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Abstract
Objective To develop a deep neural network for the detection of inflammatory spine in short tau inversion recovery (STIR) 
sequence of magnetic resonance imaging (MRI) on patients with axial spondyloarthritis (axSpA).
Methods A total 330 patients with axSpA were recruited. STIR MRI of the whole spine and clinical data were obtained. 
Regions of interests (ROIs) were drawn outlining the active inflammatory lesion consisting of bone marrow edema (BME). 
Spinal inflammation was defined by the presence of an active inflammatory lesion on the STIR sequence. The 'fake-color' 
images were constructed. Images from 270 and 60 patients were randomly separated into the training/validation and testing 
sets, respectively. Deep neural network was developed using attention UNet. The neural network performance was compared 
to the image interpretation by a radiologist blinded to the ground truth.
Results Active inflammatory lesions were identified in 2891 MR images and were absent in 14,590 MR images. The sensi-
tivity and specificity of the derived deep neural network were 0.80 ± 0.03 and 0.88 ± 0.02, respectively. The Dice coefficient 
of the true positive lesions was 0.55 ± 0.02. The area under the curve of the receiver operating characteristic (AUC-ROC) 
curve of the deep neural network was 0.87 ± 0.02. The performance of the developed deep neural network was comparable 
to the interpretation of a radiologist with similar sensitivity and specificity.
Conclusion The developed deep neural network showed similar sensitivity and specificity to a radiologist with four years of 
experience. The results indicated that the network can provide a reliable and straightforward way of interpreting spinal MRI. 
The use of this deep neural network has the potential to expand the use of spinal MRI in managing axSpA.

Keywords MRI · Axial spondyloarthritis · Ankylosing spondylitis · Inflammation · Deep learning · Artificial intelligence · 
Spine

Introduction

Axial spondyloarthritis predominately affects the sacro-
iliac joint (SI joint) and spine by causing inflammation 
[1]. The disease process can individually affect spinal seg-
ments, including the cervical, thoracic, and lumbar spine 
[2]. Active spinal inflammatory lesions are common and 
occur in over half of the patients with axSpA [3]. Long-term 
imaging monitoring is crucial for axSpA management [2, 
4]. Magnetic resonance imaging (MRI) is essential in diag-
nosis and disease activity assessment for axSpA [5]. MRI 
is a noninvasive imaging tool for detecting and monitor-
ing inflammation and disease activity, independent of other 
biomarkers [5]. As a fat suppression sequence, the short tau 
inversion recovery (STIR) sequence could depict the signals 
of active inflammatory lesions consisting of bone marrow 
edema (BME) obscured by marrow fat signals. Due to the 
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high sensitivity of detecting the active inflammatory lesion, 
STIR MRI is commonly used to identify and grade inflam-
mation in axSpA patients [6–8]. According to the available 
scoring methods, MRI spinal lesions in axial spondyloar-
thritis [9] and Spondyloarthritis Research Consortium of 
Canada spine index [6], identifying the spinal inflammation 
is the first step to score the inflammatory degree of spinal 
segments. In addition, identifying spinal inflammation has 
important diagnostic, prognostic, and therapeutic implica-
tions [10]. However, the interpretation of MRI is labor inten-
sive, requiring the expertise of specialized personnel, yet 
variability in interpretation exists even between experienced 
specialists [11].

Deep learning, a subfield of machine learning, has 
achieved wide applications in different areas of medical 
imaging analysis [12]. With the increasing popularity of 
deep learning for medical imaging analysis, many axSpA 
studies have applied such a technique. Deep learning in MRI 
interpretation may be the next crucial step in enabling the 
widespread application of MRI in managing axSpA, espe-
cially in places where expertise is limited. As sacroiliitis on 
MRI is vital for axSpA, many studies focused on applying 
deep learning models for sacroiliitis. These studies included 
various aims like detection of erosion and ankylosis on SI 
joint CT [13], identification of sacroiliitis [14, 15] or bone 
marrow edema (BME) of the sacroiliac (SI) joint [16], and 
detecting the changes of sacroiliitis in MR images on axSpA 
patients [17]. However, apart from inflammatory structural 
changes of SI joint, inflammation in the spine could impact 
physical function [18, 19]. Therefore, early detection of spi-
nal inflammation could assist in the diagnosis of axSpA [2], 
monitor the disease progress [2], and analyze the correlation 
of MRI signs with low back pain [20]. Several recent studies 
explored the feasibility of deep learning on spinal inflam-
mation. These studies focused on images from PET/CT 
[20], radiographs [21], or the assessment of intervertebral 
disk (IVD) degeneration in spinal MR images [22]. To our 
knowledge, no studies tackled the design challenges in iden-
tifying inflammation in spinal STIR MRI via deep learning.

