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Abstract
Purpose  Changes in the cross-sectional area (CSA) and functional cross-sectional area (FCSA) of the lumbar multifidus 
(MF) and erector spinae muscles (ES) are factors that can contribute to low back pain. For the assessment of muscle CSA 
and composition there are various software and threshold methods used for tissue segmentation in quantitative analysis. 
However, there is currently no gold standard for software as well as muscle segmentation. This study aims to analyze the 
measurement error between different image processing software and different threshold methods for muscle segmentation.
Methods  Magnetic resonance images (MRI) of 60 patients were evaluated. Muscle CSA and FCSA measurements were 
acquired from axial T2-weighted MRI of the MF and ES at L4/L5 and L5/S1. CSA, FCSA, and FCSA/CSA ratio were meas-
ured independently by two observers. The MRI images were measured using two different software programs (ImageJ and 
Amira) and with two threshold methods (Circle/Overlap method) for each software to evaluate FCSA and FCSA/CSA ratio.
Results  Inter-software comparisons revealed high inter-rater reliability. However, poor inter-rater reliability were obtained 
with different threshold methods. CSA, FCSA, and FCSA/CSA showed excellent inter-software agreement of 0.75–0.99 
regardless of the threshold segmentation method. The inter-rater reliability between the two observers ranged between 0.75 
and 0.99. Comparison of the two segmentation methods revealed agreement between 0.19 and 0.84. FCSA and FCSA/CSA 
measured via the Overlap method were significantly higher than those measured via the Circle method (P < 0.01).
Conclusion  The present study showed a high degree of reliability with very good agreement between the two software pro-
grams. However, study results based on different threshold methods should not be directly compared.
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Introduction

Up to 80% of adults experienced chronic non-specific low 
back pain (LBP) at some point in their lives [1]. Global Bur-
den of Disease’s research shows, LBP is the main reason 
as the primary cause of disability [2]. Despite considerable 
research on the etiology of LBP, the pathomorphological 
relationships are not yet fully understood. One factor that 
might affect LBP is the composition and morphology of the 
paraspinal muscles [3, 4].

Currently, quantitative and qualitative methods are being 
used to assess the composition of paraspinal muscle tissue. 
Qualitative assessment refers to the utilization of visual grad-
ing methods to assess the extent of fatty infiltration. The reli-
ability of Goutallier classification system (0–4 grading scale) 
measurements of the degree of fatty infiltration in the lum-
bar region has been questioned previously [5]. Therefore, the 
quantitative measurements such as the assessment of the cross-
sectional area (CSA) and the functional cross-sectional area 
(FCSA), which results from the exclusion of the fat compounds 
of the muscles cross-sectional area have gained growing inter-
est [6–10]. A quantitative assessment of the paraspinal muscle 
composition using MRI is performed by segregating the pixels 
within the region of interest that is thought to represent fat. 
These techniques could be performed using a manual segmen-
tation method or different threshold methods [11, 12].

Although it is assumed that the measurement error is 
mainly related to the observer and the method used, another 
problem might be the use of different software, which can 
lead to incomparable results [13]. Therefore, it is important 
to verify whether direct comparisons can be made between 
the various freeware or commercial software packages used 
for this procedure. Whereas Fortin et al. [14] reported an 
excellent agreement between ImageJ and OsiriX in the 
assessment of paraspinal muscle CSA, composition, and 
side-to-side asymmetry, the amount of measurement error 
in between the U.S. Food and Drug Administration certi-
fied software package Amira (version 2019.4, Thermo Fisher 
Scientific Inc. Waltham, USA) and the freeware ImageJ (ver-
sion 1.53, National Institutes of Health, Bethesda, Maryland, 
USA) is unknown. Therefore, the objective of this study 
was to elucidate the influence of inter-software differences 
between Amira and ImageJ as well as the influence of seg-
mentation techniques.

