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Abstract
Purpose The study aims to assess if the angle of trunk rotation (ATR) in combination with other readily measurable clinical 
parameters allows for effective non-invasive scoliosis screening.
Methods We analysed 10,813 patients (4–18 years old) who underwent clinical and radiological evaluation for scoliosis in 
a tertiary clinic specialised in spinal deformities. We considered as predictors ATR, Prominence (mm), visible asymmetry 
of the waist, scapulae and shoulders, familiarity, sex, BMI, age, menarche, and localisation of the curve. We implemented 
a Logistic Regression model to classify the Cobb angle of the major curve according to thresholds of 15, 20, 25, 30, and 40 
degrees, by randomly splitting the dataset into 80–20% for training and testing, respectively.
Results The model showed accuracies of 74, 81, 79, 79, and 84% for 15-, 20-, 25-, 30- and 40-degrees thresholds, respec-
tively. For all the thresholds ATR, Prominence, and visible asymmetry of the waist were the top five most important variables 
for the prediction. Samples that were wrongly classified as negatives had always statistically significant (p ≪ 0.01) lower 
values of ATR and Prominence. This confirmed that these two parameters were very important for the correct classification 
of the Cobb angle. The model showed better performances than using the 5 and 7 degrees ATR thresholds to prescribe a 
radiological examination.
Conclusions Machine-learning-based classification models have the potential to effectively improve the non-invasive screen-
ing for AIS. The results of the study constitute the basis for the development of easy-to-use tools enabling physicians to 
decide whether to prescribe radiographic imaging.

Keywords Adolescent idiopathic scoliosis · Machine learning · Prediction model

Introduction

Scoliosis is the most common spinal disorder during growth. 
Adolescent idiopathic scoliosis (AIS) shows an overall prev-
alence ranging from 0.9 to 12%, with 2 to 3% as the most 
reported value in the literature [1–4]. AIS progresses more 
frequently in females than males; for Cobb angles between 
10 and 20°, the percentage of affected girls is similar to 
boys’ (1.3:1), but the ratio increases together with Cobb 
degrees: for Cobb angles ranging from 20 to 30° the girls-
to-boys ratio is 5.4:1 and for angles values above 30° the 
ratio is 7:1 [5, 6]. Curves larger than 50° at the end of growth 
are associated with a higher risk of progressing through the 
lifespan [7], health problems in adult life, pain, disability, 
and progressive functional limitations [6, 8, 9].
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Early detection of scoliosis becomes fundamental for 
starting an early and less invasive treatment and improv-
ing final results. With screening, the average degree of the 
curve at diagnosis decreases, the number of prescribed 
braces increases because of early detection, and the num-
ber of performed spinal fusions reduces [10, 11]. Screen-
ing is based on a physical examination to identify the need 
for a radiograph to confirm the diagnosis. The primary 
evaluation is Adam’s forward bending test, and a posi-
tive result is highly suggestive of scoliosis [12]. This test 
allows measuring the angle of trunk rotation (ATR); a 7° 
Bunnell ATR at the level of the prominence, as measured 
by the Scoliometer, is the usual cut-off point to indicate 
suspect scoliosis [3, 13]. Still, this diagnostic test has rela-
tively low sensitivity and specificity [14–16]. A radiologi-
cal examination is therefore indicated to confirm the posi-
tive results of Adam’s test. However, increased neoplastic 
risk due to ionising radiation exposure is a relevant issue, 
especially in young subjects [17]. Other approaches aimed 
at avoiding using X-rays for scoliosis follow-up, replac-
ing them, for example, with surface topography [18], but 
also proved insufficiently reliable in diagnosing spinal 
deformities. Indeed, radiographs remain needed in sco-
liosis follow-up and are considered the gold standard for 
diagnosing and monitoring the pathology [8].

In this study, we hypothesize the possibility of improving 
the decision to prescribe a radiological examination with 
a complete evaluation that does not rely only on ATR. An 
extensive database including other clinical information ana-
lysed through machine learning techniques could redefine 
the classical threshold, increasing its sensitivity and specific-
ity. We aimed to identify a simple formula for radiographic 
referral of children with suspicion of scoliosis based on his-
tory and clinical examination in a specialistic setting.

