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Abstract
Purpose To develop and validate a deep learning (DL) model for detecting lumbar degenerative disease in both sagittal 
and axial views of T2-weighted MRI and evaluate its generalized performance in detecting cervical degenerative disease.
Methods T2-weighted MRI scans of 804 patients with symptoms of lumbar degenerative disease were retrospectively col-
lected from three hospitals. The training dataset (n = 456) and internal validation dataset (n = 134) were randomly selected 
from the center I. Two external validation datasets comprising 100 and 114 patients were from center II and center III, 
respectively. A DL model based on 3D ResNet18 and transformer architecture was proposed to detect lumbar degenerative 
disease. In addition, a cervical MR image dataset comprising 200 patients from an independent hospital was used to evalu-
ate the generalized performance of the DL model. The diagnostic performance was assessed by the free-response receiver 
operating characteristic (fROC) curve and precision–recall (PR) curve. Precision, recall, and F1-score were used to measure 
the DL model.
Results A total of 2497 three-dimension retrogression annotations were labeled for training (n = 1157) and multicenter 
validation (n = 1340). The DL model showed excellent detection efficiency in the internal validation dataset, with F1-score 
achieving 0.971 and 0.903 on the sagittal and axial MR images, respectively. Good performance was also observed in the 
external validation dataset I (F1-score, 0.768 on sagittal MR images and 0.837 on axial MR images) and external validation 
dataset II (F1-score, 0.787 on sagittal MR images and 0.770 on axial MR images). Furthermore, the robustness of the DL 
model was demonstrated via transfer learning and generalized performance evaluation on the external cervical dataset, with 
the F1-score yielding 0.931 and 0.919 on the sagittal and axial MR images, respectively.
Conclusion The proposed DL model can automatically detect lumbar and cervical degenerative disease on T2-weighted MR 
images with good performance, robustness, and feasibility in clinical practice.
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Introduction

Intervertebral disc degeneration was first described by 
Dexler in 1896 [1]. And now, it is a worldwide health 
problem related to enormous medical and social costs [2]. 
This degenerative progression occurs most commonly in 
the cervical and lumbar intervertebral discs. And in clini-
cal practice, magnetic resonance imaging (MRI) is the 
best noninvasive assessment for investigating degenerative 
discs. However, there are several pitfalls in MR imaging. 
Some benign lesions and normal variations could be con-
fused with more severe pathologies in clinics. Interverte-
bral disc prolapse sometimes mimics infective spondyli-
tis or vertebral osteophytes. A sequestrated disc fragment 
could easily be mistaken for neurogenic tumors, epidural 
synovial cysts, epidural hematomas, and conjoined nerve 
roots [3].

In the last decade, there has been a massive increase in 
the use of artificial intelligence (AI) and machine learning 
(ML) technologies for auxiliary diagnosis clinically. It has 
excellent image recognition ability for the intervertebral 
disc. And it can improve diagnostic accuracy, mark critical 
information and reduce human error.

Previous reports show that deep learning approaches can 
achieve good performance in identifying, diagnosing, and 
grading lumbar degenerative diseases. The accuracy of some 
classification methods is comparable to that of radiologists 
[4–7]. However, most of these studies only use limited data 
from a single center. Thus, the robustness and generalization 
ability of the algorithms could be unreliable. In addition, 
many of those still require manual segmentations as input, 
which is expensive, time-consuming, and may also cause 
subjective bias.

In this multicenter study, we proposed a deep learning 
model for detecting degenerative discs in both sagittal and 
axial views of T2-weighted MRI. As an exploration of the 
application of deep learning for detecting lumbar degenera-
tive disease, this work also assesses the robustness and gen-
eralization ability in detecting cervical degenerative disease 
on an independent dataset via a transfer learning approach.

