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Abstract
Background  Restoration of three-dimensional (3D) alignment is critical in correcting patients with adolescent idiopathic 
scoliosis using posterior spinal fusion (PSF). However, current studies mostly rely on 2D radiographs, resulting in inaccurate 
assessment of surgical correction and underlying predictive factors. While 3D reconstruction of biplanar radiographs is a 
reliable and accurate tool for quantifying spinal deformity, no study has reviewed the current literature on its use in evaluat-
ing surgical prognosis.
Purpose  To summarize the current evidence on patient and surgical factors affecting sagittal alignment and curve correction 
after PSF based on 3D parameters derived from reconstruction of biplanar radiographs.
Methods  A comprehensive search was conducted by three independent investigators on Medline, PubMed, Web of Science, 
and Cochrane Library to obtain all published information on predictors of postoperative alignment and correction after PSF. 
Search items included "adolescent idiopathic scoliosis," "stereoradiography," "three-dimensional," "surgical,” and "correc-
tion." The inclusion and exclusion criteria were carefully defined to include clinical studies. Risk of bias was assessed with the 
Quality in Prognostic Studies tool, and level of evidence for each predictor was rated with the Grading of Recommendations, 
Assessment, Development, and Evaluations approach. 989 publications were identified, with 444 unique articles subjected 
to full-text screening. Ultimately, 41 articles were included.
Results  Strong predictors of better curve correction included preoperative normokyphosis (TK > 15°), a corresponding rod 
contour, intraoperative vertebral rotation and translation, and upper and lower instrumented vertebrae selected based on 
sagittal and axial inflection points. For example, for Lenke 1 patients with junctional vertebrae above L1, fusion to NV-1 (1 
level above the neutral vertebra) achieved optimal curve correction while preserving motion segments. Pre-op coronal Cobb 
angle and axial rotation, distal junctional kyphosis, pelvic incidence, sacral slope, and type of instrument were identified as 
predictors with moderate evidence. For Lenke 1C patients, > 50% LIV rotation was found to increase spontaneous lumbar 
curve correction. Pre-op thoracolumbar apical translation and lumbar lordosis, Ponte osteotomies, and rod material were 
found to be predictors with low evidence.
Conclusions  Rod contouring and UIV/LIV selection should be based on preoperative 3D TK in order to achieve normal 
postoperative alignment. Specifically, Lenke 1 patients with high-lying rotations should be fused distally at NV-1, while 
hypokyphotic patients with large lumbar curves and truncal shift should be fused at NV to improve lumbar alignment. Lenke 
1C curves should be corrected using > 50% LIV rotation counterclockwise to the lumbar rotation. Further investigation should 
compare surgical correction between pedicle-screw and hybrid constructs using matched cohorts. DJK and overbending rods 
are potential predictors of postoperative alignment.
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Introduction

Adolescent idiopathic scoliosis (AIS) is a complex three-
dimensional deformity that can progress if untreated, caus-
ing chronic back pain and significant pulmonary impairment 
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[1–7]. Generations of surgical procedures have aimed at cor-
recting the frontal curve and truncal deformity while main-
taining spinopelvic alignment [8–16]. As 40–46% of all AIS 
patients are hypokyphotic, special attention should be paid 
to restoring sagittal balance in these patients, with studies 
supporting that failure to restore thoracic kyphosis (TK) may 
predispose to proximal or distal junctional kyphosis, as well 
as late complications predisposing to future decompensation 
[17–21]. While pedicle-screw systems have been shown to 
demonstrate efficacious correction in the frontal and axial 
planes by the placement of powerful anchors, they have been 
shown to cause flattening of the sagittal spine [22–24].

To evaluate and improve postoperative correction, numer-
ous factors have been extensively investigated using con-
ventional 2D radiographs, with mixed consensus within the 
current literature regarding the difference in surgical correc-
tion from different factors [25–29]. Prior studies have shown 
such relationship with patient-related factors including pre-
operative curve magnitude and flexibility, and with surgical 
factors including implant density, fusion length, and the type 
of instrument and technique used, such as differential rod 
contouring, direct vertebral rotation, and Ponte osteotomies 
[30–39].

As many of the studies compared surgical correction rates 
using plain radiographs, the true deformity of the spine has 
been inaccurately evaluated. Notably, 2D thoracic kyphosis 
(TK) has been shown to be variably overestimated on 2D 
radiographs by an average of 10° due to technical difficulty 
in visualizing thoracic endplates and the varying magnitude 
of axial rotation among patients [40–46]. Due to vertebral 
rotation in the transverse plane, lateral radiographs do not 
allow for a true lateral assessment of the sagittal plane 
[41, 47]. In addition, while axial rotation causes rib hump 
deformity, it is often inaccurately assessed by the Nash–Moe 
method on 2D which results in a mean 8–10° error [48, 49]. 
Moreover, prior studies have shown statistically significant 
differences in 2D and 3D Cobb angles due to pelvic rotation. 
With increasing focus placed on tridimensional alignment, 
there comes a need for more accurate methods in quantify-
ing spinal deformity, so as to improve rod contouring and 
selection of end-instrumented vertebrae to be better aligned 
to the true morphology of the spine [50, 51].

In recent years, three-dimensional reconstruction of 
biplanar radiographs has emerged as a method that allows 
accurate measurement of axial rotation and adjustment for 
axial rotation for a more accurate evaluation of the spine 
in its true planes [52–58]. After manual localization of the 
T1-L5 vertebral bodies, 3D spinal parameters will be auto-
matically calculated with normalization of patient rotation. 
Notably, changes in 3D TK, wedging, intervertebral rota-
tion, and orientation of the plane of maximum curvature 
are parameters unique to 3D reconstruction and may act 
as outcome variables to reflect the 3D morphology of the 

spine more accurately [59–64]. Therefore, this study aims 
to summarize the patient and surgical factors affecting three-
dimensional correction after posterior spinal fusion (PSF) 
based on reconstruction of biplanar radiographs.

Methods

Literature search strategy and selection criteria

The protocol for this systematic review has been registered 
in PROSPERO (CRD42022373484) on 23/11/2022 [65]. 
The literature search and reporting of results in this review 
were conducted in accordance with the Preferred Reporting 
Items for Systematic reviews and Meta-Analyses (PRISMA) 
guidelines [66]. An extensive search was performed on the 
following databases: PubMed, Web of Science, MEDLINE, 
and Cochrane Library. All fields were searched in the data-
bases using the following keywords: "adolescent idiopathic 
scoliosis," "stereoradiography," "reconstruction," "three-
dimensional," "surgical," "correction," "postoperative," and 
"junctional kyphosis." Detailed search items are included in 
Supplementary Material.

The search was limited to publications from 2010 to 
2022 to exclude surgical techniques that are rarely used 
currently. The inclusion criteria included randomized con-
trolled trials, cohort studies, case–control studies, and case 
series reporting predictors of postoperative alignment and 
surgical correction based on 3D reconstruction of biplanar 
radiographs. To maximize overall sample size, studies using 
validated algorithms to estimate 3D T4-T12 kyphosis based 
on biplanar radiographs were also included [41, 67]. The 
exclusion criteria included studies involving anterior spinal 
fusion, non-English publications, case reports, biomechani-
cal studies, non-human or cadaveric studies, and studies with 
a sample size < 20. Studies evaluating thoracic volume and 
lung function were excluded since this was beyond the scope 
of this systematic review.