Materials and methods

Study design

This is an observational, cross-sectional study. The study 
adheres to the STROBE checklist for cross-sectional stud-
ies [19].

Setting

We recruited all patients in a tertiary referral outpatient 
clinic specialised in spine deformity conservative treat-
ment. The local Ethics Committee approved the study, and 
all patients (or their parents, if minors) provided informed 
written consent.

Dataset

The inclusion criteria for the study were:

• juvenile or adolescent idiopathic scoliosis patients;
• between 4 and 18 years old;
• first consultation with a spine specialist at our institute;
• availability of a radiographic evaluation within three 

months of consultation;
• no history of previous bracing.

Our target variable was the Cobb angle of the major 
scoliotic curve in the coronal radiograph. We considered 
the following classical independent variables:

• sex,
• age,
• ATR measured with a Scoliometer (° Bunnell) [15],
• Prominence Height (mm) [13],
• Body Mass Index (BMI),
• Familiarity: at least a close relative who had treated sco-

liosis,
• Asymmetry defined as two or more in one of the TRACE 

parameters [20],
• localization of the major curve: lumbar, thoracolumbar, 

and thoracic.

Finally, we added some new independent variables. 
We considered the orthogonal triangle described by the 
Prominence Height (one cathetus) and the ATR (inclina-
tion of the hypotenuse). Using the trigonometric formulae 
we found:

• Prominence distance: the second cathetus of the triangle,
• Area of prominence: the area of the triangle (Fig. 1).

Fig. 1  Visual representation of ATR, Prominence height, and the rec-
tangular triangle that represent the area of the prominence
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Model derivation

Since directly regressing the Cobb angle from the meas-
ured parameters proved not feasible after preliminary tests, 
we decided to make the regression problem a binary clas-
sification problem, i.e., to detect if the angle is higher or 
lower than a predefined threshold. We, therefore, used dif-
ferent thresholds of the Cobb angle (15, 20, 25, 30, and 40 
degrees) to split the dataset into two classes. For the sake 
of easy interpretability of the model, we used a logistic 
regression model for the classification task. We compared 
it to the currently used methodology to prescribe a radio-
logical examination, namely an ATR angle above 5 and 
7° Bunnell. Since we have five different thresholds, we 
developed five different logistic regression models, one 
for each Cobb angle threshold, to predict if the patient has 
a Cobb angle above or below the selected threshold using 
the following formula:

where P(above) is the probability that the patient has the 
Cobb angle above the angle threshold, ®i with i ranging 
from 0 to 11, are the coefficients that will be calculated from 
the model, and xi, with i ranging from 1 to 11 are the inde-
pendent variables of our model. The coefficients ® for each 
model are reported in the Excel file in the Supplementary 
Material. Regarding x, ×1 is the sex, ×2 the age, ×3 the 
ATR, ×4 the Prominence, ×5 the Prominence distance, ×6 
the Area of the Prominence, ×7 the BMI, ×8 the Familiarity, 
×9 the Asymmetry, and ×10 and ×11 the variables repre-
senting the location.

Internal validation

We randomly split the dataset into 80% for training 
(N = 5130) and 20% for testing (N = 1283). We performed 
a 10-folds cross-validation (CV) only on the training set to 
analyse our model’s performances and stability across dif-
ferent train-validation sets. To do so, we split the training 
set into ten groups, iteratively trained the model on nine 
of them and validated on the remaining one. We repeated 
this process ten times to cover many train validation sets. 
After cross-validation, we retrained the model using the 
full training set and evaluated the final performance on the 
test set. We performed the cross-validation and the final 
training for each threshold leading to the five different 
models. As preprocessing steps, we scaled the numerical 
variables (Age, ATR, Prominence, Prominence distance, 
Area, and BMI) to have zero mean and unitary variance. 

(1)P(above) =
1

1 + e − (�
0
+ �

1
∗ x1 + �

2
∗ x2 + �

3
∗ x3 + �

4
∗ x4 + �

5
∗ x5 + �

6
∗ x6 + �

7
∗ x7 + �

8
∗ x8 + �

9
∗ x1 + �

10
∗ x10 + �

11
∗ x11

In this way, all the variables are on the same scale, and no 
one dominates over the others.

