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Abstract
Purpose  Over the last years, the number of vertebral arthrodesis has been steadily increasing. The use of iliac crest bone 
autograft remains the “gold standard” for bone graft substitute in these procedures. However, this solution has some side 
effects, such as the problem of donor site morbidity indicating that there is a real need for adequate alternatives. This pilot 
study aimed to evaluate the usefulness of chitosan (Ch) porous 3D scaffolds incorporated with resolvin D1 (RvD1) as an 
alternative implant to iliac bone autograft.
Methods  We have performed bilateral posterolateral lumbar vertebral arthrodesis in a rat animal model. Three experimen-
tal groups were used: (i) non-operated animals; (ii) animals implanted with Ch scaffolds incorporated with RvD1 and (iii) 
animals implanted with iliac bone autograft.
Results  The collagenous fibrous capsule formed around the Ch scaffolds with RvD1 is less dense when compared with 
the iliac bone autograft, suggesting an important anti-inflammatory effect of RvD1. Additionally, new bone formation was 
observed in the Ch scaffolds with RvD1.
Conclusion  These results demonstrate the potential of these scaffolds for bone tissue repair applications.
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Introduction

Spinal arthrodesis is a surgical procedure that leads to the 
fusion of two or more vertebrae usually placing a bone graft 
as a bridge. When conservative treatments fail, this proce-
dure is used in patients suffering from low back pain or sci-
atica. Spinal arthrodesis is useful in several spine disorders 
comprising genetic, degenerative, and traumatic conditions 
and numbers for this surgical intervention are increasing 
every year. Consequently, demand for technical improve-
ments—such as developing new biomaterials to be used as 
grafts—is also growing [1].

Autologous bone grafting from the iliac crest is still consid-
ered the gold-standard procedure. However, major donor site 
complications ranging from 2.4 to 6.2%; postoperative pain at 
the harvested site reported in 6 to 39% of cases; and prolonged 
surgeries that cause increased risks of bleeding and infection 
justify the search for new solutions [2, 3]. Additionally, popu-
lation aging reduces the possibility of using autologous bone 
grafts [4]. Another widely used option is the combination of 
bone morphogenetic protein 2 (BMP-2) with biomaterials, 
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however the use of BMPs causes significant inflammatory 
responses and may lead to either excessive or ectopic bone 
formation [5]. Therefore, surgeons need more sophisticated 
and innovative solutions, including, for example, regenerative 
biomaterials [6].

A biomaterial for bone tissue regeneration should support 
tissue repair at the defect area and eventually degrade and be 
replaced by new bone. Several types of biomaterials have been 
studied for bone repair applications. These include demineral-
ized bone matrix, ceramic materials, metallic materials, natural 
or synthetic polymeric materials and composites, among oth-
ers. Polymeric scaffolds are widely used since they can act as 
carriers of cells and molecules of interest that can actively con-
tribute to the process of bone tissue repair and regeneration [7].

We have developed a new immunomodulatory biomaterial, 
3D porous chitosan (Ch) scaffolds with resolvin D1 (RvD1) 
[8] that may be adequate for bone regeneration. Chitosan is 
a polymer of natural origin that has a chemical composition 
constituted by b (1–4) linked D-glucosamine residues with 
N-acetyl-glucosamine side chains. Chitosan is under study 
for several different biomedical applications, such as for bone 
tissue engineering studies [9]. Resolvins belong to a class of 
endogenous anti-inflammatory molecules, the specialized pro-
resolution mediators (SPMs). Resolvins actively induce the 
resolution of the inflammatory response by preventing neutro-
phil infiltration, promoting apoptotic neutrophils phagocytosis, 
inducing clearance of inflammatory microenvironments, and 
ultimately promoting tissue repair [10]. This immunomodu-
latory biomaterial was able to induce in vivo macrophage 
polarization towards an M2 phenotype in an inflammatory 
air-pouch model, decrease pro-inflammatory cytokines and 
decrease fibrous capsule thickness around the implanted scaf-
folds [8]. When tested in rat femoral critical size defect model, 
it resulted in bone healing improvement [11]. The normal 
course of healing requires an inflammatory phase followed by 
a natural resolution of inflammation. This is achieved with this 
immunomodulatory biomaterial since the 3D chitosan scaffold 
will induce an inflammatory response with the presence of 
M1 macrophages and afterwards RvD1 will cause a shift in 
the macrophage profile towards a M2 reparative phenotype.