Materials and method

Study design

In this retrospective study, we randomly selected 60 MRIs 
(39 women and 21 men) of the lumbar region from a sample 

of a large cohort study, which was approved by the local 
ethics committee (EA1/058/21). MRI scans were conducted 
using a Siemens Avanto 1.5 T MRI system (Siemens AG, 
Erlangen, Germany) with T2-weighted turbo spin echo 
sequences for both axial and sagittal images. The axial T2 
parameters used were a repetition time of 4.000, an echo 
time of 113, and a slice thickness of 3 mm. As the vast 
majority of degenerative changes can be detected in the 
lower spine, the levels L4–L5 and L5-S1 were evaluated.

Muscle measurements and segmentation

All measurements were performed by two orthopedic resi-
dents, who were trained in the MRI muscle assessment. The 
MRI images were measured through the two different image 
processing programs (ImageJ and Amira). The two observers 
measured the MRIs in a random order for both investigators. 
The CSA of the multifidus muscle (MF) and erector spinae 
muscle (ES) was measured at mid-disk level L4/5 and L5/S1 
(Fig. 1), the CSA was single measured before applying any 
thresholds. FCSA and FCSA/CSA were determined using 
two different segmentation thresholds for differentiating 
muscle fibers and fatty muscle infiltration.

Circle method: Six regions of interest (ROIs) from the 
muscles of the MF and ES were taken from the visible areas 
of muscle tissue with least visual fatty infiltration. The 
maximum value that can be obtained from a sample ROI 
is regarded as the upper threshold to distinguish between 
muscle tissue and fat. Since the lower limit is usually 0 or 
close to 0, uniformly setting the lower limit at 0 is used to 
minimize errors (defined as Circle method) [14].

Overlap method: Outline CSA of paraspinal muscle 
(include ES and MF) and subcutaneous fat (SC) on both 
sides. By presenting the grayscale ranges for both CSA 
and SC as histograms and overlaying them, it was possi-
ble to identify signal intensities that were common to both 
images. The Overlapping area of the histograms represents 
the intensity of the fatty signal in the CSA (defined as Over-
lap method) [15].

Data analysis

For each measurement, descriptive statistics such as means 
(x)   and standard deviations (SD) were calculated. The inter-
rater, inter-software, and inter-threshold reliability of the 
measurement were evaluated using intra-class correlation 
coefficient (ICC). Agreement was defined according to Port-
ney and Watkins [16]: an ICC of 0.00–0.49 is considered 
poor, 0.50–0.74 is moderate, and 0.75–1.0 is excellent. As 
Bland and Altman suggested [17, 18], the 95% limits of 
agreement were used to evaluate the agreement between the 
measurements acquired by different raters using different 
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software with different thresholds. The standard error of 
measurement (SEM) is a statistical metric used to estimate 
the expected error associated with a specific measurement 
�

SEM = S

√

1 − rxx

�

 , where S is the standard deviation of 
the test and rxx represents the reliability of the test. In this 
study, the results were analyzed based on the muscles and 
spinal level that were investigated. The Wilcoxon Rank Sum 
Test is employed to analyze systematic differences between 
different thresholds. The statistical analysis was conducted 
using Statistical Package for the Social Sciences version 23.0 
(SPSS Inc, Chicago, Illinois).

Based on Cohen’s suggestions [19], By utilizing G*Power 
version 3.1.3 (University of Düsseldorf, Düsseldorf, Ger-
many), effect size conventions were provided in categories 
of “small,” “medium,” and “large” to determine the required 
sample size. In this study, with an effect size of 0.3, alpha 
error of 0.05, and a power (verification) of 0.8, the minimum 
sample size of 46 participants was determined. Therefore, 
the enrollment of 60 patients was considered adequate to 
achieve the desired statistical power.

Results

Inter‑software reliability of muscle measurements 
using ImageJ and Amira

The outcomes of inter-software reliability (ICC), SEM val-
ues, and descriptive statistics (mean SD) are presented in 
Table 1. All ICC of CSA, FCSA, and FCSA/CSA of all the 
muscle composition measurements, regardless of the thresh-
old methods, analyzed muscle or spinal level, showed excel-
lent agreement, and varied between 0.75 and 0.99. SEM also 
showed good comparability for different software, muscle 
measurements, muscle analyzed, and spinal segments. In 
Figs. 2 and 3, Bland–Altmann Plots illustrate the agreement 
between Amira and ImageJ and the solid line consistently 
crosses the y-axis above zero, indicating a systematic trend 
where the mean values of FCSA were consistently higher 
when utilizing the Amira.