The search and screening process were conducted by 
three independent investigators (SW, ST, DW). Potentially 
relevant abstracts were screened based on the inclusion cri-
teria, and full-text articles were obtained for eligible results. 
Three investigators discussed any disagreements regarding 
accepting full-text articles until consensus was achieved. 
References of each article were screened to look for poten-
tially relevant studies.

Data extraction and critical appraisal

The primary outcome of this systematic review was the 
effects of patient-related predictors and surgery-specific 
predictors on 3D curve correction after PSF.
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Patient-related predictors included preoperative 3D radio-
graphic measurements, which included Cobb angle, thoracic 
kyphosis and lumbar lordosis, axial vertebral rotation, pel-
vic parameters, vertebral tilt and translation, and junctional 
kyphosis. Surgery-specific predictors included the type of 
instrument used, selection of upper instrumented vertebra 
(UIV) and lower instrumented vertebra (LIV), rod contour-
ing, rod material, and number of Ponte osteotomies.

The amount of 3D curve correction was defined by intra-
operative correction (preoperative to first standing postop-
erative X-ray) and spontaneous changes between follow-up 
visits. The parameters included changes in Cobb angle, tho-
racic kyphosis, axial rotation, pelvic parameters, and proxi-
mal junctional kyphosis in the fused and unfused spine. In 
addition, shoulder-height difference was included, as well as 
global sagittal alignment, as measured using sagittal verti-
cal axis (SVA), the distance between the center of T1 and 
the central hip vertical axis (T1–CHVA), and odontoid-hip 
angle (OD-HA).

Details regarding each study’s sample size, design, inclu-
sion criteria, predictors identified, radiological definition of 
novel 3D parameters, risk of bias, phase of inquiry, and level 
of evidence are recorded in Table 1.

Risk of bias

The risk of bias of these publications was assessed using the 
six domains of the Quality in Prognostic Studies (QUIPS) 
tool by the three independent reviewers, and consensus 
was reached after discussion [68]. For retrospective stud-
ies, bias due to attrition is not applicable and therefore not 
assessed. The QUIPS risk of bias for these studies is detailed 
in Table 2.

Grading of evidence

The quality of evidence for each factor included was assessed 
using the Grading of Recommendations Assessment, Devel-
opment and Evaluation (GRADE) approach by the three 
independent reviewers [69]. Factors with evidence mainly 
coming from confirmatory studies were initially assigned 
with a high level of evidence, while factors with evidence 
mainly coming from exploratory studies were assigned a 
moderate level of evidence. The quality of evidence was 
downgraded by one level according to the following cri-
teria: inconsistency, imprecision, indirectness, and publi-
cation bias. The quality of evidence was upgraded by one 
level for the following cases: strong evidence of association 
between independent variables and outcomes, evidence of 
dose–response gradient, and when all residual confounding 
was shown to reduce the demonstrated effect. The detailed 
evidence available for each factor and the GRADE quality 
of evidence rating is presented in Table 3.

Search results

The search results are illustrated in the PRISMA flowchart 
(Fig. 1). A total of 985 articles were yielded from the initial 
search, of which 253 articles were from Medline, 376 arti-
cles from Web of Science, 46 articles from Cochrane library, 
and 310 articles were from PubMed. Of the 985 articles, 
there were 545 duplicated articles, and 440 unique articles 
were screened for the inclusion and exclusion criteria. As a 
result, a total of 36 articles from 34 datasets were included 
in the final study for further analysis.

Among the 36 publications included, 18 were classified 
as confirmatory studies, and 18 were classified as explora-
tory studies. In terms of study design, 31 were retrospective 
cohort studies, 5 were retrospective case–control studies, 
and there were no cross-sectional studies or randomized con-
trolled trials. The mean age of subjects across studies ranged 
from 10 to 21 years, and the length of follow-up ranged from 
12 months to 2.4 years. Sample sizes of studies ranged from 
20 to 1063 subjects.

Results

Patient‑related predictors

For studies reporting patient-related predictors of 3D correc-
tion, the earliest study was published in 2016 [60], and the 
instrumentation was all pedicle-screw constructs.

Sagittal alignment

There is strong evidence that preoperative thoracic kyphosis 
affects 3D curve correction. In a multivariate analysis of 371 
subjects, Pasha et al. [70, 71] found that preoperative clus-
ters, which shared significant differences in TK, predicted 
three clusters of 3D surgical outcomes with an accuracy of 
64%. Regarding global alignment, Yeung et al. [72] reported 
that hypokyphotic patients had adopted a more forward-
leaning posture to compensate for global sagittal imbalance 
(indicated by SVA-SFD and sagittal OD-HA) compared to 
normokyphotic adolescent idiopathic scoliosis (AIS) sub-
jects. However, this improved from immediate post-op to 
the 2-year postoperative follow-up. However, there is lim-
ited strength of evidence as there were only 7 hypokyphotic 
subjects in the whole cohort. There is moderate evidence 
that distal junctional kyphosis (DJK), pelvic incidence (PI), 
and sacral slope (SS) affect postoperative curve magnitude 
and alignment from a study by Pasha et al. [71]. For lumbar 
lordosis and thoracolumbar apical translation, which were 
also identified in the same study, there is low evidence that 



1930	 European Spine Journal (2023) 32:1927–1946

1 3

Ta
bl

e 
1  

D
et

ai
ls

 o
f i

nc
lu

de
d 

stu
di

es
, i

nc
lu

di
ng

 st
ud

y 
de

si
gn

, s
am

pl
e 

si
ze

, i
nc

lu
si

on
 c

rit
er

ia
, t

he
 m

or
ph

ol
og

ic
al

 p
re

di
ct

or
s f

ou
nd

, r
is

k 
of

 b
ia

s, 
an

d 
th

e 
le

ve
l o

f e
vi

de
nc

e

St
ud

y
Ye

ar
St

ud
y 

de
si

gn
Sa

m
pl

e 
si

ze
In

cl
us

io
n 

cr
ite

ria
M

or
ph

ol
og

ic
al

 p
re

di
ct

or
s f

ou
nd

R
is

k 
of

 b
ia

s
Ph

as
e 

of
 in

qu
iry

Le
ve

l o
f e

vi
de

nc
e

A
bo

us
am

ra
 e

t a
l. 

[1
]

20
19

RC
S

83
7 

A
IS

(1
) L

en
ke

 I 
an

d 
Le

nk
e 

II
; (

2)
 

Re
ce

iv
ed

 tr
an

ex
am

ic
 a

ci
d

N
/A

Lo
w

Ex
pl

or
at

or
y

Pr
og

no
sti

c 
le

ve
l I

II

A
lz

ak
ri 

et
 a

l. 
[2

]
20

19
RC

S
85

 A
IS

 +
 51

 c
on

tro
ls

1)
 A

ge
 1

2–
18

 a
t t

im
e 

of
 su

rg
er

y;
 

(2
) A

ll-
pe

di
cl

e 
sc

re
w

 c
on

str
uc

ts
N

/A
Lo

w
Ex

pl
or

at
or

y
Pr

og
no

sti
c 

le
ve

l I
II

B
od

en
do

rfe
r e

t a
l. 