Materials and methods

Patient enrollment

Patients who underwent MR scans from Jan 2019 to Jan 
2020 in Center I hospital, July 2021 to Oct 2021 in center 
II hospital, and May 2021 to July 2021 in center III hospital 
were retrospectively reviewed. The inclusion criterion was 
that patients had been diagnosed with lumbar intervertebral 
disc prolapse. Patients were excluded if (1) they had received 
any treatment (surgery or chemoradiation) before the MR 
scan; (2) they had been diagnosed with neurogenic tumors, 
epidural synovial cysts, epidural hematomas, or infective 
spondylitis; (3) MR images could not be obtained or inter-
preted. Ultimately, 590 patients from center I, 100 patients 
from center II, and 114 from center III were enrolled in our 
study. The patients from the center I were randomly divided 
into a training dataset (n = 456) and an internal validation 
dataset (n = 34). The patients from center II to center III 
were used as independent external validation datasets.

MR protocol

All patients who underwent MR examination in Center I 
Hospital were performed on one 3.0 T MR scanner (Mag-
netom Vida, Siemens Healthcare GmbH, Germany) using 
the original standard spine coil (Spine 32, Siemens Health-
care GmbH, Germany). An institutional protocol was used 
for imaging consisting of the following three standard 
sequences: Sagittal T1-weighted (TR/TE 360/8.4 ms, the 
field of view (FOV) 280 × 280 mm, slice thickness and 
increment (SL) 4 mm, acceleration mode (AM) GRAPPA, 
acceleration factor (AF) 2, number of excitations (NEX) 2, 
acquisition time (AT) 112 s); sagittal T2-weighted (TR/TE 
3000/96 ms, FOV 280 × 280 mm, SL 4 mm, AM None, NEX 
1, AT 84 s); Axial T2-weighted (TR/TE 3000/91 ms, FOV 
180 × 180 mm, SL 3.5 mm, AM GRAPPA, AF 2, NEX 3, 
AT 86 s).

The scanning parameters of MR for the patients from dif-
ferent hospitals are listed in Table 1.

Table 1  Summary of scanning 
parameters

Hospital Center II hospital Center III hospital

MR scanner 1.5 T Philips, Philips Medical Suzhou Co., 
Ltd, China

1.5 T Siemens Healthcare GmbH 
Henkestr. 127 91,052 Erlangen 
Germany

Sagittal T1 TR/TE 400/15.0 ms; Thickness 4 mm TR/TE 580/9.9 ms; Thickness 4 mm
Sagittal T2 TR/TE 3000/100 ms; Thickness 4 mm TR/TE 3440/121 ms; Thickness 4 mm
Axial T2 TR/TE 4338/120 ms; Thickness 4 mm TR/TE 3920/122 ms; Thickness 4 mm
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Pre‑processing of MR images

The axial and sagittal views of MR images were collected 
from the picture archiving and communication system 
(PACS) and stored in a workstation as digital imaging and 
communications in medicine (DICOM) metadata for annota-
tion and further analysis. The low-frequency intensity non-
uniformity present in MRI images was corrected with the N4 
bias field correction algorithm [8]. The lumbar degenerative 
discs were manually labeled as ground truth by two radiolo-
gists with more than ten years of experience in consensus. 
When there were disputes between the two radiologists, 
a senior expert with more than 20 years of experience in 
musculoskeletal imaging was consulted for the final deci-
sion. The pixel interpolation approach was used to transform 
the original sagittal-view and axial-view MR images to the 
voxel size of 12*256*256 and 24*256*256, respectively. 
8630 annotations of 2497 lumbar degenerative discs from 
804 patients were labeled as ground truth. To enhance the 
training and robustness of the convolutional neural network, 
sophisticated data augmentation techniques, including ran-
dom flipping, random rotation, perturbations to contrast, 
Gaussian random noise, and nonlinear brightness transfor-
mation, were also performed [9].