Fig. 1   L5/S1 MRI of the same 
subject, A and B are processed 
by ImageJ, C and D by Amira
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Inter‑rater reliability of muscle measurements using 
imageJ and Amira with Overlap method and Circle 
method

The results of inter-rater reliability (ICC), SEM values 
and descriptive statistics (mean ± SD) data of L4–L5 and 
L5-S1 MF and ES between different software are given 
in Table 2. When measured using Amira, the ICC ranged 
from 0.75 to 0.99 for the inter-rater reliability of the 
Overlap method and 0.89 to 0.98 for the Circle method 
for both spinal levels. Inter-rater reliability of the Overlap 
method for both spinal levels ranged from 0.75 to 0.99 
when measured using ImageJ, and ICC ranged from 0.88 
to 0.98 for the Circle method. There were no significant 
differences observed in the ICC ranges for the inter-rater 
reliability analysis using two software and two threshold 
methods. However, compared with the Overlap method, 
the ICC of the Circle method is higher, and the SEM 
value is also slightly higher.

Inter‑threshold reliability of muscle measurements 
using the Circle method and Overlap method

The ICC of MF and ES composition between the two differ-
ent threshold methods showed poor or moderate agreement 
in both software programs (Table 3). Accordingly, the SEM 
value of the ES muscle and MF muscle in each software was 
high. All FCSA and FCSA/CSA measured using the Overlap 
method exhibits a notably greater extent compared to meas-
urements taken with the Circle method, and this disparity 
demonstrates statistical significance (P < 0.01).

Discussion

During the quantitative assessment of lumbar paraspinal 
muscles composition, we compared the differences of seg-
mentation of paraspinal muscles (MF and ES) by using 
different thresholding methods (Circle and Overlap) with 

Table 1   Inter-software 
reliability indexes 
between Amira and imageJ 
for the right MF and ES 
muscles

X1 mean value in Amira, X2 = mean value in ImageJ, ICC intra-class correlation coefficient, CI confidence 
interval, SEM standard error of measurement, CSA cross-sectional area, FCSA functional CSA, FCSA/CSA 
ratio, the unit of area is cm2

Parameter Circle method Overlap method

X1 (SD) X2 (SD) ICC (95% CI) SEM X1 (SD) X2 (SD) ICC (95% CI) SEM

MF muscle
CSA L4/5 9.56

(1.75)
9.54
(1.73)

0.99
(0.98–0.99)

0.17 9.56
(1.75)

9.54
(1.73)

0.99
(0.98–0.99)

0.17

FCSA 7.58
(1.99)

7.36
(1.90)

0.98
(0.93–0.99)

0.27 8.75
(1.82)

8.44
(1.72)

0.96
(0.83–0.99)

0.35

FCSA/CSA 0.79
(0.13)

0.77
(0.12)

0.93
(0.84–0.97)

0.03 0.91
(0.07)

0.88
(0.06)

0.81
(0.30–0.93)

0.03

CSA L5/S1 11.44
(1.86)

11.36
(1.86)

0.98
(0.96–0.99)

0.26 11.44
(1.86)

11.36
(1.86)

0.98
(0.96–0.99)

0.26

FCSA 8.74
(2.15)

8.49
(2.08)

0.98
(0.93–0.99)

0.30 10.35
(1.76)

10.04
(1.74)

0.97
(0.83–0.99)

0.30

FCSA/CSA 0.76
(0.12)

0.74
(0.12)

0.95
(0.90–0.98)

0.03 0.90
(0.05)

0.88
(0.05)

0.75
(0.40–0.88)

0.03

ES muscle
CSA L4/5 15.91

(3.32)
15.84
(3.38)

0.99
(0.99–1.00)

0.33 15.91
(3.32)

15.84
(3.38)

0.99
(0.99–1.00)

0.33

FCSA 12.92
(3.62)

12.65
(3.56)

0.99
(0.97–1.00)