[3
]

20
20

RC
C

S
10

63
 A

IS
(1

) L
en

ke
 ty

pe
s 1

–4
; 2

) P
re

op
-

er
at

iv
e 

th
or

ac
ic

 h
yp

ok
yp

ho
si

s 
(<

 10
°)

In
str

um
en

t s
ys

te
m

s
Lo

w
C

on
fir

m
at

or
y

Pr
og

no
sti

c 
le

ve
l I

II

Fe
rr

er
o 

et
 a

l. 
[4

]
20

18
RC

S
47

 A
IS

(1
) P

os
te

ro
m

ed
ia

l t
ra

ns
la

tio
n 

w
ith

 lu
m

ba
r p

ed
ic

ul
ar

 sc
re

w
s, 

th
or

ac
ic

 su
bl

am
in

ar
 b

an
ds

, a
nd

 
pr

ox
im

al
 c

la
w

s;
 (2

) 5
.5

 C
oC

r 
ro

ds
; (

3)
 N

o 
Po

nt
e 

os
te

ot
om

ie
s

N
/A

Lo
w

Ex
pl

or
at

or
y

Pr
og

no
sti

c 
le

ve
l I

II

Fl
oc

ca
ri 

et
 a

l. 
[5

]
20

21
RC

C
S

68
 A

IS
(1

) A
ge

s 1
0–

18
; (

2)
 ≥

 2 
Po

nt
e 

os
te

ot
om

ie
s f

or
 P

 c
oh

or
t

Po
nt

e 
os

te
ot

om
ie

s
Lo

w
C

on
fir

m
at

or
y

Pr
og

no
sti

c 
le

ve
l I

II

H
om

an
s e

t a
l. 

[6
]

20
20

RC
S

60
 A

IS
A

IS
 L

en
ke

 1
–6

Su
rg

ic
al

ly
 c

or
re

ct
ed

 U
IV

 p
os

iti
on

Lo
w

C
on

fir
m

at
or

y
Pr

og
no

sti
c 

le
ve

l I
II

Ilh
ar

re
bo

rd
e 

et
 a

l. 
[7

]
20

11
RC

S
24

 A
IS

(1
) L

en
ke

 1
 a

nd
 2

; (
2)

 A
ll-

pe
di

cl
e 

sc
re

w
 c

on
str

uc
ts

 v
s h

yb
rid

 
co

ns
tru

ct
s

N
/A

Lo
w

C
on

fir
m

at
or

y
Pr

og
no

sti
c 

le
ve

l I
II

Ilh
ar

re
bo

rd
e 

et
 a

l. 
[8

]
20

13
RC

S
49

 A
IS

(1
) L

en
ke

 1
–4

; (
2)

 P
os

te
ro

m
ed

ia
l 

tra
ns

la
tio

n 
w

ith
 lu

m
ba

r p
ed

ic
u-

la
r s

cr
ew

s a
nd

 th
or

ac
ic

 u
ni

ve
rs

al
 

cl
am

ps
, 5

.5
 m

m
 T

i r
od

s

N
/A

M
od

er
at

e
Ex

pl
or

at
or

y
Pr

og
no

sti
c 

le
ve

l I
II

Ilh
ar

re
bo

rd
e 

et
 a

l. 
[9

]
20

13
RC

S
49

 A
IS

1)
 L

en
ke

 1
–4

; 2
) P

os
te

ro
m

ed
ia

l 
tra

ns
la

tio
n 

w
ith

 lu
m

ba
r p

ed
ic

u-
la

r s
cr

ew
s a

nd
 th

or
ac

ic
 u

ni
ve

rs
al

 
cl

am
ps

, 5
.5

 m
m

 T
i r

od
s

N
/A

M
od

er
at

e
Ex

pl
or

at
or

y
Pr

og
no

sti
c 

le
ve

l I
II

Ilh
ar

re
bo

rd
e 

et
 a

l. 
[1

0]
20

18
RC

S
35

 A
IS

1)
 L

en
ke

 1
–2

; 2
) T

ho
ra

ci
c 

hy
po

ky
ph

os
is

 (T
4-

T1
2 <

 15
°)

; 
(3

) P
os

te
ro

m
ed

ia
l t

ra
ns

la
tio

n 
w

ith
 lu

m
ba

r p
ed

ic
ul

ar
 sc

re
w

s 
an

d 
th

or
ac

ic
 su

bl
am

in
ar

 b
an

ds
, 

5 
m

m
 C

oC
r v

s 5
 m

m
 T

i r
od

s, 
no

 
Po

nt
e 

os
te

ot
om

ie
s

Ro
d 

m
at

er
ia

l
Lo

w
Ex

pl
or

at
or

y
Pr

og
no

sti
c 

le
ve

l I
II

Ilh
ar

re
bo

rd
e 

et
 a

l. 
[1

1]
20

19
RC

S
60

 A
IS

(1
) L

en
ke

 1
–2

; (
2)

 P
os

te
ro

m
e-

di
al

 tr
an

sl
at

io
n 

w
ith

 p
ed

ic
ul

ar
 

sc
re

w
s, 

th
or

ac
ic

 su
bl

am
in

ar
 

ba
nd

s, 
an

d 
pr

ox
im

al
 h

oo
ks

, 5
.5

 
C

oC
r r

od
s, 

no
 P

on
te

 o
ste

ot
om

ie
s

N
/A

Lo
w

C
on

fir
m

at
or

y
Pr

og
no

sti
c 

le
ve

l I
II

Ill
és

 e
t a

l. 
[1

2]
20

13
RC

S
95

 A
IS

(1
) L

en
ke

 1
–6

; (
2)

 C
D

 in
str

um
en

-
ta

tio
n 

(h
oo

k 
an

d 
sc

re
w

) w
ith

 
in

 si
tu

 c
on

to
ur

in
g

La
te

ra
l t

ra
ns

la
tio

n 
of

 a
pi

ca
l 

ve
rte

br
al

M
od

er
at

e
Ex

pl
or

at
or

y
Pr

og
no

sti
c 

le
ve

l I
II

Ja
nk

ow
sk

i e
t a

l. 
[1

3]
20

18
RC

S
55

 A
IS

A
IS

 L
en

ke
 1

–6
N

/A
Lo

w
Ex

pl
or

at
or

y
Pr

og
no

sti
c 

le
ve

l I
II

Jia
ng

 e
t a

l. 
[1

4]
20

21
RC

S
31

 A
IS

A
IS

 L
en

ke
 1

–5
N

/A
Lo

w
Ex

pl
or

at
or

y
Pr

og
no

sti
c 

le
ve

l I
II



1931European Spine Journal (2023) 32:1927–1946	

1 3

Ta
bl

e 
1  

(c
on

tin
ue

d)

St
ud

y
Ye

ar
St

ud
y 

de
si

gn
Sa

m
pl

e 
si

ze
In

cl
us

io
n 

cr
ite

ria
M

or
ph

ol
og

ic
al

 p
re

di
ct

or
s f

ou
nd

R
is

k 
of

 b
ia

s
Ph

as
e 

of
 in

qu
iry

Le
ve

l o
f e

vi
de

nc
e

K
at

o 
et

 a
l. 