Utilizing the attention UNet [23], a U-shaped architecture 
designed for medical images, and the attention gate (AG) 
[23] highlighting the regions of interest, we have recently 
developed a deep neural network for the interpretation of SI 
MRI [15] by identifying the sacroiliitis. With the increas-
ing importance of spinal MRI interpretation for managing 
axSpA patients, differentiating the spinal segments with or 
without inflammation becomes crucial. Therefore, this study 
aims to develop a deep neural network to identify inflamma-
tory spine on STIR MRI among patients with axSpA.

Methods

The study was approved by the Institutional Review Board 
of the University of Hong Kong/Hospital Authority Hong 
Kong West Cluster (reference number UW 14-085) and local 
ethics committees.

Deep neural network was developed using STIR MRI of 
spinal inflammatory lesions from a large prospective cohort 
designed to investigate clinical applications of MRI in 
axSpA. Participants with an expert diagnosis of axSpA were 
consecutively recruited from ten public hospitals in Hong 
Kong (Queen Mary Hospital, Tung Wah Hospital, Grantham 
Hospital, Pamela Youde Nethersole Eastern Hospital, Cari-
tas Medical Centre, Tseung Kwan O Hospital, Kwong Wah 
Hospital, Hong Kong Eye Hospital, Prince of Wales Hos-
pital, and Prince Margaret Hospital) and one rheumatology 
center in China (University of Hong Kong-Shenzhen Hospi-
tal) from April 2014 to April 2021. Participants with preg-
nancy and inability to undergo MRI scans were excluded. 
All participants gave written consent before recruitment. 
Demographic data, including age, sex, ethnicity, smoking, 
and drinking status, were documented.

MRI acquisition

STIR sequence of the whole spine was obtained using a 
3T MR imaging unit (Achieva; Philips Healthcare, Best, 
the Netherlands). The technical parameters were set as 
below: repetition times/echo times = 5000/80, fields of 
view = 150 × 249   mm2, slice thicknesses = 3.5 mm, and 
acquisition time = 2.48 min. Due to the limited matrix size 
for each MRI scan, spinal segments were scanned indepen-
dently, including the cervical, thoracic, and lumbar spine. 
The spine was covered entirely. Sagittal slices of these indi-
vidual spinal segments were used to develop the deep neural 
network. The spinal images from each patient range between 
17 and 19 slices per one spinal segment.

Ground‑truth MRI interpretation

A rheumatologist and a radiologist with 10- and 6-year 
experiences in axSpA MRI identified the active inflamma-
tory lesions consisting of bone marrow edema (BME) in the 
whole spine MRI, according to the Assessment of Spon-
dyloArthritis international Society (ASAS) definition [1]. 
Spinal inflammation was defined by BME in spinal STIR 
MRI. The presence and absence of BME in STIR MRI were 
classified as with and without spinal inflammation, respec-
tively. Different spinal segments, cervical, thoracic, and lum-
bar spinal segments, were evaluated individually. Discordant 
interpretations were resolved by consensus between these 
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two readers. Rheumatologist outlined the active inflamma-
tory lesions, which were set as the ground-truth regions of 
interest (ROIs) after two readers agreed to the ROIs.

Data preprocessing

A binary labeling system was used to categorize with or 
without spinal inflammation. A 'fake-color' image com-
prises of three consecutive slices, which we separate into 
red–green–blue (RGB) channels. We take the preceding slice 
in the R-channel, the current slice in G-channel, and the sub-
sequent slice in B-channel. The middle channel (G-channel) 
of the current slice forms the ground-truth mask of the ‘fake-
color’ images (see Fig. 1). For each MR image, we create a 
set of 'fake-color' images.

Training, validation, and testing of deep neural 
network

Participants were classified into two categories based on the 
presence or absence of active spinal inflammation. A total 
of 300 participants with active spinal inflammation and 30 
without active spinal inflammation were included (Fig. 2). 
Participants were assigned to (1) the training and validation 
set consisting of 270 participants with active spinal inflam-
mation and (2) the testing set consisting of 30 participants 
with active spinal inflammation and 30 participants without 
active spinal inflammation. Participants were randomly split 
into training/validation and testing sets. Individual partici-
pants only appeared in training and validation, or the testing 
set.