Discrimination and calibration

We evaluated our model on the repeated tenfold cross-val-
idation and the test set. For the repeated tenfold cross-vali-
dation, we computed the Receiver Operating Characteristics 
(ROC) curves from which we obtained the Area Under the 
Curve (AUC); we also calculated the mean value and stand-
ard deviation for this metric for all the thresholds. The AUC 
allowed us also to calculate the Youden Index [21] to esti-
mate the optimal classification threshold to maximise both 
sensitivity and specificity, namely the ability of the model to 
find positive cases (true positives) and negative cases (true 
negatives), respectively. Moreover, given the optimal clas-
sification threshold, we computed the accuracy, sensitivity, 
specificity, and F1 score for each run of the repeated cross-

validation. The F1 score is a metric that summarizes the 
performances of the model by taking into account preci-
sion (positive predictive value) and recall (sensitivity), and 
it ranges from 0 to 1. It is the harmonic mean of precision 
and recall (Eq. 2).

Finally, we averaged the results of the runs to get, for each 
Cobb angle threshold, a mean value and a standard deviation 
for each metric.

We conducted the final evaluation of the model perfor-
mance in the same way. First, we computed the ROC curves 
separately for each Cobb angle threshold. As we did for CV, 
we used them to calculate the optimal classification threshold 
(from 0 to 1) that maximises the sensitivity and specificity 
of the model. Then, by using this classification threshold, we 
computed the accuracy, sensitivity, specificity, and F1 score 
and compared the sensitivity and specificity of our model 
to those we would have obtained using the ATR thresholds.

We also analysed the most important variables that best 
predicted the outcome: whether the Cobb angle was below or 
above each threshold. Indeed, this can be easily done using 
a logistic regression model by looking at the significance 
of each coefficient assigned to each predictor. In particular, 
when the model is trained, we can look at the absolute values 
of the coefficients associated with each independent variable 
and rank them by importance from the highest to the lowest. 
Then, by looking at the p-values associated with each coef-
ficient, we keep only those with a p-value lower than 0.05.

(2)F1 =
precision ∗ recall

precision + recall
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Finally, we compared the box plot of the numerical vari-
ables between the correctly classified samples (True Posi-
tives) and the samples that should have been classified as 
positives, namely Cobb angle above the threshold, but were 
wrongly classified as negatives (False Negatives). The pur-
pose was to understand if there were significant differences 
between the distributions of the numerical variables for the 
group of true positives and that of the false negatives. First, 
we tested the normality of the two groups using the Shap-
iro–Wilk test, and then we applied the t-test (if both groups 
were normally distributed) or the Mann–Whitney test to find 
out if the true positives and the false negatives had signifi-
cantly different distributions.

Results

Sample

We considered the entire database of 10,813 first clinical 
evaluations of children referred to our specialised clinic 
for a consult between 01/07/1996 and 04/05/2018. After 

excluding all the patients who did not meet the criteria, we 
included 7378 children. After removing all children who did 
not have all the independent variables, we had a final sample 
of 6413 individuals.

The repeated tenfold cross-validation showed good per-
formance metrics and stability results across the different 
folds. We obtained high AUC values with low standard 
deviation indicating the high robustness of our model (Fig. 2 
and Table 1).

The F1 score of our model outperforms the use of the 5 
and 7° Bunnell thresholds of ATR with values of 0.77 (± 
0.02), 0.75 (± 0.01), 0.70 (± 0.02), 0.63 (± 0.03), and 0.51 
(± 0.06) for 15, 20, 25, 30, and 40 degrees respectively. 
The F1 scores for the 5 degrees threshold were 0.77 (15°), 
0.69 (20°), 0.57 (25°), 0.44 (30°), and 0.22 (40°), while for 
the 7 degrees, threshold were 0.72 (15°), 0.70 (20°), 0.64 
(25°), 0.53 (30°), and 0.30 (40°).