[1
5]

20
17

RC
C

S
15

3 
A

IS
1)

 D
ire

ct
 v

er
te

br
al

 ro
ta

tio
n;

 (2
) 

A
ll-

sc
re

w
 c

on
str

uc
t v

s h
yb

rid
 

co
ns

tru
ct

s;
 3

) T
i o

r S
S 

ro
ds

A
ll-

sc
re

w
 v

s h
yb

rid
 c

on
str

uc
t; 

Ro
d 

m
at

er
ia

l
Lo

w
Ex

pl
or

at
or

y
Pr

og
no

sti
c 

le
ve

l I
II

K
lu

ck
 e

t a
l. 

[1
6]

20
20

RC
S

99
 A

IS
(1

) A
IS

 ri
gh

t M
T 

cu
rv

e;
 2

) D
ire

ct
 

ve
rte

br
al

 ro
ta

tio
n,

 a
ll-

sc
re

w
 c

on
-

str
uc

t, 
5.

5 
m

m
 S

S 
ro

ds
, P

on
te

 
os

te
ot

om
ie

s a
s n

ee
de

d;
 3

) N
o 

in
 si

tu
 ro

d 
be

nd
in

g

Ro
d 

co
nt

ou
r

Lo
w

C
on

fir
m

at
or

y
Pr

og
no

sti
c 

le
ve

l I
II

K
lu

ck
 e

t a
l. 

[1
7]

20
21

RC
S

84
 A

IS
(1

) A
IS

 L
en

ke
 1

–4
, w

ith
 B

 o
r C

 
m

od
ifi

er
; (

2)
 L

IV
 ≤

 L
1

(F
or

 c
or

re
ct

io
n 

of
 u

nf
us

ed
 lu

m
ba

r 
cu

rv
e:

) L
IV

 ti
lt,

 th
or

ac
ic

 c
or

on
al

 
co

rr
ec

tio
n,

 re
sto

ra
tio

n 
of

 T
K

Lo
w

C
on

fir
m

at
or

y
Pr

og
no

sti
c 

le
ve

l I
II

Le
 N

av
éa

ux
 e

t a
l. 

[1
8]

20
17

RC
S

35
 A

IS
(1

) L
en

ke
 1

–3
; (

2)
 D

ire
ct

 v
er

te
br

al
 

ro
ta

tio
n;

 3
) A

ll-
sc

re
w

 c
on

str
uc

t 
w

ith
 5

.5
 m

m
 C

oC
r r

od
s

Ro
d 

co
nt

ou
r

Lo
w

C
on

fir
m

at
or

y
Pr

og
no

sti
c 

le
ve

l I
II

Le
 N

av
éa

ux
 e

t a
l. 

[1
9]

20
17

RC
C

S
42

 A
IS

(1
) L

en
ke

 1
; (

2)
 P

ed
ic

le
 

sc
re

w
 >

 80
%

; (
3)

 T
i v

s S
S 

vs
 

C
oC

r r
od

s (
5 

m
m

)

Ro
d 

m
at

er
ia

l
Lo

w
C

on
fir

m
at

or
y

Pr
og

no
sti

c 
le

ve
l I

II

M
ac

hi
da

 e
t a

l. 
[2

0]
20

22
RC

S
66

 A
IS

(1
) L

en
ke

 1
–6

; (
2)

 A
ge

 <
 18

 a
t 

tim
e 

of
 su

rg
er

y;
 (3

) 5
 m

m
 S

S 
vs

 
C

oC
r r

od
s

(F
or

 sh
ou

ld
er

 b
al

an
ce

 a
t 2

-y
ea

r 
FU

:) 
Po

st-
op

 C
ob

b 
an

d 
AV

R
Lo

w
C

on
fir

m
at

or
y

Pr
og

no
sti

c 
le

ve
l I

II

N
ew

to
n 

et
 a

l. 
[2

1]
20

15
RC

S
12

0 
A

IS
(1

) A
IS

 w
ith

 p
rim

ar
y 

th
or

ac
ic

 
cu

rv
es

; (
2)

 S
eg

m
en

ta
l u

ni
pl

an
ar

 
pe

di
cl

e-
sc

re
w

 fi
xa

tio
n,

 5
.5

 m
m

 
SS

 ro
ds

, a
nd

 se
gm

en
ta

l d
er

ot
a-

tio
n

N
/A

Lo
w

C
on

fir
m

at
or

y
Pr

og
no

sti
c 

le
ve

l I
II

N
ew

to
n 

et
 a

l. 
[2

2]
20

19
RC

S
13

4 
A

IS
(1

) L
en

ke
 1

–4
; (

2)
 5

 m
m

 S
S 

vs
 

C
oC

r r
od

s
O

pe
ra

tin
g 

su
rg

eo
n,

 ro
d 

m
at

er
ia

l, 
an

d 
Po

nt
e 

os
te

ot
om

ie
s

Lo
w

C
on

fir
m

at
or

y
Pr

og
no

sti
c 

le
ve

l I
II

O
ha

sh
i e

t a
l. 

[2
3]

20
20

RC
S

40
5 

A
IS

(1
) R

ig
ht

 m
ai

n 
th

or
ac

ic
 (L

en
ke

 
1–

4)
; 2

) C
ob

b 
an

gl
e >

 45
°

N
/A

Lo
w

Ex
pl

or
at

or
y

Pr
og

no
sti

c 
le

ve
l I

II

Pa
sh

a 
et

 a
l. 

[2
4]

20
17

RC
S

21
 A

IS
1)

 T
ho

ra
ci

c 
cu

rv
es

 w
ith

 B
 o

r C
 

m
od

ifi
er

s;
 (2

) D
ire

ct
 v

er
te

br
al

 
ro

ta
tio

n 
w

ith
 a

ll-
sc

re
w

 c
on

-
str

uc
ts

(F
or

 c
or

re
ct

io
n 

of
 u

nf
us

ed
 lu

m
ba

r 
cu

rv
e:

) p
os

t-o
p 

th
or

ac
ic

 a
nd

 
lu

m
ba

r C
ob

b 
an

d 
lu

m
ba

r A
V

R

Lo
w

Ex
pl

or
at

or
y

Pr
og

no
sti

c 
le

ve
l I

II

Pa
sh

a 
et

 a
l. 

[2
5]

20
18

RC
S

64
 A

IS
1)

 L
en

ke
 1

–2
; 2

) A
ge

 1
0–

18
 a

t 
tim

e 
of

 su
rg

er
y;

 3
) S

el
ec

tiv
e 

th
or

ac
ic

 fu
si

on
 w

ith
 se

gm
en

ta
l 

de
ro

ta
tio

n

Pr
e-

op
 c

or
on

al
, s

ag
itt

al
, a

nd
 a

xi
al

 
pa

ra
m

et
er

s
Lo

w
Ex

pl
or

at
or

y
Pr

og
no

sti
c 

le
ve

l I
II

Pa
sh

a 
et

 a
l. 