The training and validation set consisted of a total of 
540 spinal segments, which contained a total of 2665 
images with inflammation. Additionally, there were 270 
spinal segments included, which contained 11,807 images 
without inflammation from 270 individual participants. 

Fig. 1  Process of generating a 'fake-color' input image and paired 
input label, outlined in orange. The first row includes three consec-
utive STIR images of cervical segments. The blue arrow highlights 
the synthesis of the ‘fake-color’ image by placing consecutive STIR 
images of the first row into the R-, G-, and B-channels, respectively. 

The input label was paired with image b (orange arrow). The blue 
outline shows the label in the preceding (a) and subsequent (c) slices, 
which were not the input label. The blue box represents the zoom-in 
view
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Deep neural network built upon UNet algorithm with 
AGs was implemented (Fig. 3). The technical details were 
summarized in our previous publication [7]. A tenfold 
cross-validation method was used to increase the valid-
ity of the deep neural network. Images from the training 
and validation sets were randomly split into ten folders. 
Then, the training process was repeated ten times. In each 
cycle, images from one folder were used for validation, 
and images from the remaining nine folders were used 
for training.

The testing set included 53 spinal segments (226 images) 
with inflammation and 127 spinal segments (2783 images) 
without inflammation from 60 participants. The testing set 
was used to infer the final performance of the deep neural 
network. The performance was evaluated at both the image 
level and spinal segment level. At the image level, the deep 
neural network prediction of inflammation in an image was 
determined as image with inflammation. In contrast, at spi-
nal segment levels, the deep neural network prediction of 

inflammation in at least two slices in a spinal segment was 
defined as spinal segment with inflammation.

Manual labeling

A 4-year experienced radiologist (2 years in musculoskel-
etal MRI), blinded to the ground-truth masks, identified the 
BME in the testing set based on ASAS definition of inflam-
matory spine. Then, the performance of the radiologist was 
evaluated at image and spinal segment levels using the same 
standard.

Deep learning neural network

Attention UNet was implemented using TensorFlow-GPU 
2.5 and Keras 2.7.0. The input was the ‘fake-color’ image 
with paired ground-truth BME mask. The output was the 
predicted BME mask. Only images where the predicted 
BME overlapped with the ground-truth BME were defined 

Fig. 2  Data distribution of training, validation, and testing sets for developing the deep neural network
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Fig. 3  Architecture of attention UNet

Fig. 4  Flowchart of the process of developing the deep neural net-
work. 'Fake-color' images with (images in first row of the left part) 
or without (images in second row of the left part) spinal inflamma-
tion and their paired labels were resized and then input to the atten-

tion UNet. After training, the developed deep neural network gave 
the prediction. Finally, max-pooling was applied to define whether 
the predicted image was image with spinal inflammation (1) or image 
without spinal inflammation (0). The blue box was the zoom-in view
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as images with inflammation (1), while the other images 
were defined as images without inflammation (0). Please 
refer to Fig. 4 for a flowchart of the training process.

Statistical analysis

Continuous variables were expressed as mean with stand-
ard deviation. The kappa coefficient was used to demon-
strate the inter-reader reliability between two readers. The 
degree of reliability was interpreted as 0.41–0.60, moder-
ate; 0.61–0.80, substantial; and 0.81–1.00, almost perfect.

The performance of the deep neural network was eval-
uated using the area under the curve (AUC) of receiver 
operating curve (ROC) according to the probability of the 
presence of lesion. Sensitivity and specificity were calcu-
lated. The spatial accuracy of the automated segmentation 
of MR images was assessed using the Dice coefficient.

All statistics were performed with IBM SPSS Statis-
tics V27. Listwise deletions were performed for missing 
values.

Results

A total of 330 patients with axSpA were recruited. Charac-
teristics of patients in the training and validation cohort are 
summarized in Table 1. Two experienced readers performed 
MRI interpretation with reasonably high inter-reader reli-
ability and a kappa coefficient of 0.85. Training and valida-
tion of the deep neural network for identifying active spi-
nal inflammation were robust according to the result of the 
tenfold cross-validation. The sensitivity (0.83 ± 0.020) and 
specificity (0.85 ± 0.026) at the image level during each ten-
fold cross-validation exhibited minimal fluctuations.

