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Abstract
Purpose Causal mechanisms underlying systemic inflammation in spinal & widespread pain remain an intractable experi-
mental challenge. Here we examined whether: (i) associations between blood C-reactive protein (CRP) and chronic back, 
neck/shoulder & widespread pain can be explained by shared underlying genetic variants; and (ii) higher CRP levels causally 
contribute to these conditions.
Methods Using genome-wide association studies (GWAS) of chronic back, neck/shoulder & widespread pain (N = 6063–
79,089 cases; N = 239,125 controls) and GWAS summary statistics for blood CRP (Pan-UK Biobank N = 400,094 & PAGE 
consortium N = 28,520), we employed cross-trait bivariate linkage disequilibrium score regression to determine genetic 
correlations (rG) between these chronic pain phenotypes and CRP levels (FDR < 5%). Latent causal variable (LCV) and 
generalised summary data-based Mendelian randomisation (GSMR) analyses examined putative causal associations between 
chronic pain & CRP (FDR < 5%).
Results Higher CRP levels were genetically correlated with chronic back, neck/shoulder & widespread pain (rG range 
0.26–0.36; P ≤ 8.07E-9; 3/6 trait pairs). Although genetic causal proportions (GCP) did not explain this finding (GCP 
range − 0.32–0.08; P ≥ 0.02), GSMR demonstrated putative causal effects of higher CRP levels contributing to each pain 
type (beta range 0.027–0.166; P ≤ 9.82E-03; 3 trait pairs) as well as neck/shoulder pain effects on CRP levels (beta [S.E.] 
0.030 [0.021]; P = 6.97E-04).
Conclusion This genetic evidence for higher CRP levels in chronic spinal (back, neck/shoulder) & widespread pain warrants 
further large-scale multimodal & prospective longitudinal studies to accelerate the identification of novel translational targets 
and more effective therapeutic strategies.

Keywords Chronic pain · C-reactive protein · Inflammation biomarkers · Genome-wide association study · Musculoskeletal 
pain · Genetic predisposition to disease

Introduction

Accumulating evidence points to inflammatory mechanisms 
driving the development & maintenance of chronic spinal 
pain [1]. Systematic reviews report higher levels of blood 
inflammatory markers (e.g., C-reactive protein [CRP]) in 
back pain [2], neck pain [2, 3] and fibromyalgia [4]. Higher 

CRP is associated with worse clinical outcomes in these 
patients, including increased pain, disability & hyperalgesia 
[5, 6]. Furthermore, CRP and interleukin (IL)-6 were shown 
to be systemically elevated in a large cohort of individu-
als with early-acute back pain [5], with the levels resolv-
ing at three (IL-6) and six (CRP) months later in those that 
recovered best over 12 months [7, 8]. Similarly, patients with 
acute whiplash-associated disorder [6] show raised CRP 
which is normalised by 3 months in those that recover, but 
persists in those who do not. Despite these links between 
systemic inflammatory responses and clinical outcomes in 
spinal & widespread pain conditions, the underlying specific 
pathways & mechanisms remain unclear.
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Large-scale human genome-wide association studies 
(GWAS) have delivered novel insights into the mechanisms 
underpinning chronic pain [9, 10]. Particularly promising has 
been the discovery of specific shared genetic variants (i.e., 
genetic correlations) between chronic back & neck pain, wide-
spread pain and a range of traits such as depression, obesity 
& poor sleep [10]—which helps to explain these common 
chronic disease comorbidities. Only recently have GWAS data 
been used to explore the relationship between systemic inflam-
mation & pain conditions. Kasher et al. [11] reported genetic 
correlations between higher circulating CRP and an increased 
risk of chronic back pain. Using Mendelian randomisation 
analyses, they also suggested that CRP had a causal influence 
on back pain. However, it is not known whether CRP and other 
spinal pain phenotypes (e.g., neck pain) and/or widespread 
pain have a shared genetic basis, or whether CRP has a causal 
effect on these conditions.

