta-analysis. Nutrients. https://doi.org/10.3390/nu14010012

    Article  PubMed  PubMed Central  Google Scholar 

  53. Clauss M, Gérard P, Mosca A, Leclerc M (2021) Interplay between exercise and gut microbiome in the context of human health and performance. Front Nutr 8:637010. https://doi.org/10.3389/fnut.2021.637010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dohnalová L, Lundgren P, Carty JRE, Goldstein N, Wenski SL, Nanudorn P et al (2022) A microbiome-dependent gut-brain pathway regulates motivation for exercise. Nature 612:739–747. https://doi.org/10.1038/s41586-022-05525-z

    Article  CAS  PubMed  Google Scholar 

  55. Zhou W, Shi Y, Wang H, Chen L, Yu C, Zhang X, Yang L, Zhang X, Wu A (2022) Exercise-induced FNDC5/irisin protects nucleus pulposus cells against senescence and apoptosis by activating autophagy. Exp Mol Med 54:1038–1048. https://doi.org/10.1038/s12276-022-00811-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ahn JS, Choi YJ, Kim HB, Chung HJ, Hong ST (2023) Identification of the intestinal microbes associated with locomotion. Int J Mol Sci. https://doi.org/10.3390/ijms241411392

    Article  PubMed  PubMed Central  Google Scholar 

  57. Arvans D, Jung YC, Antonopoulos D, Koval J, Granja I, Bashir M, Karrar E, Roy-Chowdhury J, Musch M, Asplin J, Chang E, Hassan H (2017) Oxalobacter formigenes-derived bioactive factors stimulate oxalate transport by intestinal epithelial cells. J Am Soc Nephrol 28:876–887. https://doi.org/10.1681/asn.2016020132

    Article  CAS  PubMed  Google Scholar 

  58. Gruber HE, Norton HJ, Sun Y, Hanley EN Jr (2007) Crystal deposits in the human intervertebral disc: implications for disc degeneration. Spine J 7:444–450. https://doi.org/10.1016/j.spinee.2006.08.015

    Article  PubMed  Google Scholar 

  59. Ermer T, Nazzal L, Tio MC, Waikar S, Aronson PS, Knauf F (2023) Oxalate homeostasis. Nat Rev Nephrol 19:123–138. https://doi.org/10.1038/s41581-022-00643-3

    Article  CAS  PubMed  Google Scholar 

  60. Chen S, Han H, Sun X, Zhou G, Zhou Q, Li Z (2023) Causal effects of specific gut microbiota on musculoskeletal diseases: a bidirectional two-sample Mendelian randomization study. Front Microbiol 14:1238800. https://doi.org/10.3389/fmicb.2023.1238800

    Article  PubMed  PubMed Central  Google Scholar 

  61. D’Amelio P, Sassi F (2018) Gut microbiota, immune system, and bone. Calcif Tissue Int 102:415–425. https://doi.org/10.1007/s00223-017-0331-y

    Article  CAS  PubMed  Google Scholar 

  62. He J, Xu S, Zhang B, Xiao C, Chen Z, Si F, Fu J, Lin X, Zheng G, Yu G, Chen J (2020) Gut microbiota and metabolite alterations associated with reduced bone mineral density or bone metabolic indexes in postmenopausal osteoporosis. Aging 12:8583–8604. https://doi.org/10.18632/aging.103168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yi J, Zhou Q, Huang J, Niu S, Ji G, Zheng T (2023) Lipid metabolism disorder promotes the development of intervertebral disc degeneration. Biomed Pharmacother 166:115401. https://doi.org/10.1016/j.biopha.2023.115401

    Article  PubMed  Google Scholar 

  64. Toczylowska B, Woznica M, Zieminska E, Krolicki L (2023) Metabolic biomarkers differentiate a surgical intervertebral disc from a nonsurgical intervertebral disc. Int J Mol Sci. https://doi.org/10.3390/ijms241310572

    Article  PubMed  PubMed Central  Google Scholar 

  65. Li Z, Shim H, Cho MO, Cho IS, Lee JH, Kang SW, Kwon B, Huh KM (2018) Thermo-sensitive injectable glycol chitosan-based hydrogel for treatment of degenerative disc disease. Carbohyd Polym 184:342–353. https://doi.org/10.1016/j.carbpol.2018.01.006

    Article  CAS  Google Scholar 

  66. Khandaker M, Kotturi H, Progri H, Tummala S, Nikfarjam S, Rao P, Hosna A, Arasu DT, Williams W, Haleem AM (2021) In vitroandin vivoeffect of polycaprolactone nanofiber coating on polyethylene glycol diacrylate scaffolds for intervertebral disc repair. Biomed Mater (Bristol, England). https://doi.org/10.1088/1748-605X/abfd12

    Article  Google Scholar 

  67. Weersma RK, Zhernakova A, Fu J (2020) Interaction between drugs and the gut microbiome. Gut 69:1510–1519. https://doi.org/10.1136/gutjnl-2019-320204

    Article  CAS  PubMed  Google Scholar 

  68. Lopera-Maya EA, Kurilshikov A, van der Graaf A, Hu S, Andreu-Sánchez S, Chen L, Vila AV, Gacesa R, Sinha T, Collij V, Klaassen MAY, Bolte LA, Gois MFB, Neerincx PBT, Swertz MA, Harmsen HJM, Wijmenga C, Fu J, Weersma RK, Zhernakova A, Sanna S (2022) Effect of host genetics on the gut microbiome in 7,738 participants of the dutch microbiome project. Nat Genet 54:143–151. https://doi.org/10.1038/s41588-021-00992-y

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to the participants and investigators of MiBioGen consortium, the Dutch Microbiome Project, and FinnGen consortium for sharing the GWAS summary data.

Funding

This study was supported by the National Natural Science Foundation of China (grant No. 81972514).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weishan Chen or Ning Zhang.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Ethical approval

This analysis of publicly available data does not require ethical approval because the ethical approval and consent to participate were carried out in the original publications.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 486 KB)

Supplementary file2 (XLSX 1901 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, M., Liu, W., Wang, Z. et al. Causal associations between gut microbiota with intervertebral disk degeneration, low back pain, and sciatica: a Mendelian randomization study. Eur Spine J 33, 1424–1439 (2024). https://doi.org/10.1007/s00586-024-08131-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-024-08131-x

Keywords

Navigation