In this pilot study, we have explored the behavior of the 
immunomodulatory Ch scaffolds with RvD1 and com-
pared it to an iliac bone autologous graft in lumbar spine 
arthrodesis.

Materials and methods

Production of 3D chitosan (Ch) scaffolds 
with resolvin D1 (RvD1)

Chitosan from squid pen (Mahtani Chitosan Pvt. Ltd) was 
purified and produced with 15% of degree of acetylation 

(DA) as described elsewhere [12]. Concisely, 3D porous 
scaffolds were produced from degassed 2% w/v Ch solutions 
in 0.2 M acetic acid via thermally induced phase separation 
(− 20°) with ensuing sublimation of the ice crystals. After 
l freeze drying (− 80°C; 0.2 mbar; 24 h), the obtained 3D 
Ch scaffolds were cut with the shape of a cylinder having 
a diameter of 4 mm and a thickness of 2 mm. The 3D Ch 
scaffolds were sterilized immersed in ethanol under vacuum 
using an ethanol series: 70% (v/v) during 30 min, 50% (v/v) 
and 25% (v/v) ethanol during 10 min. Subsequently, the 
scaffolds were washed using ultrapure (Milli Q) water for 
10 min. To incorporate the RvD1, we have followed a previ-
ously developed procedure [8]. In summarizing, a solution 
of RvD1 (Cayman Chemical, Ann Arbor, Michigan 48108 
USA) was prepared in a concentration of 3.33 ng/μl, and a 
volume of 30 μl was incorporated in the scaffolds drop-wise 
with a micropipette. After, the scaffolds were submitted to 
an additional freeze drying step (− 80°C; 0.2 mbar; 24 h).

Animal model

We have submitted female Sprague Dawley rats (Charles 
River Laboratories Spain), of 8 weeks of age, to bilateral 
posterolateral lumbar vertebral arthrodesis at the level of 
L4 and L5. Anesthesia was performed by isoflurane inhala-
tion. The dorsal area was shaved, washed, and disinfected. 
The target area was identified by reference to the iliac crest. 
A midline skin incision was performed, followed by two 
paramedian fascial incisions and structure-preserving ana-
tomical dissection. The laminae and posterolateral face of 
the vertebral bodies were exposed and a motorized drill 
piece was utilized to decorticate the L4 and L5 laminae. 
Subsequently, either harvested autologous bone or synthetic 
implant (according to specific group protocol) were placed 
on the decorticated laminae, bridging the interlaminar space. 
Finally, closure in layers with skin suturing 4-0 nylon thread 
was done. Animal care and analgesia were provided post-
surgery. In this pilot study, we included three animals in each 
group: (i) Non-operated animals; (ii) Animals implanted 
with 3D Ch scaffolds with RvD1 and (iii) Animals with an 
implanted iliac bone autograft harvested in the same proce-
dure. For autologous bone graft harvest, two separate fas-
cial incisions were performed and approximately 0.2 cm3 of 
corticocancellous bone was collected from each iliac crest, 
according to the procedure reported by Brecevich et al. [13]. 
Animals were sacrificed 6 weeks post-arthrodesis for histo-
logical evaluation of the intervened structures.

Histological evaluation

Sections of the lumbar spine were collected, cleaned, and 
submitted to fixation and decalcification using 0.25 M 
of EDTA (sigma, pH 7.3) for 7  weeks with agitation. 
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Afterward, samples were submitted to an ethanol series for 
dehydration. Next, the samples were embedded in paraffin 
blocks, and serial sections were prepared for picrosirius red 
and Masson's trichrome staining procedures using standard 
protocols. The stained slides were analyzed using a ster-
eomicroscope (SZX10, Olympus) and an inverted micro-
scope (Axiovert 200 M, Zeiss). The picrosirius red stained 
sections were visualized through a polarized lens coupled 
to a binocular inverted microscope (Zeiss, Axiovert 200 M) 
to study collagen birefringent fibers. This technique can be 
used to distinguish the thickness and packing (maturation) 
of collagens. Type I collagen stains in red, whereas type III 
collagen in green [14, 15]. All images were acquired using 
the same parameters (light intensity and angle of the polar-
izing lens).