[2
6]

20
18

RC
S

63
 A

IS
(1

) L
en

ke
 1

; (
2)

 A
ge

 1
0–

18
 a

t t
im

e 
of

 su
rg

er
y;

 3
) S

el
ec

tiv
e 

th
or

ac
ic

 
fu

si
on

 w
ith

 se
gm

en
ta

l d
er

ot
at

io
n

(F
or

 c
or

re
ct

io
n 

of
 u

nf
us

ed
 lu

m
ba

r 
cu

rv
e:

) p
re

op
er

at
iv

e 
ra

tio
 o

f t
he

 
th

or
ac

ic
 to

 lu
m

ba
r a

pi
ca

l t
ra

ns
-

la
tio

n 
in

 th
e 

sa
gi

tta
l p

la
ne

Lo
w

C
on

fir
m

at
or

y
Pr

og
no

sti
c 

le
ve

l I
II



1932	 European Spine Journal (2023) 32:1927–1946

1 3

Ta
bl

e 
1  

(c
on

tin
ue

d)

St
ud

y
Ye

ar
St

ud
y 

de
si

gn
Sa

m
pl

e 
si

ze
In

cl
us

io
n 

cr
ite

ria
M

or
ph

ol
og

ic
al

 p
re

di
ct

or
s f

ou
nd

R
is

k 
of

 b
ia

s
Ph

as
e 

of
 in

qu
iry

Le
ve

l o
f e

vi
de

nc
e

Pa
sh

a 
et

 a
l. 

[2
7]

20
18

RC
S

23
 A

IS
(1

) L
en

ke
 1

; (
2)

 A
ge

 1
0–

18
 a

t t
im

e 
of

 su
rg

er
y;

 3
) S

el
ec

tiv
e 

th
or

ac
ic

 
fu

si
on

 w
ith

 se
gm

en
ta

l d
er

ot
at

io
n

%
 c

or
re

ct
io

n 
of

 L
IV

 ro
ta

tio
n

Lo
w

C
on

fir
m

at
or

y
Pr

og
no

sti
c 

le
ve

l I
II

Pa
sh

a 
et

 a
l. 

[2
8]

20
19

RC
S

76
 A

IS
(1

) L
en

ke
 1

–5
; (

2)
 D

ire
ct

 v
er

te
br

al
 

ro
ta

tio
n

Pr
e-

op
 3

D
 c

lu
ste

r, 
U

IV
 a

nd
 L

IV
Lo

w
C

on
fir

m
at

or
y

Pr
og

no
sti

c 
le

ve
l I

II

Pa
sh

a 
et

 a
l. 

[2
9]

20
19

RC
S

58
 A

IS
(1

) L
en

ke
 1

 w
ith

 B
 o

r C
 m

od
i-

fie
r; 

(2
) A

ge
s 1

3–
17

 a
t t

im
e 

of
 

su
rg

er
y;

 (3
) S

el
ec

tiv
e 

th
or

ac
ic

 
fu

si
on

N
/A

Lo
w

Ex
pl

or
at

or
y

Pr
og

no
sti

c 
le

ve
l I

II

Pa
sh

a 
et

 a
l. 

[3
0]

20
21

RC
S

37
1 

A
IS

Le
nk

e 
1–

6
Pr

e-
op

 c
or

on
al

, s
ag

itt
al

, a
nd

 a
xi

al
 

pa
ra

m
et

er
s

Lo
w

C
on

fir
m

at
or

y
Pr

og
no

sti
c 

le
ve

l I
II

Pa
sh

a 
et

 a
l. 

[3
1]

20
21

RC
S

37
1 

A
IS

Le
nk

e 
1–

6
Pr

e-
op

 c
or

on
al

, s
ag

itt
al

, a
nd

 a
xi

al
 

pa
ra

m
et

er
s;

 O
pe

ra
tin

g 
su

rg
eo

n,
 

U
IV

 a
nd

 L
IV

 se
le

ct
io

n

Lo
w

C
on

fir
m

at
or

y
Pr

og
no

sti
c 

le
ve

l I
II

Se
ou

d 
et

 a
l. 

[3
2]

20
15

RC
S

25
 A

IS
Le

nk
e 

1A
Su

rg
ic

al
 te

ch
ni

qu
e 

(d
er

ot
at

io
n 

m
an

eu
ve

r)
M

od
er

at
e

Ex
pl

or
at

or
y

Pr
og

no
sti

c 
le

ve
l I

II

Sh
en

 e
t a

l. 
[3

3]
20

16
RC

S
93

 A
IS

R
ig

ht
 L

en
ke

 1
Pr

eo
pe

ra
tiv

e 
to

rs
io

n
Lo

w
Ex

pl
or

at
or

y
Pr

og
no

sti
c 

le
ve

l I
II

Si
ko

ra
-K

la
k 

et
 a

l. 
[3

4]
20

21
RC

C
S

82
 A

IS
Le

nk
e 

1–
2

Se
gm

en
ta

l v
er

te
br

al
 ro

ta
tio

n 
w

ith
 a

ll-
sc

re
w

 c
on

str
uc

t, 
vs

 
po

ste
ro

m
ed

ia
l t

ra
ns

la
tio

n 
w

ith
 

su
bl

am
in

ar
 b

an
ds

M
od

er
at

e
C

on
fir

m
at

or
y

Pr
og

no
sti

c 
le

ve
l I

II

St
-G

eo
rg

es
 e

t a
l. 

[3
5]

20
20

RC
S

20
 A

IS
(1

) L
en

ke
 1

–6
; (

2)
 A

ge
 1

0–
18

 a
t 

tim
e 

of
 su

rg
er

y
Pr

eo
pe

ra
tiv

e 
C

ob
b 

an
gl

e
Lo

w
Ex

pl
or

at
or

y
Pr

og
no

sti
c 

le
ve

l I
II

Ye
un

g 
et

 a
l. 

[3
6]

20
21

RC
S

27
 A

IS
 +

 36
 c

on
tro

ls
(1

) F
em

al
e 

A
IS

 w
ith

 ri
gh

t t
ho

ra
ci

c 
m

ai
n 

cu
rv

e
Pr

eo
pe

ra
tiv

e 
TK

Lo
w

Ex
pl

or
at

or
y

Pr
og

no
sti

c 
le

ve
l I

II



1933European Spine Journal (2023) 32:1927–1946	

1 3

Table 2   Quality in Prognostic Studies risk of bias based on study participation, measurement of prognostic factor and outcomes, study con-
founding, and quality of statistical analysis and reporting. 31 studies had a low overall risk of bias, while 5 studies had a moderate risk of bias

Study Study participa-
tion

Study attrition Prognostic 
factor measure-
ment

Outcome 
measure-
ment

Study confound-
ing

Statistical 
analysis and 
reporting

Overall risk of bias

Abousamra et al. 
[1]

Low N/A Low Low Low Low Low

Alzakri et al. [2] Low N/A Low Low Low Low Low
Bodendorfer et al. 