0.36 14.7
(3.58)

14.28
(3.57)

0.98
(0.93–0.99)

0.50

FCSA/CSA 0.81
(0.11)

0.79
(0.10)

0.95
(0.91–0.97)

0.02 0.92
(0.08)

0.90
(0.08)

0.84
(0.67–0.91)

0.28

CSA L5/S1 10.98
(3.10)

10.85
(3.03)

0.99
(0.99–1.00)

0.31 10.98
(3.10)

10.85
(3.03)

0.99
(0.99–1.00)

0.31

FCSA 7.75
(3.25)

7.63
(3.18)

0.99
(0.99–1.00)

0.32 9.87
(3.00)

9.50
(2.98)

0.98
(0.90–0.99)

0.42

FCSA/CSA 0.69
(0.16)

0.69
(0.15)

0.99
(0.97–0.99)

0.02 0.90
(0.07)

0.87
(0.06)

0.79
(0.47–0.90)

0.03
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Fig. 2   Bland–Altman 95% limits of agreement plots for the FCSA 
measurements of the right MF and ES at L4–L5 and L5–S1. The 
solid line represents the mean difference between the two measure-

ment methods (i.e., Amira value-imageJ value), the dotted line rep-
resents the 95% limits of agreement for the difference (defined as the 
mean ± 1.96 SD)
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Fig. 3   Bland–Altman 95% limits of agreement plots for the FCSA% 
(100*FCSA/CSA) measurements of the right MF and ES at L4/L5 
and L5/S1. The solid line represents the mean difference between 

the two measurement methods (i.e., Amira value–ImageJ value), the 
dotted line represents the 95% limits of agreement for the difference 
(defined as the mean ± 1.96 SD)
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different software (ImageJ and Amira). The agreement 
of the relevant paraspinal muscle measurements between 
these two distinct image processing programs demon-
strated excellent reliability. These findings are supported 
by the Bland and Altman limit of agreement, which indi-
cate that the agreement between the two software programs 

is acceptable, and they can be used interchangeably. In 
addition, similar inter-rater and inter-software reliability 
coefficients and SEM indicated that the software used con-
tributed little to measurement error. Supporting the results 
of prior research we found an excellent inter-rater reliabil-
ity in CSA and FCSA measurements [20, 21]. However, 

Table 2   Inter-rater reliability for 
different software and threshold 
segmentation

X mean value, ICC intr-aclass correlation coefficient, CI confidence interval, SEM standard error of meas-
urement, CSA cross-sectional area, FCSA functional CSA, FCSA/CSA ratio, the unit of area is cm2

Parameter Amira ImageJ

X (SD) ICC (95% CI) SEM X (SD) ICC (95% CI) SEM

MF muscle
CSA L4/5 9.56

(1.75)
0.98
(0.97–0.99)

0.25 9.54
(1.74)

0.96
(0.91–0.98)

0.35

FCSA circle 7.58
(2.00)

0.97
(0.95–0.98)

0.35 7.36
(1.92)

0.95
(0.90–0.97)

0.43

FCSA overlap 8.75
(1.83)

0.96
(0.92–0.98)

0.37 8.44
(1.73)

0.97
(0.94–0.98)

0.30

FCSA/CSA circle 0.79
(0.13)

0.93
(0.89–0.96)

0.03 0.77
(0.12)

0.88
(0.81–0.93)

0.04

FCSA/CSA overlap 0.91
(0.07)

0.83
(0.69–0.91)

0.03 0.88
(0.06)

0.83
(0.72–0.89)

0.02

CSA L5/S1 11.44
(1.87)

0.97
(0.94–0.98)

0.32 11.36
(1.88)

0.96
(0.93–0.98)

0.38

FCSA circle 8.73
(2.16)

0.96
(0.94–0.98)

0.43 8.48
(2.09)

0.97
(0.93–0.98)

0.36

FCSA overlap 10.34
(1.77)

0.96
(0.94–0.98)

0.35 10.04
(1.75)

0.97
(0.96–0.98)

0.3

FCSA/CSA circle 0.76
(0.12)

0.89
(0.81–0.94)