The model’s performance on the test set surpassed 
that of using the simple classical thresholds of 5 and 7° 
Bunnell to recommend a radiological examination. The 
optimal classification thresholds, as determined from the 

Fig. 2  ROC curves repeated (10 
times) 10 folds cross-validation. 
Each curve is related to one 
threshold. The solid lines are 
the means and the shaded 
areas are the means ± standard 
deviations of the 100 iterations. 
The dashed line is the random 
prediction that corresponds to 
an AUC of 0.5. On the x-axis 
the False Positive Rate (1—
specificity) and on the y-axis the 
True Positive Rate (Sensitivity)



3840 European Spine Journal (2023) 32:3836–3845

1 3

ROC curves (Fig. 3), were consistent with the model’s 
performances on the cross-validation (Table 2).

Compared to using values of 5 and 7° Bunnell as thresh-
olds to recommend a radiological examination, our model 
achieved a superior balance between sensitivity and speci-
ficity. The F1 scores on the test set for 15, 20, 25, 30, and 
40 degrees were 0.75, 0.78, 0.70, 0.62, and 0.50, respec-
tively, higher than those obtained using the 5 and 7° Bun-
nell thresholds. The best trade-off between sensitivity and 

specificity was achieved with the 40 degrees threshold, with 
values of 0.95 and 0.83, respectively. These values consist-
ently outperformed the values of 0.97/0.36 (sensitivity/spec-
ificity) and 0.93/0.59 (sensitivity/specificity) obtained using 
the 5 and 7° Bunnell thresholds, respectively, to recommend 
a radiograph.

The most important variables included in the model for 
all the thresholds were sex, ATR, and localisation of the 
curve. Prominence and BMI were among the most important 

Table 1  Results of CV

Mean values (± SD) of AUC (area under the curve) of the receiver operating characteristics (ROC) curves, 
classification thresholds, sensitivity, and specificity obtained at the repeated 10 folds cross-validation

Angle thresh-
olds

AUC Classification thresholds Sensitivity Specificity

15° 0.83 (± 0.02) 0.65 (± 0.04) 0.70 (± 0.04) 0.83 (± 0.04)
20° 0.85 (± 0.01) 0.44 (± 0.05) 0.76 (± 0.05) 0.79 (± 0.05)
25° 0.86 (± 0.02) 0.30 (± 0.04) 0.79 (± 0.04) 0.79 (± 0.03)
30° 0.89 (± 0.02) 0.19 (± 0.03) 0.83 (± 0.05) 0.80 (± 0.04)
40° 0.93 (± 0.02) 0.1 (± 0.03) 0.86 (± 0.05) 0.85 (± 0.04)

Fig. 3  ROC curves test set. 
Each curve is related to one 
threshold. The dashed line is 
the random prediction that 
corresponds to an AUC of 0.5. 
On the x-axis, the false-positive 
Rate (1—specificity) and on 
the y-axis the true positive rate 
(Sensitivity)
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variables for 20, 25, and 30° Cobb thresholds. The models 
developed using these three thresholds where the two classes 
were more balanced had more significant variables (8, 7, and 
6, respectively), indicating that they needed more informa-
tion from different parameters to perform well. Interestingly, 
familiarity did not have any impact on the prediction.

Finally, for the numerical variables (Age, ATR, Promi-
nence, Prominence distance, Area, and BMI), we compared 
the distributions between the true positives and the false neg-
atives. For the lower thresholds (15, 20, and 25° Cobb), all 

the numerical values were significantly different (p < 0.01) 
between the groups. In particular, the true positives had 
significantly higher values with respect to false negatives, 
especially for ATR and Prominence (Fig. 4).

This is consistent with the fact that ATR and Prominence 
are important variables for the classification task and that 
higher values of these parameters are associated with a 
higher Cobb angle. Regarding the 30 and 40 degrees thresh-
old, Age and BMI were not significantly different between 
the two groups (Fig. 5).

Table 2  Results on the test set

The first two columns report the angles thresholds with the corresponding classification thresholds to max-
imise both sensitivity and specificity. The other columns report the sensitivity and specificity of our model, 
of the 5 degrees ATR thresholds, and of the 7 degrees ATR threshold

Thresholds Model ATR 5 ATR 7

Angle Classification Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

15 0.69 0.64 0.88 0.81 0.56 0.63 0.82
20 0.47 0.78 0.83 0.87 0.50 0.72 0.75
25 0.28 0.80 0.79 0.91 0.44 0.79 0.69
30 0.19 0.83 0.78 0.94 0.41 0.86 0.65
40 0.07 0.95 0.83 0.97 0.36 0.93 0.59