[3]
Low N/A Low Low Low Moderate Low

Ferrero et al. [4] Moderate N/A Moderate Low Low Low Low
Floccari et al. [5] Low N/A Low Low Low Low Low
Homans et al. [6] Low N/A Low Low Low Low Low
Ilharreborde et al. 

[7]
Moderate N/A Low Low Low Low Low

Ilharreborde et al. 
[8]

Moderate N/A Low Low Low Moderate Moderate

Ilharreborde et al. 
[9]

Moderate N/A Low Low Low Moderate Moderate

Ilharreborde et al. 
[10]

Moderate N/A Low Low Low Low Low

Ilharreborde et al. 
[11]

Low N/A Low Low Low Low Low

Illés et al. [12] Low N/A Moderate Low Low Moderate Moderate
Jankowski et al. 

[13]
Low N/A Low Low Low Low Low

Jiang et al. [14] Low N/A Low Low Low Moderate Low
Kato et al. [15] Low N/A Low Low Low Low Low
Kluck et al. [16] Low N/A Low Low Moderate Low Low
Kluck et al. [17] Low N/A Low Low Low Low Low
Le Navéaux et al. 

[18]
Moderate N/A Low Low Low Low Low

Le Navéaux et al. 
[19]

Moderate N/A Moderate Low Low Low Low

Machida et al. 
[20]

Low N/A Low Low Low Low Low

Newton et al. [21] Low N/A Low Low Low Low Low
Newton et al. [22] Low N/A Low Low Low Low Low
Ohashi et al. [23] Low N/A Low Low Moderate Low Low
Pasha et al. [24] Moderate N/A Low Low Low Low Low
Pasha et al. [25] Low N/A Low Low Low Low Low
Pasha et al. [26] Low N/A Low Low Low Low Low
Pasha et al. [27] Moderate N/A Low Low Low Low Low
Pasha et al. [28] Low N/A Low Low Low Low Low
Pasha et al. [29] Low N/A Low Low Low Low Low
Pasha et al. [30] Low N/A Low Low Low Low Low
Pasha et al. [31] Low N/A Low Low Low Low Low
Seoud et al. [32] Moderate N/A Low Low Moderate Moderate Moderate
Shen et al. [33] Low N/A Low Low Moderate Low Low
Sikora-Klak et al. 

[34]
Low N/A Low Moderate Moderate Low Moderate

St-Georges et al. 
[35]

High N/A Low Low Low Low Low

Yeung et al. [36] Moderate N/A Low Low Low Moderate Low
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these two parameters affect postoperative alignment due to 
lack of effect size measurement and relatively low variable 
importance in the predictive model.

Axial rotation

There is moderate evidence that preoperative axial rotation 
affects surgical correction. The preoperative 3D clusters 
with high prognostic value reported by Pasha et al. [70] 
had significant differences in the magnitude of apical ver-
tebral rotation (AVR) and comprised two types of axial 
projections as viewed from above — lemniscate-shaped 
and loop-shaped projections, with the former having two 
significant rotations and the latter only having one signifi-
cantly rotated curve. Shen et al. [73] reported that patients 
with higher preoperative torsion showed comparable post-
operative coronal Cobb angle, but there were differences in 
the orientation of the plane of maximum deformity in the 
thoracolumbar segment between the high and low torsion 
groups (47.95° vs. 30.03°).

Coronal Cobb angle

There is moderate evidence that preoperative Cobb angle 
affects surgical correction, as most studies focused on 
planes with greater difference between 2D and 3D imag-
ing. The preoperative clusters demonstrated by Pasha et al. 
[70] had statistically significant differences in proximal 
thoracic (PT), main thoracic (MT), and thoracolumbar/
lumbar (TL/L) Cobb angle. Machida et al. [74] reported 
that postoperative Cobb angle and AVR in the PT curve 
had small to moderate association with radiographic 
shoulder height differences up to the 2-year follow-up.

Surgical factors

Type of instrumentation

There is moderate evidence that the instrumentation affects 
surgical outcomes. Sikora-Klak et al. [75] reported that the 
use of all-screw instrumentation was associated with signifi-
cantly better coronal correction and slightly better restora-
tion of TK when compared to hybrid constructs, while Kato 
et al. [76] reported greater axial correction using all-screw 
systems. However, both studies did not adjust for preop-
erative curve parameters, which were unequal between the 
case–control groups, and other surgical factors were not 
accounted for.
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UIV and LIV selection

There is strong evidence that the amount of surgical correc-
tion is associated with UIV and LIV selection. Pasha et al. 
[77] found that following preoperative 3D classification of 
76 patients, UIV and LIV selection had different impacts 
on the surgical outcomes in each of the five subtypes. For 
example, LIV at T12 in Type 1 and UIV at T2 in Type 2 
were associated with improved frontal balance and lower 
proximal junction kyphosis (PJK), respectively. This asso-
ciation was also found in a larger study of 371 subjects by 
Pasha et al. [70].

Vertebral tilt and translation

There is strong evidence that the amount of surgical correc-
tion is associated with the relative positioning of the apical 
and end-instrument vertebrae, a function of the degree of 

translation and derotation during correction. Homans et al. 
[78] reported that a higher PJK angle was correlated with a 
larger anterior shift of UIV during surgical correction and a 
more posterior position of UIV at the most recent follow-up. 
Regarding selective thoracic fusion in patients with main 
thoracic curves and lumbar modifiers, Pasha et al. [79] found 
that in addition to thoracic curve correction, leveling of the 
LIV (i.e., reducing frontal tilt) was the factor most likely to 
result in greater 3D correction of the uninstrumented lumbar 
curve.

Rod material

There is weak evidence that rod material influences 3D sur-
gical correction. Among 10 studies, 5 studies each reported 
the use of titanium (Ti), stainless steel (SS), and cobalt–chro-
mium (CoCr) rods, respectively. Comparing all three rod 
materials, Le Navéaux et al. [80] reported that there was no 

Fig. 1   PRISMA (Preferred 
Reporting Items for Systematic 
reviews and Meta-Analyses) 
Flowchart detailing the data 
screening process. A total of 
985 articles were yielded from 
the initial search, of which 440 
unique articles were screened 
for the inclusion and exclusion 
criteria. As a result, a total of 
36 articles were included in the 
final study for further analysis
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significant 3D shape change of the instrumented spine or of 
the rods from 1-week post-op to the 2-year follow-up. How-
ever, there were only 14 subjects in each group. Ilharreborde 
et al. [81] also reported no significant differences between Ti 
and CoCr rods in 3D outcomes in 35 hypokyphotic subjects. 
In another study of 153 AIS patients by Kato et al. [76], no 
difference in AVR correction was observed between Ti and 
SS rods. In a study of 134 AIS patients with severe thoracic 
lordosis, Newton et al. [82] found that better TK restoration 
was moderately associated with the use of SS rods rather 
than CoCr rods (p < 0.01, η2 = 0.08).