Fibrous capsule analysis

Evaluation of the fibrous capsule formed around the 
implanted scaffolds and the iliac bone autograft was per-
formed by measuring its thickness using Masson's trichrome 
stained sections. Axion Vision software was used for the 
measurements. The fibrous capsule area was analyzed by 
drawing a line throughout the capsule, and afterwards the 
fibrous capsule thickness was measured as the average 
thickness of fifteen different random locations throughout 
the capsule. Since these results are from a pilot study and 
we have a limited number of animals (three per group) we 
consider that this does not allow a correct statistical analysis 
and could lead to an incorrect interpretation of the results. 
Therefore, we have not performed statistical analysis.

Results

We have used here a rat model of vertebral arthrodesis to 
test by histological screening the usefulness of implanting a 
porous 3D chitosan scaffold with resolvin D1 incorporated. 
The histological evaluation was performed on the lumbar 
spine area at the level of L4 and L5 for all experimental 
groups. Figure 1 presents Masson's trichrome stained sec-
tions with different magnifications allowing for a general 
view of the lumbar vertebrae (A) and a detailed view (B 
and C) of the interface between bone and muscle tissue 
(non-operated); bone and Ch scaffolds with RvD1 (Chi-
tosan + RvD1); and bone and autologous bone (iliac bone 
autograft). In the images of the general view presented in 
(A), we can visualize the anatomical elements of the rat 
lumbar vertebra and identify the implantation area of the 
Ch scaffolds and the autologous bone graft. Both can be 
visualized in the posterolateral face of the vertebrae in the 
area where the lamina was decorticated, close to the lamina-
spinous process transition. In the detailed views presented 

in (B) and (C), we observe the formation of a collagenous 
fibrous capsule (FC) around the implants, as Masson's tri-
chrome highlights collagen fibers. This fibrous capsule was 
thinner in the group implanted with Ch scaffolds when com-
pared with iliac bone autograft. Interestingly, we found new 
bone formation (NB) within the porous Ch scaffold, inside 
the open spaces of the scaffold that resulted from Ch micro-
structure degradation. To complement these observations, 
Fig. 2 shows similar images using picrosirius red staining 
and acquired using transmitted light. Using this staining, the 
NB within the Ch scaffolds can be more clearly visualized.

Figure 3 displays images of picrosirius red stained sec-
tions obtained under polarized light. The red color in the 
birefringence analysis indicates thick collagen fibers, 
whereas green birefringence color indicate thin fibers. Addi-
tionally, homogenous red staining is indicative of mature 
collagen that is highly packed and thicker. We observed a 
predominance of red birefringence fibers, which is expect-
able due to the 6 weeks implantation time used in this pilot 
study. The images show red birefringent collagenous fibers 
around the implanted Ch scaffolds and the implanted iliac 
bone autograft. We observed a more intense red birefrin-
gence around the iliac bone autograft indicative of a thicker 
and packed collagenous capsule—and, therefore, more 
mature—compared with the one observed in the implanted 
Ch scaffolds.

The thickness measurement of the fibrous capsule formed 
around the implants is presented in Fig. 4. The fibrous cap-
sule thickness in iliac bone autograft group is higher in com-
parison with the implanted Ch scaffolds with resolvin D1 
group, as shown in Figs. 1 and 2. In addition, the images 
obtained using polarized light presented in Fig. 3 provide 
additional information on the degree of maturation of the 
fibrous capsule's collagen fibers, which are thicker and more 
packed in the iliac bone autograft group.

Discussion

There are several possibilities available to be used as bone 
grafts. An interesting solution is the association of molecules 
able to stimulate osteoblast function or modulate inflamma-
tion with biomaterials [16]. Ideally, these newly developed 
biomaterials would allow appropriate bone healing without 
the need to use autograft or high-dose growth factors while 
causing minimal inflammatory response [17].

In this pilot study, we have explored the use of 3D porous 
Ch scaffolds embedded with RvD1 as a possible alternative 
for iliac bone grafts. For that, we performed a procedure 
to promote bilateral posterolateral lumbar vertebral arthro-
desis at the level of L4 and L5. We developed and imple-
mented this animal model for the first time. We have mimic 
the human scenario being evaluated, using a methodology 
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similar to that seen clinically which is considered critical to 
have a valid in vivo model [18].

We have previously demonstrated that Ch scaffolds with 
RvD1 have immunomodulatory properties. Using a rodent 
air pouch inflammation model, we shifted the macrophage 
polarization profile towards an M2 anti-inflammatory pheno-
type. We have also observed a decrease in pro-inflammatory 
cytokines and in the thickness of the fibrous capsule formed 
around the implants [8]. Additionally, we have tested this 
immunomodulatory biomaterial in a rat femur critical size 
defect model and observed a positive effect on bone repair 
[11]. These interesting results included the decrease in 
fibrous capsule formation and new bone formation within 
the Ch scaffold.