Characterising the genetic contributions to systemic inflam-
mation in chronic spinal & widespread pain remains a sig-
nificant hurdle in better understanding their pathoetiology 
and developing new effective treatments. Demonstrating a 
causal role of such systemic factors is a critical step towards 
improving the management & prevention chronic spinal & 
widespread pain. Here, we leveraged large-scale genetic data 
to: (i) determine whether associations between blood CRP 
and chronic back, neck/shoulder & widespread pain can be 
explained by shared underlying genetic variants (genetic cor-
relations); and (ii) assess whether higher CRP has a causal role 
in these conditions.

Methods

Study design & sample

An overview of the analysis pipeline is shown in Fig. 1. We 
performed GWAS of chronic back pain, neck/shoulder pain & 
widespread pain using the UK Biobank dataset (application 
number 25331) as described in prior studies [9, 10]. Briefly, 
the UK Biobank is a large-scale dataset comprising > 500,000 
people aged 40–69 years in the United Kingdom. Data col-
lected spans medical & psychosocial factors, blood markers, 
neuroimaging traits and genetics. UK Biobank holds research 
ethics approval from the North West Multi-centre Research 
Ethics Committee (Manchester, United Kingdom). All par-
ticipants provided written informed consent.

GWAS dataset for chronic spinal & widespread pain 
phenotypes

Chronic pain phenotypes

We selected chronic back pain & neck/shoulder pain as spi-
nal pain phenotypes, in addition to chronic widespread pain, 

which also encompasses pain at the back & neck (i.e., pain 
all over the body). In UK Biobank, neck pain & shoulder 
pain are pooled into one phenotype. We defined each chronic 
pain phenotype using self-report answers to the following 
questions: Have you had [back pains/neck or shoulder pains/
pain all over the body] for more than 3 months? (Question-
naire field IDs: 3571/3404/2956). These questions could be 
answered with Yes, No, Don’t know, or Prefer not to answer. 
Participants who responded Yes to a question were defined 
as cases for that pain phenotype. We defined controls as 
participants who denied experiencing pain at any body site 
for more than three months (N = 239,125). Participants 
who preferred not to answer were excluded from the study. 

Fig. 1  Analysis pipeline examining the genetic relationship between 
chronic back, neck/shoulder & widespread pain phenotypes and blood 
C-reactive protein (CRP) concentration. CTG-VL: Complex Traits 
Genetics Virtual Lab; GWAS: genome-wide association study
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Number of cases for each GWAS were as follows: back pain 
(N = 79,089); neck/shoulder pain (N = 72,216); widespread 
pain (N = 6063) (Table 1).

GWAS analysis

GWAS analyses were undertaken using REGENIE (v1.0.6.2) 
[12] to assess associations between the chronic pain pheno-
types & genetic variants. This method uses a logistic mixed 
model that accounts for cryptic relatedness by modelling 
a genetic relationship between individuals as a random 
effect. We used age, sex, genotyping array and the top 10 
principal components derived from genetic data as co-var-
iates for the GWAS analyses. Quality control procedures 
consisted of exclusion of variants with: (i) minor allele 
frequency < 0.005; (ii) imputation quality < 0.6; and (iii) 
deviating from Hardy–Weinberg equilibrium (P < 1E-05). 
We excluded individuals’ data if genotype-derived principal 
components 1 and 2 were > 6 standard deviations from those 
of the 1000 Genomes European population (i.e., data were 
restricted to individuals with European heritage).

Genetic correlation analyses (pain vs CRP)

We employed cross-trait bivariate linkage disequilibrium 
(LD) score regression to estimate genetic correlations 
between the three chronic pain phenotypes & blood CRP 
concentration. LD-score regression estimates genetic cor-
relations across traits through leveraging the relationship 
between LD & GWAS summary statistics, accounting for 
potential sample overlap across studies [13]. These analyses 
were performed with the Complex Traits Genetics Virtual 
Lab (CTG-VL—http:// genoma. io) [14] using previously 
published GWAS summary statistics for CRP concentration 
[15, 16]. CTG-VL is a publicly available web platform com-
piled with > 1600 GWAS summary statistics that is used for 
running analyses across a comprehensive range of complex 
traits & disorders (mostly from UK Biobank releases).