Rod contouring

There is strong evidence that rod shape in relation to spine 
contour influences surgical correction. To quantify rod con-
tour in relation to the scoliotic curve, Kluck et al. reported a 
novel 3D parameter, the rod-to-spine distance (RSD), while 
Le Navéaux et al. [83] measured the difference between rod 
curvature and kyphosis (°). Both parameters moderately cor-
related with change in 3D thoracic kyphosis. Le Navéaux 
et al. [50] reported that pre-insertion concave rod curvature 
itself was not predictive of postoperative thoracic kyphosis 
due to rod flattening during instrumentation. In addition, the 
plane of maximum curvature of the rods deviated from the 
sagittal plane after surgical instrumentation. This was sup-
ported by Kluck et al. [84], who found that preoperative rod 
angle difference was decreased by 9° on average, with the 
convex rod generally being more curved than the concave 
rod post-instrumentation. For axial correction, Le Navéaux 
et al. [80] reported a modest positive association between 
the amount of differential contouring performed between the 
concave and convex rods and the degree of AVR correction 
(R2 = 0.28).

Ponte osteotomies in patients with severe thoracic lordosis

There is weak evidence that Ponte osteotomies influence 
surgical outcomes. In a matched comparison of severe AIS 
patients by Floccari et al. [67], Ponte osteotomies were 
reported to provide small radiographic gains in the coronal 
plane (66.6% vs 58.7%) with no improvement in the sagittal 
plane and no change in truncal rotation. This was recipro-
cated in a study by Newton et al. [82], which found that 
use of Ponte osteotomies was only weakly associated with 
improved thoracic kyphosis (η2 = 0.04).

Discussion

In recent decades, sagittal alignment has been highlighted 
as an important surgical aim in the correcting scoliotic 
deformities, yet this is often sacrificed using pedicle-screw 

systems in favor for correction in the coronal and axial 
planes. Despite thorough investigations into the effect of 
various factors on postoperative correction, results remain 
inconsistent. This may be explained by the reliance on 2D 
imaging for the measurement of spinal parameters, which 
results in inaccurate estimation of surgical correction, 
especially for patients with severe curves. While recon-
struction of low-dose biplanar images serves as a safe and 
reliable method for evaluating three-dimensional curve 
deformities, a full modeling process for each patient is 
time-consuming and labor intensive, potentially limiting 
large-scale studies. In this review, we have collected and 
summarized the key predictors of 3D postoperative align-
ment and correction for PSF. Preoperative 3D thoracic 
kyphosis, UIV and LIV selection, rod contour, and intra-
operative vertebral rotation were found to be predictive 
of postoperative outcomes with strong evidence (Fig. 2). 
Pre-op coronal Cobb angle and axial rotation, DJK, pelvic 
parameters (PI and SS), and type of instrument were found 
to be predictive of postoperative outcomes with moderate 
evidence, while pre-op TL apical translation, Ponte oste-
otomies, rod material, and lumbar lordosis were found to 
be predictors with low evidence.

Patient‑related factors and EIV selection

Preoperative coronal Cobb angle, thoracic kyphosis and 
axial rotation were identified as important predictors of 
postoperative sagittal and axial alignment, which reflects 
residual deformities in patients with severe curves, hypoky-
phosis or high torsion with less flexibility initially. While 
there may be associations between initial curve character-
istics and postoperative outcomes across different planes, 
these are mostly due to aggressive intraoperative correction 
maneuvers causing disturbances in other planes [83]. The 
key value of assessing preoperative 3D spinal morphology 
arises from the comparison of surgical correction within 
subgroups of 3D curves, so as to achieve patient-specific 
surgical treatment. In a series of studies by Pasha et al. [70, 
77, 85], UIV and LIV selection had different impacts on 
the surgical outcomes among preoperative clusters based 
on 3D spinal morphology. Where to fuse Lenke 1A curves 
distally has been a long-debated topic, with distal adding-on, 
PJK, and residual motion as the main concerns. For patients 
with NV close to EV, Suk et al. [86] recommended fusion to 
the neutral vertebra (NV) or NV-1. However, manual iden-
tification of NV and EV has been criticized to be unreli-
able among observers [87, 88]. Based on 3D analysis of 
axial rotation, Pasha et al. [70] suggested that the shape of 
axial projection may reflect the relationship between NV 
and EV and could be a potential determinant of fusion level 
for optimal postoperative alignment. For example, Lenke 
1 patients with lemniscate-shaped axial projections have 
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higher junctional vertebrae and should be fused to NV-1. For 
preoperative sagittal parameters, Vidal et al. [89] suggested 
that for hypokyphotic subjects with a low PI, overcorrection 
of LL in distal fusions led to poor sagittal balance postop-
eratively. Based on analysis of 3D spinal parameters, Pasha 
et al. [70] suggested that for hypokyphotic patients who have 
a high sagittal inflection point, fusion should be extended to 
the lumbar spine to improve postoperative sagittal balance. 
With this information, surgeons may optimize postoperative 
alignment while sparing motion segments and avoiding PJK 
and adding-on in selected patients.

Moderate predictive ability was attributed for the fol-
lowing parameters. Though distal junctional kyphosis, PI, 
and SS were identified as three of the top 5 predictors of 
postoperative 3D outcome clusters based on a random forest 
model by Pasha et al. [51, 90], the utility of these param-
eters as independent predictors remains uncertain, as the top 
predictors were selected based on mean decrease accuracy, 
which mostly reflects overall model performance rather than 
individual effect. In the same study, thoracolumbar apical 
translation on the sagittal plane and lumbar lordosis was 
identified as predictors with low evidence due to low mean 

decrease accuracy. Though the authors did not elaborate on 
the possible mechanism of these parameters, these sagittal 
parameters might reflect lumbar and pelvic compensation for 
sagittal imbalance in hypokyphotic patients [89, 91].

Surgical factors

Studies comparing outcomes of current systems [75, 76] had 
a generally moderate risk of bias due to important unad-
justed factors such as the operating surgeon, fusion length, 
and baseline patient characteristics. Ilharreborde et al. [35, 
81] have extensively reported on the postoperative cor-
rection rates of posteromedial translation with sublaminar 
bands, which shows satisfactory correction in hypokyphotic 
patients. Whether this method is superior to all-screw sys-
tems relies on further investigation with 3D analyses, as the 
current literature likely has overestimated preoperative tho-
racic kyphosis using 2D parameters [17, 92], which may 
account for the reported lordotic effect of pedicle-screw 
constructs.