Fig. 4  Box plot numerical variables threshold 15 degrees. The red boxes represent the true positives, while the yellow boxes the false negatives. 
On the x-axis, the numerical variables and on the y-axis the standardised values
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Discussion

Based on the positive results of this study, machine-learning-
based classification models have the potential to effectively 
improve the non-invasive screening for AIS and reduce the 
need for radiographic investigation. We developed five dif-
ferent logistic regression models, one for each Cobb angle 
threshold, to predict if the patient has a Cobb angle above 
or below the selected threshold. The results of the test set 
showed that the model outperformed the use of the 5 and 
7 degrees thresholds for radiograph prescription for all the 
thresholds.

Traditionally, only ATR values were used for scoliosis 
screening. Thus, most of the previous studies use only, 
or mainly, ATR to propose radiographic examination in 
screening population. Ashworth et al. in 1988 claimed the 
Scoliometer has a sensitivity of about 100% and a specific-
ity of about 47% when an ATR of 5° Bunnell is chosen; 
the specificity increases to 86% at ATR of 7° Bunnell, 
but the sensitivity drops to 83% [22]. A bigger screen-
ing study involving 33,596 children performed in Taiwan 
found a positive predictive value of 9.5 for 7° Bunnell 
for curve > 20° [3]. A 1999 US study based on scoliosis 
screening using Adams test plus Scoliometer (cut-off 6° 
Bunnell in two repeated measures) reported a 71.1% sen-
sitivity and 97.1% specificity [23, 24].

During Adam’s forward bending test, using the com-
bination of Scoliometer and a simple ruler, it is also pos-
sible to collect Prominence Height, a measure that has 
been proposed as a good complimentary tool [13]. ATR 
and Prominence Height are complementary measures of 
the same phenomenon, that is prominence, and together 
describe a rectangular triangle on the back of the patient 
(Fig. 1).

Other two easily assessed parameters that could contrib-
ute to obtaining a reliable tool for radiographic prescription 
are familiarity and aesthetic impairment. It is known that 
scoliosis runs in the family, and the role of genetics in its 
etiology has been proposed, given the increased prevalence 
in the progeny of scoliotic patients [25]. Furthermore, aes-
thetic impairment due to scoliosis is often the only or most 
relevant symptom of early-stage scoliosis [9].

While ATR has widely been used, other parameters such 
as Prominence Height, aesthetic impairment or familiarity, 
have never been comprehended before in a model to improve 
scoliosis screening.

The comparison between our comprehensive model and 
ATR thresholds commonly used to prescribe a radiological 
examination showed that our model has better performance 
considering sensitivity and specificity (Table 2). If we look 
at the sensitivities for the 5° Bunnell threshold, we can see 
that they are higher compared to our model but at the cost of 

Fig. 5  Box plot numerical variables threshold 40 degrees. The red boxes represent the true positives while the yellow boxes the false negatives. 
On the x-axis the numerical variables and on the y-axis, the standardised values
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very low values for the specificities, leading to a high risk of 
prescribing a radiograph when it is not necessary. In particu-
lar, for the Cobb threshold of 40° Cobb, we can see that the 
sensitivity is almost the same (0.97 vs. 0.95 of our model) 
but the specificity is considerably higher (0.36 vs 0.83 of 
our model). Regarding the 7° Bunnell threshold, our model 
is superior considering both sensitivities and specificities 
(Table 3). Another major point in favour of our model is that 
the classification thresholds can be modified to maximise the 
sensitivity or the specificity. The F1 score takes into account 
the precision and recall (sensitivity) together. Since the pre-
cision is the number of true positives (patients that actually 
are above the Cobb angle threshold correctly predicted by 
the model) divided by all the positive model’s prediction it 
is affected by the classification threshold. Indeed, for higher 
Cobb angle thresholds where the classification threshold is 
very low, the number of false positives can increase affect-
ing the F1 score values. Despite this, the performance of our 
model is still superior to simply using the 5 and 7° Bunnell 
thresholds to discriminate between patients that require a 
radiological examination and those who do not.