Development of the deep learning model

A deep learning (DL) model was proposed for lumbar 
degenerative disc detection. The schematic illustration of 

the DL model is shown in Fig. 1. The DL model was based 
on the U-Net encoder-decoder architecture. Two modified 
3D Resnet18 networks without parameter sharing were 
applied separately as encoders for the two different modali-
ties (sagittal-view MR image and axial-view MR image). 
We modified the original Resnet18 network into a 3D ver-
sion according to our data characteristics, and the channels 
between each layer were reduced to 16-32-64-128-192 due 
to the parameter redundancy in 3D networks. Transformer-
based multi-modality cross attention was also applied to 
enhance the interaction of two MR modalities and better 
investigate multi-modal paired attention. The head number 
of multi-head attention was set to eight [10].

The proposed DL model was trained based on the unified 
loss function generalizing both dice loss and focal loss. The 
weights of hidden layers were randomly initialized, and the 
batch size and initial learning rate were set to 4 and 0.0001, 
respectively. Adam W, an algorithm that modifies the typical 
implementation of weight decay in Adam, was used as the 
optimizer in the training stage owing to its fast convergence 
and improved implementation of weight decay [11]. The 
training was terminated when the loss in the validation set 
stopped decreasing, and the max number of epochs was set 
to 300.

The supervised training process of the DL model was 
performed on a computer with a Core i7-6700 K 4.00-GHz 
central processing unit (Intel, Santa Clara, Calif), 32 GB 
memory, and a GeForce GTX 2070 graphics processing unit 
(NVIDIA, Santa Clara, Calif). The DL model was developed 

Fig. 1  Schematic illustration and detection flowchart of the 3D ResNet18 and transformer architecture of the proposed deep learning model
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and validated with InferScholar platform version 3.5. Python 
3.6.8 (https:// www. python. org/) and the framework for 
neural networks of MXNet 1.5.0 (https:// mxnet. incub ator. 
apache. org/) were applied for model construction.

Transfer learning for the detection of cervical 
degenerative disease

To investigate the generalizability of our DL model in the 
detection of common vertebral lesions, we also applied a 
transfer learning framework to the detection of cervical 
degenerative disease. In detail, the convolutional layers 
of the DL model were frozen and transferred into the new 
model, while the fully connected layers (softmax layer) were 
retrained with randomly initialized parameters on the top of 
the transferred convolutional layers. Then, the newly ini-
tialized DL model took the original image bottlenecks as 
input and retrained to detect degenerative spine lesions. We 
collected an external cervical MR image dataset containing 
the sagittal-view and axial-view MR images of 200 patients 
with the cervical degenerative disease in Center I hospital 
from Oct 2021 to Jan 2022. The inclusion criterion was that 
patients had been diagnosed with cervical intervertebral disc 
prolapse. Patients were excluded if (1) they had received 
any treatment (surgery or chemoradiation) before the MR 
scan; (2) they had been diagnosed with neurogenic tumors, 
epidural synovial cysts, epidural hematomas, or infective 
spondylitis; (3) MR images could not be obtained or inter-
preted. The annotation and pre-processing of MR images 
were the same as those of the lumbar degenerative patients, 
which had been described before.

Model performance evaluation

To evaluate the capacity of the DL model for detecting the 
lumbar degenerative disc in the validation dataset, a preci-
sion-recall curve was plotted to show the precision-recall 
pairs for different probability thresholds. The precision is 
the ratio of TP/(TP + FP), and the recall is the ratio of TP/
(TP + FN), where TP, FP, and FN are the numbers of true 
positives, false positives, and false negatives, respectively. A 
TP was defined as a correct detection of the lumbar degen-
erative disc. An FP was defined as a wrong prediction of the 
lumbar degenerative disc. An FN was defined as a missed 
detection of the lumbar degenerative disc. Since there were 
no true negatives in the lumbar degenerative disc detection 
task, the ROC curve and specificity were not applicable in 
this study. Therefore, the free-response receiver operat-
ing characteristic (fROC) curve was used to evaluate the 
comprehensive performance of the DL model. F1 score 
was also used to measure the weighted average of precision 
and recall of our DL model, which was defined as follows: 
F1 = 2 × Precision × Recall/(Precision + Recall).