End-instrumented vertebrae (EIV) rotation and translation 
during surgery were significantly predictive of postoperative 

Fig. 2   A summary of the find-
ings of this systematic review. 
UIV and LIV selection, preop-
erative 3D TK, rod contour, and 
EIV rotation were identified as 
predictors of surgical outcome 
with strong evidence. Predic-
tors with moderate evidence 
included preoperative coronal 
Cobb angle, AVR, PI, SS, and 
type of instrument. Predictors 
with weak evidence included 
rod material and Ponte oste-
otomies. *UIV = upper instru-
mented vertebra, LIV = lower 
instrumented vertebra, 3D 
TK = three-dimensional thoracic 
kyphosis, EIV = end-instru-
mented vertebra, AVR = apical 
vertebral rotation, PI = pelvic 
incidence, SS = sacral slope
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correction and alignment in several confirmatory studies. 
The concept of selective thoracic fusion was introduced 
by King et al. [93] in the 80 s, with the goal of preserving 
motion segments while allowing spontaneous correction of 
the compensatory lumbar curve. However, unsatisfactory 
outcomes including adding-on and overcorrection have been 
reported, which may be remedied using direct vertebral rota-
tion or translation. Using 3D analysis, Pasha et al. [70, 71] 
found that leveling EIV tilt and reducing rotation were asso-
ciated with reduced coronal Cobb angle and rotation in the 
unfused lumbar spine postoperatively and at latest follow-up. 
This was also found by Kim et al. [94] and Chang et al. [95] 
using the Nash–Moe method to measure change in AVR. 
Using 3D analyses, Zuckerman et al. [96] also found that 
direct vertebral rotation produced significant improvements 
in thoracic AVR and AVR in the unfused lumbar curve. In 
another study by Pasha et al. [79], % EIV derotation was 
found to have different impacts on surgical outcome across 
subgroups of lumbar modifiers and sagittal alignment, and 
patients with C lumbar modifiers were found to benefit from 
more LIV rotation. Kim et al. [94] supported the findings, 
noting that for B and C modifiers, LIV rotation counter-
clockwise to lumbar rotation produced better curve correc-
tion, while for A modifiers, LIV rotation clockwise to lum-
bar rotation prevented overcorrection and distal adding-on.

As for the effect of EIV shift on sagittal alignment, 
Homans et al. [78] reported that a larger anterior shift of 
UIV during surgery was moderately associated with a higher 
PJK angle. This was attributed to the subsequent rebound 
of the UIV to a posterior position, which aligned with the 
hypothesis shared by Alzakri et al. [97, 98] that PJK devel-
ops as a compensatory mechanism to restore global sagit-
tal balance in patients with reduced thoracic kyphosis. This 
further highlights the significance of sagittal alignment, even 
in patients with normal preoperative kyphosis.

Regarding rod curvature, preoperative rod-to-spine con-
tour was reported to be predictive of change in thoracic 
kyphosis from two studies with low risk of bias. Kluck 
et al. [84] quantified rod contour prior to insertion using 
the rod-to-spine distance, while Le Navéaux et al. [83] 
measured the difference between rod curvature and kypho-
sis. Both parameters were found to moderately correlate 
with change in thoracic kyphosis, and their predictive abil-
ity was limited due to flattening of the rods during derota-
tion maneuvers. This has been also identified in a study 
by Newton et al. [99] based on 2D measurements, and it 
was suggested that rod overcontouring by 20° could pre-
vent in vivo deformation. For axial correction, differential 
rod contouring is often performed between the concave 
and convex rods, in which the concave rod is bent sagit-
tal to a larger degree to rotate the concavity of the curve 
backward and bring the convexity of the curve anteriorly. 
Using 3D analysis, Le Navéaux et al. [83] found positive 

associations between the amount of differential contouring 
performed and the degree of AVR correction (R2 = 0.28) 
and orientation of the main thoracic PMC (R2 = 0.41). In 
a CT study by Seki et al. [100], differential rod contour-
ing > 10° resulted in significant improvement of AVR and 
rib hump indices.

Rod material was identified as a predictor with low evi-
dence. While SS rods are less popular due to higher infection 
rates and smaller corrective ability [82, 101, 102], recent 
studies have converged to compare the surgical outcomes 
between Ti and CoCr rods, which have different mechanical 
properties. Ti rods are more elastic, which may undermine 
in situ bending. Two prior comparative studies [38, 103] 
have shown that CoCr rods resulted in a mean 3–4° improve-
ment in correction of 2D TK with no difference in other 
planes. While we identified two studies comparing Ti and 
CoCr rods [80, 81], both did not find significant changes in 
any 3D parameters.

Ponte osteotomies were identified as a predictor of 
postoperative alignment with low evidence. Floccari et al. 
[67] reported that Ponte osteotomies provided an 8% gain 
in coronal correction with no differences in other planes. 
Newton et al. [82] reported that it was weakly associated 
with improved TK, though preoperative flexibility was not 
accounted for in this study. While cadaver and biomechani-
cal studies generally demonstrate that Ponte osteotomies 
increase curve flexibility, human studies have yielded insuf-
ficient evidence supporting the efficacy in radiographic 
correction [104]. However, prior studies did not include 
matched control groups [104–106] and one included 
normokyphotic subjects [107]. While a large study by 
Abousamra et al. [108] has shown that intraoperative blood 
loss was not associated with the number of Ponte oste-
otomies, its use should still be carefully considered given 
increased surgical time and potential neurological compli-
cations [109].

This is the first review to evaluate the predictors of 3D 
postoperative alignment and correction after PSF, which 
includes 3D preoperative spinal parameters and surgical fac-
tors. Several limitations were present in this review. First, 
a meta-analysis could not be conducted due to the lack of 
comprehensive information on patient characteristics and 
detailed surgical technique in most of the included studies. 
However, unless explicitly mentioned otherwise, all included 
studies used pedicle-screw constructs. Further prognostic 
studies should include a multivariable analysis adjusted 
for a set of predictors confirmed in the literature, such as 
baseline spinal parameters and fusion length. This would be 
beneficial for identifying new predictors with independent 
prognostic value. Secondly, publication bias could not be 
assessed since most studies did not report effect sizes and 
confidence intervals. However, the strength of evidence was 
mostly assessable via other domains. Thirdly, no randomized 
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controlled trials or prospective studies were identified dur-
ing our search. Nevertheless, the predictors extracted from 
included studies were rigorously examined for quality of 
evidence.

While it is encouraging to see the emergence of studies on 
3D spinal correction, the review identified a paucity in high-
quality studies contrasting surgical correction between pedi-
cle-screw and hybrid constructs. Additionally, axial rotation 
and DJK were recognized as promising factors with potential 
value in prediction of surgical outcome. We recommend 3D 
preoperative assessment for patients with severe coronal 
Cobb angles to identify hypokyphotic candidates and to 
facilitate surgical planning in these patients. Overbending 
rods are a potential method to prevent rod flattening during 
intraoperative correction that requires further investigation. 
Future work may be expanded using validated algorithms to 
predict 3D parameters based on 2D ones, which may save 
time from manual input. Lastly, further research should 
include comprehensive information on patient and surgical 
details, taking into consideration the wide array of factors 
affecting early postoperative as well as long-term outcomes.

Conclusions

In summary, rod contouring and selection of UIV and LIV 
should be based on sagittal alignment measured using 3D 
TK. Rods should be contoured to mimic normal thoracic 
kyphosis while avoiding excessive anterior shift of the UIV 
in order to prevent PJK. LIV rotation produced favorable 
outcomes in patients with unfused lumbar curves, while 
there was low evidence supporting the use of Ponte osteoto-
mies in lordotic patients. Further investigations should com-
pare surgical correction between pedicle-screw and hybrid 
constructs using matched cohorts.
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