A genetic correlation (rG) ranges from − 1 to 1 and 
quantifies the genome-wide genetic concordance between 
a pair of traits. Genetic correlation estimates approaching 
1 or − 1 indicate (respectively) that a proportion of genetic 
variants have concordant or divergent effects on both traits. 

Conversely, a genetic correlation that approaches 0 indicates 
there is little genetic concordance between the traits or that 
the genetic predictors of the traits are largely independent. 
rG estimates were calculated using two CRP traits from: (i) 
UK Biobank (Pan-UK Biobank—N = 400,094 [15]); and (ii) 
the Population Architecture using Genomics & Epidemiol-
ogy (PAGE) consortium (N = 28,520 [16]). We corrected 
for multiple comparisons using the Benjamini–Hochberg 
false discovery rate (FDR < 5%) procedure, which was 
applied across genetic correlations for each chronic pain 
type GWAS.

Latent causal variable analyses (pain vs CRP)

In instances of non-zero rG estimates (FDR < 5%), latent 
causal variable (LCV) analyses were employed to quantify 
the genetic causal proportion (GCP) [17, 18], which enabled 
determination of whether a genetic correlation may reflect 
horizontal or vertical pleiotropy. That is, whether chronic 
pain and CRP concentrations are independently affected by 
the same set of genetic variants (horizontal pleiotropy) or 
by causal pathways (vertical pleiotropy) [19]. LCV analyses 
assume a latent ‘causal’ variable mediates the genetic corre-
lation between two traits. This method quantifies the degree 
to which one trait is correlated with the latent ‘causal’ vari-
able, using mixed fourth moments of the bivariate effect size 
distribution across all SNPs in both GWAS to estimate the 
posterior mean for GCP. It accounts for overlapping samples 
(i.e., GWAS data for chronic pain & CRP levels were both 
from UK Biobank). A GCP estimate ranges from − 1 to 1, 
whereby GCP > 0.6 indicates greater partial genetic causality 
for Trait A (chronic pain) on Trait B (CRP) (i.e., chronic pain 
has a causal effect on CRP level). A GCP < − 0.6 indicates 
greater partial genetic causality for Trait B on Trait A (i.e., 
CRP level has a causal effect on chronic pain). We applied a 
Benjamini–Hochberg false discovery rate (FDR < 5%) across 
GCPs for each chronic pain phenotype.

Generalised summary‑data‑based Mendelian 
randomisation (pain vs CRP)

As LCV analyses are unable to detect bidirectional causal 
relationships, we performed Mendelian randomisation 
analyses with the Generalised Summary-data-based Men-
delian Randomisation (GSMR) method [20] implemented 
in CTG-VL using GWAS summary statistics of chronic pain 
(back, neck/shoulder, widespread pain) and that of CRP (UK 
Biobank & PAGE studies). GSMR was performed in a bidi-
rectional way (i.e., to test whether chronic pain affects CRP 
or vice versa). For each analysis, we selected SNPs with 
P < 5E-08 and minor allele frequency > 1% as instrumental 
variables.

Table 1  Sample sizes for the chronic pain phenotypes & controls 
used in the current genome-wide association study analyses

Chronic pain phenotypes Males Females Total

Back pain 35,693 43,396 79,089
Neck/shoulder pain 29,742 42,474 72,216
Widespread pain 2244 3819 6063
Pain-free controls 115,204 123,921 239,125

http://genoma.io
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Results

Genetic correlation analyses (pain vs CRP)

Cross-trait bivariate LD-score regression revealed 3 out 
of 6 significant genetic correlations (Table 2; Figs. 2 and 
3). These were between each chronic pain type and CRP 
from the UK Biobank. The significant rG estimates were all 
positive (range: 0.26–0.36; P ≤ 8.07E-09), suggesting that 
genetic variants associated with higher CRP concentrations 
were also associated with an increased risk of the respec-
tive chronic pain phenotype. No significant rG estimates 
were found with traits from the PAGE consortium (range: 
0.00–0.05; P ≥ 0.55).