0.04 0.74
(0.12)

0.91
(0.85–0.94)

0.04

FCSA/CSA overlap 0.90
(0.05)

0.75
(0.62–0.85)

0.03 0.88
(0.05)

0.77
(0.59–0.87)

0.02

ES muscle
CSA L4/5 15.91

(3.31)
0.99
(0.98–0.99)

0.33 15.83
(3.37)

0.99
(0.99–1.00)

0.34

FCSA circle 12.92
(3.62)

0.98
(0.97–0.99)

0.51 12.65
(3.57)

0.98
(0.96–0.99)

0.50

FCSA overlap 14.7
(3.58)

0.98
(0.97–0.99)

0.51 14.27
(3.57)

0.98
(0.97–0.99)

0.50

FCSA/CSA circle 0.81
(0.11)

0.91
(0.86–0.95)

0.03 0.79
(0.10)

0.89
(0.82–0.93)

0.03

FCSA/CSA overlap 0.92
(0.08)

0.92
(0.87–0.95)

0.02 0.90
(0.08)

0.89
(0.83–0.93)

0.03

CSA L5/S1 10.98
(3.10)

0.99
(0.98–0.99)

0.31 10.85
(3.04)

0.97
(0.95–0.98)

0.53

FCSA circle 7.75
(3.25)

0.98
(0.97–0.99)

0.46 7.62
(3.18)

0.98
(0.97–0.99)

0.45

FCSA overlap 9.87
(3.00)

0.99
(0.98–0.99)

0.3 9.50
(2.97)

0.99
(0.98–0.99)

0.3

FCSA/CSA circle 0.69
(0.16)

0.91
(0.82–0.95)

0.05 0.69
(0.15)

0.91
(0.86–0.95)

0.05

FCSA/CSA overlap 0.90
(0.07)

0.83
(0.72–0.89)

0.03 0.87
(0.07)

0.75
(0.61–0.84)

0.04
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relevant differences between the two threshold methods 
were observed. The agreement of related paraspinal mus-
cles between these two methods is low or moderate.

Both threshold methods have been used in prior work 
and used in comparisons, although the agreement and reli-
ability between the two threshold methods could not been 
confirmed by this study [14, 15]. However, the differences 
might result from the two different ways to determine the 
upper threshold and therefore lead to different results. 
However, research about reliability and agreement of inter-
threshold comparisons is very rare. Fortin et al. [22] com-
pared an automated thresholding algorithm with the Circle 
method, for which excellent agreement between 0.79 and 
0.99 was reported. Besides that study, to the knowledge of 
the authors there is paucity in inter-threshold comparisons.

As the thresholding is crucial for muscle segmenta-
tion there are some studies proposing different manual, 
semi-automated, or automated approaches. Otsu et al. [23] 
presented a method to select a threshold automatically 
from a gray-level histogram. Cooley et al. [24] acquired 
an initial histogram for each image by first outlining both 
MF (connected via the subcutaneous fat but excluding any 
vertebral structures). Ranson et al. [25] proposed tissue 
differentiation based on manual segmentation of the three 
tissue types within the MRI vertebral bone, paraspinal 
muscles, and intermuscular fat. The resulting grayscale 
values for the three tissue types were then normalized to 

the total number of pixels analyzed to determine the gray-
scale range of MR signal intensities for the three tissue 
types across the scan set. Although these articles suggest 
methods that could be supposedly effective, they do not 
provide a gold standard for assessing the infiltration of fat 
in the paraspinal muscles.

The paper’s main limitation is that only two image pro-
cessing software for the quantitative assessment of paraspi-
nal muscle composition was compared even if there exists 
a wide variety of different software approaches. Besides 
the two compared manual threshold methods there exists 
further manual, semi-automated or automated approaches 
which could not be compared within this paper.

Conclusion

In conclusion, the presented method to study paraspinal 
muscle CSA and composition has a high degree of reliability 
with very good agreement between the two software pro-
grams. However, the comparison between the two different 
thresholding approaches presented mostly moderate or poor 
reliability and therefore the results of these different thresh-
olding methods should not be compared against each other.
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