Chitosan-based biomaterials have been extensively stud-
ied for biomedical applications, namely for bone repair. Chi-
tosan is a biocompatible and versatile natural polymer that 
can be used alone or in combination with other polymers 
to form gels, micro/nanoparticles, and films to be applied 

as drug delivery systems for bone regeneration [19]. Chi-
tosan-based biomaterials are also being explored for spi-
nal applications. Rodríguez-Vázquez et al. [20] developed a 
chitosan-hydroxyapatite scaffold, and reported that a com-
posite of chitosan-hydroxyapatite with a 20:80 ratio lead to 
bone formation in a model of lumbar laminectomy. Carvalho 
et al. [21] produced chitosan-silane membranes for lumbar 
surgery. These membranes were applied in an experimen-
tal model of lumbar laminectomy and the authors observed 
signs of bone tissue repair in continuity with native bone.

In the process of osteogenesis and bone tissue repair it 
is important to control inflammation and induce an anti-
inflammatory response through an M2 anti-inflammatory 
macrophage response. The process of bone healing can be 
divided in three phases: inflammatory, repair and remod-
eling. The healing process is greatly influenced by the initial 
inflammatory response. The resolution of the inflammatory 
response begins a few hours after the acute inflammatory 
response is initiated. In the resolution process the initial 

Fig. 1   Histological sections of lumbar vertebrae stained with Mas-
son's trichrome of the different experimental groups: non-operated 
animals, animals implanted with Ch scaffolds with RvD1 and animals 
with an implanted iliac bone autograft. A Global view of the area; 

B and C Detailed view of the intervened area. (VB) Vertebral body; 
(VF) Vertebral foramen; (L) Lamina; (SP) Spinous process; (Ch) Chi-
tosan + RvD1 scaffold; (IA) Iliac bone autograft; (NB) Newly formed 
bone; (FC) Fibrous capsule. (Scale bar: 0.5 mm)
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inflammatory stimuli are eliminated; the pro-inflammatory 
mediators are suspended, and the anti-inflammatory and pro-
resolving mediators are promoted [22]. RvD1 has important 
anti-inflammatory effects; it stimulates macrophage phago-
cytosis of microbes, efferocytosis of apoptotic polymorpho-
nuclear leukocytes and controls macrophage polarization 
[23]. Thus, the use of RvD1 has a positive role in creating an 
anti-inflammatory microenvironment having a positive role 
in bone tissue repair. Additionally, the prevention of epidural 
adhesion is still a significant challenge in spinal surgery [24, 
25]. Our results suggest a potential beneficial effect of RvD1 
to overcome this problem, however this potential interesting 
effect needs to be further explored in future studies.

This pilot study underlines the importance of incorpo-
rating RvD1 within the implanted scaffolds. Future stud-
ies should focus on improving the ability to form new bone 
while maintaining the interesting anti-inflammatory effect 
of RvD1. We propose that a combination of chitosan with 

a calcium phosphate-based material to accelerate new bone 
repair while maintaining the use of RvD1 would be a prom-
ising approach.

Final considerations

We have developed an alternative procedure to iliac bone 
autografts used in spinal surgery. We have incorporated 
resolvin D1 (RvD1), a pro-resolution lipid mediator with 
anti-inflammatory properties, in chitosan (Ch) 3D scaffolds. 
Our results suggest an important anti-inflammatory effect 
of RvD1 that leads to the formation of a thinner fibrous 
capsule around the Ch + RvD1 scaffolds compared to iliac 
bone autograft. New bone formation was also seen within 
the implanted Ch + RvD1 scaffolds. Thus, this pilot study 
points to new formulations for biomaterials to be used in 
future studies on vertebral arthrodesis.

Fig. 2   Panel of Global (A) and detailed view (B and C) of histo-
logical sections stained with picrosirius red of the intervened area in 
lumbar vertebrae of non-operated animals, animals implanted with 
Ch scaffolds with RvD1 and animals with an implanted iliac bone 

autograft. (VB) Vertebral body; (VF) Vertebral foramen; (L) Lamina; 
(SP) Spinous process; (Ch) Chitosan + RvD1 scaffold; (IA) Iliac bone 
autograft; (NB) Newly formed bone; (FC) Fibrous capsule. (Scale 
bar: 0.5 mm)
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