Latent causal variable analyses (pain vs CRP)

GCP values for the three trait pairs with significant genetic 
correlations are presented in Table 2. For chronic back pain 
(GCP [S.E.] − 0.32 [0.44]; P = 0.46) and widespread pain 
(− 0.08 [0.76]; P = 0.92), GCP was non-significant. For 
chronic neck/shoulder pain (− 0.15 [0.06]; P = 0.02), GCP 
was significant but |GCP|< 0.6. These results suggest there 
were no causal relationships between CRP and chronic back, 
neck/shoulder or widespread pain (Fig. 3).

Generalised summary‑data‑based Mendelian 
randomisation (pain vs CRP)

Table  3 and Fig.  3 present the Mendelian randomisa-
tion results. CRP from UK Biobank showed a putative 
causal effect on chronic back pain (beta [S.E.] 0.077 
[0.010], P = 1.32E-13), neck/shoulder pain (0.027 

[0.011], P = 9.82E-03) and widespread pain (0.166 
[0.032], P = 1.64E-07). Chronic neck/shoulder pain also 
had a putative causal effect on CRP (UK Biobank) (0.071 
[0.021], P = 6.97E-04). The number of SNPs used in each 
analysis is shown in Table 3. There were insufficient SNPs 
to analyse chronic widespread pain versus CRP.

Table 2  Higher levels of blood 
C-reactive protein (CRP) are 
genetically associated with 
chronic pain back, neck/
shoulder & widespread pain

This table presents genetic correlation (rG) and genetic causal proportion (GCP) estimates for CRP traits 
with each chronic pain phenotype (FDR < 5%). A positive genetic correlation (rG > 0) indicates that the 
chronic pain phenotype is associated with higher CRP concentration. GCP indicates the likelihood of a sig-
nificant rG being explained by a causal relationship between chronic pain & CRP (|GCP|> 0.6, FDR < 5%). 
The GCP values for chronic back & widespread pain and UK Biobank CRP traits were non-significant. For 
neck/shoulder pain, GCP was significant but did not reach the threshold of a putative causal association 
(i.e., |GCP|< 0.6). These results suggest that higher CRP was associated with each chronic pain phenotype, 
but without evidence of a causal relationship between the traits. Sample sizes are shown for each pheno-
type—chronic pain cases were compared to 239,125 controls
CRP C-reactive protein, rG genetic correlation, GCP genetic causal proportion, S.E. standard error

Chronic pain phenotype (N) CRP data source (N) rG (S.E.) P-value GCP (S.E.) P-value

Neck/shoulder pain (72,216) UK Biobank (400,094) 0.29 (0.05) 4.85E-10  − 0.15 (0.06) 0.02
PAGE consortium (28,520) 0.05 (0.08) 0.55 –

Back pain (79,089) UK Biobank (400,094) 0.26 (0.05) 8.07E-9  − 0.32 (0.44) 0.46
PAGE consortium (28,520) 0.00 (0.07) 0.99 –

Widespread pain (6063) UK Biobank (400,094) 0.36 (0.05) 1.70E-13  − 0.08 (0.76) 0.92
PAGE consortium (28,520) 0.00 (0.10) 0.96 –