The performance of the deep neural network and that of 
a radiologist were evaluated in the testing set, as shown in 

Table 1  Baseline characteristics 
of the training and testing 
cohort

Training cohort (N = 270) Testing cohort (N = 60) p value

Age 44.6 ± 17.8 (18–86) 45.6 ± 14.0 (19–82) 0.323
Male sex 174/270 (64.4%) 27/60 (45.0%) 0.45 (0.26–0.80) 0.005
Chinese 264/270 (97.8%) 60/60 (100%) 1.23 (1.17–1.30) 0.244
Age of onset 31.6 ± 12.9 33.3 ± 14.4 0.202
Back pain duration 14.0 ± 14.6 12.4 ± 11.3 0.210
Smoker 88/267 (33.0%) 13/59 (22.0%) 0.58 (0.30–1.12) 0.101
Drinker 30/261 (11.5%) 6/56 (10.7%) 0.92 (0.37–2.34) 0.924
HLA-B27 195/252 (77.4%) 34/62 (65.4%) 0.55 (0.29–1.05) 0.068
CRP 0.89 ± 1.90 1.42 ± 3.62 0.140
ESR 31.6 ± 23.8 34.9 ± 27.0 0.198
BASDAI 4.7 ± 2.2 4.7 ± 2.2 0.398
BASFI 3.0 ± 2.4 3.0 ± 2.4 0.278
Sulfasalazine 62/263 (23.6%) 13/59 (22.0%) 0.92 (0.47–1.81) 0.800
Other csDMARDs 32/265 (12.1%) 9/60 (15.0%) 1.29 (0.58–2.86) 0.538

Table 2  Sensitivity and 
specificity of deep neural 
network and radiologist in 
image level and of individual 
spinal vertebral part

Sensitivity (true positive/positive) Specificity (true 
negative/nega-
tive)

Radiologist
Level of image 0.82 0.87
Level of individual spinal vertebral part 0.87 0.70

Deep neural network
Level of image 0.80 ± 0.03 0.88 ± 0.02
Level of individual spinal vertebral part 0.85 ± 0.04 0.73 ± 0.03

Deep neural network in individual spinal segment
Cervical vertebra 0.75 ± 0.02 0.81 ± 0.02
Thoracic vertebra 0.91 ± 0.04 0.62 ± 0.04
Lumbar vertebra 0.82 ± 0.03 0.74 ± 0.02
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Table 2. The deep neural network demonstrated relatively 
high sensitivity and specificity at both image and spinal 
segment levels. The mean sensitivity was 0.80 ± 0.03 at 
the image level and 0.85 ± 0.02 at the spinal segment level. 
The mean specificity was 0.88 ± 0.02 at the image level and 
0.73 ± 0.03 at the spinal segment level. Confusion matri-
ces of lesion prediction per image are shown in Table 3. 
The AUC-ROC of the deep neural network was 0.87 ± 0.02 
(Fig. 5). The performance of the deep neural network was 
comparable to a radiologist.

When evaluated based on individual spinal segments 
(cervical, thoracic, and lumbar), the sensitivity of the deep 
neural network was highest in the thoracic spine (with 
sensitivity = 0.90 ± 0.04 and specificity = 0.62 ± 0.04), fol-
lowed by the lumbar spine (with sensitivity = 0.82 ± 0.03 
and specificity = 0.72 ± 0.02) and cervical spine (sensitiv-
ity = 0.75 ± 0.02 and specificity = 0.81 ± 0.02). Figure 6 
illustrates the different prediction scenarios of the devel-
oped deep neural network with reference to the ground 

truth. Various lesions were present at the cervical, thoracic, 
and lumbar spine. The Dice coefficient of the true positive 
lesions was 0.55 ± 0.02.

Discussion

Utilizing attention UNet algorithm and 'fake-color' image 
processing to simulate the interpretation of consecutive 
images, a deep neural network with good sensitivity and 
specificity for identifying spinal inflammation in axSpA was 
firstly developed to the best of our knowledge. The deep 
neural network performance was comparable to a radiolo-
gist with similar sensitivity and specificity at both image 
level and spinal segment level possessing the potential to 
assist physicians' interpretation of spinal MRI in axSpA. 
Furthermore, the satisfied performance of the deep neural 
network indicated the potential to aid the broader usage of 
spinal MRI in the management of axSpA. The AUC of the 
developed deep neural network in this study demonstrated 
a satisfactory performance compared to other studies [13].