The analysis of the most important variables showed 
that sex, ATR, and localisation of the curve are the most 
important independent variables to take into considera-
tion during the evaluation of scoliosis. For 20, 25, and 30 
degrees thresholds also Prominence was among the most 
important variables confirming results reported in the litera-
ture [14, 22]. The box plots of the final evaluation allowed 
us to understand why the model wrongly classified patients 
who were actually above the threshold (False Negatives). As 
expected, the most important numerical values for the clas-
sification (mainly ATR and Prominence) were significantly 
differently distributed between the two groups leading the 
model to classify patients below the threshold (class 0) with 
low values of ATR and Prominence.

It should be noted that we used a model-specific clas-
sification threshold for all the models to maximise at the 
same time the sensitivity and specificity. The optimal clas-
sification threshold varied a lot because increasing the Cobb 
angle threshold to binarise the outcome led to different 
ratios between the number of samples of each one of the 
two classes. In particular, for the 15° Cobb threshold, we 
had a ratio class0

class1
 of 0.65, while for the highest threshold (40° 

Cobb), the ratio became 10.5, meaning that by increasing 
the Cobb angle, we had fewer patients belonging to class 1. 
The threshold where the two classes were almost balanced 
was 20° Cobb with a ratio of 1.3. Indeed, for the 40° Cobb 
threshold model, the classification threshold was very low to 
“correct” the fact that we have very few patients belonging to 
class 1 (above threshold). If we had used the standard classi-
fication threshold (0.5), we would have obtained a very high 

value for accuracy (0.93) and specificity (0.98) but a very 
low ability to detect the patients above the threshold (sensi-
tivity = 0.41). This shows that, in some scenarios, accuracy 
is not a reliable metric to evaluate model performances since 
it can lead to wrong conclusions. So, depending on the task, 
one can choose to maximise the sensitivity, the specificity, 
or both by varying the classification threshold.

In the Supplementary Material, we provide the calculator 
in Excel format to easily implements the formula reported 
in the paper (Eq. 1) and make it simply usable by clini-
cians during everyday practice to test the model in different 
populations. The calculator uses the coefficient (see Eq. 1) 
to discriminate patients exposed to higher risk of having 
a curve reaching the pre-defined threshold. The document 
has 5 sheets one for each threshold that contain models’ 
coefficients, a table with a green header where a user can 
input the data, a table with a red header where the values 
are normalised before applying the model, and a table of 
the results. The latter shows the probability of the classifica-
tion, the 95% confidence interval of the probability as well 
as the classification according to the optimal classification 
threshold (BELOW means that according to the model is 
unlikely that the possible underlying scoliotic curve reach 
the radiographic threshold, ABOVE means that is likely that 
the possible underlying scoliotic curve reaches the radio-
graphic threshold). The user should only input the values 
into the green table. The tool can be easily used to improve 
decision-making in a clinical setting.

The present study has a few limitations. The dataset has 
been collected from a single clinic so it was not possible to 
perform an external validation that could be useful to evalu-
ate the model on a different population and understand the 
scalability and generalisability of the model. Moreover, the 
measurements of the Cobb angle were performed by a single 
annotator making it impossible to investigate the agreement 
among different annotators and as a consequence a variabil-
ity of the Cobb angle.

Despite the limitations, the use of machine learning 
classification models is a novelty for the topic. In the spine 
domain, the main previous clinical applications of machine 
learning techniques include image processing, diagnosis, 
decision support, operative assistance, rehabilitation, sur-
gery outcomes, complications, hospitalisation and cost [26]. 
Regarding AIS, a group of researchers used machine learn-
ing applied to x-ray images to predict AIS progression [27], 
while another group developed a machine learning model 
for three-dimensional (3D) radiographic outcomes predic-
tion as a function of preoperative spinal parameters [28]. 
However, to our knowledge, it is the first time that machine 
learning techniques have been used to improve scoliosis 
screening.
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Conclusion

The machine-learning-based classification model included in 
the present paper can potentially improve clinical decision-
making in everyday clinical settings. After decades of utilis-
ing only ATR to choose whether to perform radiographs in 
young children, this new tool lets us include in the decision 
process other readily available clinical characteristics of the 
patients, with the ultimate goal of reducing false positives 
and false negatives. On the other hand, further studies on dif-
ferent and less selected populations will verify the model’s 
generalisability.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00586- 023- 07892-1.
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