0.29*

0.26*

0.36*

0.05

0.00

0.00

UK
Bioban

k

PAGE Study

Neck/Shoulder Pain

Back Pain

Widespread Pain

Genetic Correlations (rG) - Chronic Pain vs CRP

-1.0

-0.5

0

0.5

1.0

Fig. 2  Heatmap of genetic correlations (rG) between chronic back, 
neck/shoulder & widespread pain phenotypes and blood C-reactive 
protein (CRP) levels. The direction of correlation is represented by 
colours (i.e., red for positive rG & blue for negative rG), with the 
darker shading indicating stronger associations. The asterisk denotes 
significant rG at 5% false discovery rate. Significant positive genetic 
correlations were observed between UK Biobank CRP levels and 
each chronic pain type, which suggests that genetic variants associ-
ated with higher CRP were also associated with an increased risk of 
the respective chronic pain conditions
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Discussion

Higher levels of blood CRP and chronic spinal (back, 
neck/shoulder) & widespread pain were found to have a 

common genetic basis, which suggests genetic variants 
are shared by individuals who are at risk of elevated CRP 
and having these pain conditions. In addition, there were 
genetic casual effects of CRP on back, neck/shoulder & 
widespread pain, and of neck/shoulder pain on CRP. These 
findings provide initial evidence supporting genetically 
driven inflammation in the development of chronic spinal 
& widespread pain conditions.

This study has demonstrated a genetic contribution of 
systemic inflammation in chronic spinal & widespread pain. 
It also extends upon prior studies reporting genetic correla-
tions between CRP and back pain [11], osteoarthritis [21] 
& rheumatoid arthritis [21], by finding a genetic basis to 
higher CRP across a wider range of chronic pain phenotypes. 
Moreover, we have provided corroborating evidence for clin-
ical studies showing higher CRP levels and other inflam-
matory markers in chronic back, neck & widespread pain 
[2–4]. Chronic musculoskeletal disorders (including spinal 
& widespread pain) are often co-morbid with many medical 
conditions that are also associated with higher CRP (e.g., 
obesity, cardiovascular disease) [22]. As such, the genetic 
correlations between chronic spinal/widespread pain & 
higher CRP could also reflect an underlying core basis that 
is shared across many chronic disease syndromes. For exam-
ple, genetic correlations have been shown between CRP and 
obesity [21], cardiovascular conditions [21] & depression 
[23], while chronic spinal & widespread pain are also geneti-
cally correlated with these disorders [10].

The Mendelian randomisation results suggest a puta-
tive bidirectional causal relationship between chronic neck/
shoulder pain & higher CRP, as well as a causal role of 
CRP in chronic back & widespread pain. These findings 
are consistent with a recent Mendelian randomisation study 
reporting a causal effect of CRP on back pain [11], while 
also extending upon that work by finding a causal effect on 
neck/shoulder & widespread pain. Together these studies 

}

} }
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proportions 
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Shared underlying genetics Genetic causal relationships

Neck/
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Fig. 3  Schematic summary of key results. Significant positive genetic 
correlations (rG) indicated genetic variants associated with higher 
C-reactive protein (CRP) were also associated with chronic neck/
shoulder, back & widespread pain. Genetic causal proportion (GCP) 
estimates were not consistent with causal relationships between CRP 
and the chronic pain conditions explaining these genetic correlations. 
Mendelian randomisation (MR) analyses suggested a bidirectional 
causal association between CRP & chronic neck/shoulder pain, and 
potential causal effects of CRP on chronic back & widespread pain. 
These findings replicate and expand upon the study by Kasher et al. 
[11], which reported a genetic correlation and putative causal effect 
between CRP & chronic back pain

Table 3  Mendelian 
randomisation results for 
C-reactive protein (CRP) levels 
and chronic back, neck/shoulder 
& widespread pain. CRP traits 
(UK Biobank) showed causal 
effects on each chronic pain 
type, while chronic neck/
shoulder pain also had a causal 
effect on CRP (UK Biobank). 
The number of single nucleotide 
polymorphisms (SNPs) were 
insufficient to analyse chronic 
widespread pain versus CRP 
(S.E.—standard error)

Exposure Outcome Beta S.E P-value Number of 
SNPs used

CRP (UK Biobank) Neck/shoulder pain 0.027 0.011 9.82E-03* 563
Back pain 0.077 0.010 1.32E-13* 561
Widespread pain 0.166 0.032 1.64E-07* 581