The deep neural network demonstrated higher sensitivity 
when interpretation was based on spinal segments compared 
to image level. Similarly, the difference in sensitivity and 
specificity at the image and spinal segment levels was also 
observed in image interpretation by the radiologist, who 
served as the comparator in our study. Determination of 
inflammation at the spinal segment levels is more clinically 
relevant as disease activity is usually interpreted based on 
the overall evaluation of multiple images and lesions.

Table 3  Confusion matrix of active inflammatory lesion prediction 
by deep neural network per image on the testing set

Ground truth Prediction

With active 
inflammatory 
lesions

Without active 
inflammatory 
lesions

With active inflammatory 
lesions

181 45

Without active inflammatory 
lesions

294 2489

Fig. 5  ROC curve of the deep neural network
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Fig. 6  Examples of the devel-
oped deep neural network with 
image size (128 × 128). Left was 
'fake-color' input image. Right 
was the ground-truth lesions' 
outline (red), the predicted 
lesions' outline (blue), and their 
overlap outline (rose–red) on 
‘fake-color' image. The com-
mon preprocess of the input, as 
the normalization, caused the 
intensity difference between 
left and right. a Two examples 
of the cervical vertebra. b Two 
examples of a thoracic vertebra. 
c Two examples of lumbar 
cervical. The green, yellow, and 
orange arrows pointed out the 
true positive, false positive, and 
false negative lesions, respec-
tively. The blue boxes were the 
zoom-in views
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Inflammatory lesions were found at variable frequencies in 
axSpA depending on the spinal segments and were most com-
mon in the thoracic spinal segment due to inherent biomechan-
ics [3]. Therefore, inflammation identified at the thoracic spine 
tends to be more specific for disease activity and may aid the 
diagnosis. The deep neural network developed in the current 
study had the highest sensitivity in identifying thoracic spinal 
inflammation. Hence, the deep neural network was of clinical 
relevance and applicability for axSpA.

The ‘fake-color’ input system by using the information of 
consecutive images was proved to have better performance 
as it simulates the real-world MRI interpretation that human 
reader would compare the consecutive images.[15]. Based 
on the 'fake-color' image input system providing additional 
information from adjacent images, our developed deep neural 
network was comparable to a radiologist. This method may 
become the next crucial step for the widespread application 
of MRI in the clinical management of patients with axSpA.

The data imbalance existed as the total number of images 
with spinal inflammation was far less than the total number of 
images without spinal inflammation in participants with spinal 
inflammation. To avoid a severe data imbalance in training, we 
only included participants without inflammation in the test-
ing set. This helped us evaluate the applicability of the deep 
neural network on both participants with and without spinal 
inflammation. The lack of participants without inflammation 
in training led to a loss in specificity. However, the specificity 
was similar to the specificity of radiologist.

Our study has several limitations. The ground-truth masks 
were established by two investigators and contributed to poten-
tial bias. This may be overcome by increasing the number of 
readers. That said, the inter-reader reliability between the two 
investigators was reasonably high (0.85), which outperforms 
other studies such as  [24] that reported 0.75 inter-reader 
reliability and 0.8 intra-reader reliability. Furthermore, we 
expected minimal bias in our study. The relatively low Dice 
indicated that the deep neural network could not outline the 
inflammatory lesion precisely. However, this study aimed to 
identify spinal inflammation rather than the precise outline of 
the inflammatory lesion. Finally, this study has only proved 
the satisfactory performance of the deep neural network in 
identifying the inflammatory spine by evaluating BME in the 
spine with a binary label, establishing the basis for a SPARCC 
system rather than output the SPARCC score. It serves as a 
proof-of-concept study for the potential application of deep 
neural network in spinal MRI interpretation for axSpA. Future 
studies are anticipated to develop more advanced deep neural 
networks or tools for outputting SPARCC score. In addition, 
external validation from multicenter studies with different 
MRI modes is necessary in future research. Our team is cur-
rently conducting external validation in other cohorts, includ-
ing patients of different ethnicities and clinical presentations.

Conclusion

A deep neural network was developed to detect spinal 
inflammation in axSpA. The performance of this deep neural 
network was comparable to a 4-year experienced radiologist, 
providing an easy and reliable way to interpret spinal MRI.
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