CRP (PAGE consortium) Neck/shoulder pain  − 0.018 0.015 0.24 31
Back pain 0.002 0.017 0.88 29
Widespread pain  − 0.033 0.045 0.47 31

Neck/shoulder pain CRP (UK Biobank) 0.071 0.021 6.97E-04* 10
Back pain 0.030 0.021 0.16 10
Widespread pain –
Neck/shoulder pain CRP (PAGE consortium)  − 0.004 0.062 0.95 12
Back pain  − 0.054 0.064 0.40 13
Widespread pain –
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provide genetic evidence for a causal pathway between CRP 
and chronic spinal & widespread pain. Other converging 
support comes from clinical & benchtop evidence of patho-
physiological interactions between the immune & nervous 
systems in response to acute & chronic musculoskeletal con-
ditions (reviewed in [1] & [24]). Higher levels of systemic 
inflammatory markers, including CRP, are often associated 
with worse clinical outcomes (e.g., higher pain intensity, 
hyperalgesia [5, 6]), which may reflect immune-mediated 
peripheral nociceptor sensitisation & central amplification 
of nociceptive signalling [24, 25]. While the clinical prac-
tice implications of this work require further investigation, 
within the context of increasing convergent evidence for 
immune contributions to the development & maintenance 
of chronic pain, our study has shed new light on the genetic 
causal factors in chronic spinal & widespread pain. Large-
scale genetic analyses [10, 11, 21] also enable the identifi-
cation of genetically supported risk & protective factors to 
enhance the design of translationally targeted diagnostic & 
therapeutic trials.

In the current study, GWAS analyses of chronic pain 
were limited to people of European ancestry, so it is unclear 
whether the findings can be extrapolated to non-European 
populations. The LCV analyses provided estimates of the 
likelihood of observed genetic correlations being attribut-
able to a genetic causal effect of one trait (pain) upon another 
(CRP) or vice versa [18]. A drawback of this method is it 
cannot identify bidirectional relationships (i.e., reciprocal 
relationships from pain→CRP & CRP→pain). While Men-
delian randomisation analyses have the capacity to identify 
bidirectional relationships, caution is warranted in interpret-
ing those findings as both the chronic pain & CRP GWAS 
data were from the UK Biobank (overlapping samples), 
which can bias estimates towards the confounded associa-
tions. To mitigate this issue, we also included CRP GWAS 
data from the PAGE consortium, although it was a compara-
tively much smaller sample (N = 28,520 [16]), which likely 
accounted for the non-significant results with this dataset. 
In addition, the PAGE consortium dataset comprised people 
with non-European ethnicities, which may have influenced 
the results given the European ancestry of the chronic spinal 
& widespread pain GWAS data.

To further advance our understanding of systemic inflam-
mation in chronic spinal & widespread pain, major concerted 
investigations are needed such as: (i) large-scale GWAS of 
pain-specific clinical measures (e.g., pain intensity, disabil-
ity) with a wider spectrum of inflammatory markers (e.g., 
cytokines) in both European & non-European populations; 
(ii) prospective longitudinal pharmacogenomics studies 
examining biomarkers of treatment response (e.g., anti-
inflammatory drugs); and (iii) expanding the application of 
Mendelian randomisation to other chronic pain diagnoses 
(e.g., whiplash-associated disorder, non-traumatic neck pain) 

and putative mechanistic subtypes (e.g., neuropathic, noci-
plastic) along with the use of multivariable approaches.

Conclusions

The application of statistical genetics methods to population-
level data has enabled the elucidation of otherwise-intracta-
ble causal factors & directions in common chronic disorders, 
particularly over recent years. The genetic evidence dem-
onstrated here for higher CRP in chronic pain conditions 
represents a promising foundation for further large-scale & 
translationally focussed studies to accelerate the develop-
ment of novel therapeutic technologies & strategies.
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