Statistical analysis

The Mann–Whitney U test was used to evaluate the differ-
ences in the numerical variables across different categories. 
Differences in the dichotomous variables were calculated 
with the Chi-squared test. A two-sided p value less than 0.05 
was considered statistically significant. All analyses were 
performed using SPSS for Windows (version 26.0, IBM).

Results

Study population characteristics

The flowchart of patient enrollment is presented in Table 2, 
and a total of 268 males and 188 females were divided into 
the training dataset with an average age of 43.4 years (range 
12–86 years). There were 67 males and 67 females in the 
internal validation dataset with an average age of 48.0 years 
(range 12–79 years), 51 males and 49 females in the external 
validation dataset I with an average age of 52.7 years (range 
16–84 years), and 55 males and 59 females in the exter-
nal validation dataset II with an average age of 59.5 years 
(range 17–88  years), respectively. The total number of 
labeled lumbar degenerative discs in the training dataset, 
internal validation dataset, external validation dataset I, and 
external validation dataset II was 1157, 395, 194, and 144, 
respectively. There were 607 labeled cervical degenerative 
regions from 128 males to 72 females with an average age 
of 53.9 years (range 23–82 years) in the external cervical 
MR image dataset.

Model performance for detecting lumbar 
degenerative disc

The DL model showed favorable performance in lumbar 
degenerative disc detection in the validation dataset, with 
the F1 score and the areas under the fROC curve achiev-
ing 0.971 (95% CI 0.951–0.987) and 0.968 (95% CI 
0.943–0.994) for the sagittal-view MR images, and 0.903 
(95% CI 0.870–0.935) and 0.896 (95% CI 0.870–0.932) 

Table 2  Clinical characteristics of the enrolled patients

Dataset Male Female Age (range)

Lumbar discs
Training dataset 268 188 43.4 (12–86)
Internal validation dataset 67 67 48.0 (12–79)
External validation dataset I 51 49 52.7 (16–84)
External validation dataset II 55 59 59.5 (17–88)
Cervical discs
External cervical dataset 128 72 53.9 (23–82)

https://www.python.org/
https://mxnet.incubator.apache.org/
https://mxnet.incubator.apache.org/
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for the axial-view MR images, respectively. The DL model 
also showed promising detective capability in the external 
validation dataset I, and the F1 score and areas under the 
fROC curve were 0.768 (95% CI 0.693–0.838) and 0.764 
(95% CI 0.691–0.837) for the sagittal-view MR images 
as well as 0.837 (95% CI 0.762–0.895) and 0.808 (95% 
CI 0.636–0.880) for the axial-view MR images. Similar 
performance was observed in the external validation data-
set II with the F1 score and areas under the fROC curve 
yielding 0.787 (95% CI 0.723–0.855) and 0.732 (95% CI 
0.648–0.817) for the sagittal-view MR images, and 0.770 
(95% CI 0.678–0.844) and 0.721 (95% CI 0.640–0.802) for 
the axial-view MR images, respectively. The detailed preci-
sion and recall of the DL model in these multicenter valida-
tion datasets are summarized in Table 3. The fROC curve 
is shown in Fig. 2, and the precision-recall curve is shown 
in Fig. 3.

Transfer learning performance on cervical 
degenerative disease

In the model robustness and generalized evaluation on the 
external cervical MR image dataset, the DL model had 

achieved an F1 score of 0.931 (95% CI 0.907–0.955), with 
a precision of 0.974 (95% CI 0.953–0.991) and a recall of 
0.893 (95% CI 0.857–0.929) for the sagittal MR images, and 
an F1 score of 0.919 (95% CI 0.891–0.944), with a preci-
sion of 0.942 (95% CI 0.909–0.973) and a recall of 0.897 
(95% CI 0.858–0.934) for the axial MR images, respec-
tively. The areas under the fROC curve were 0.911 (95% CI 
0.873–0.950) for the sagittal MR images and 0.882 (95% CI 
0.839–0.925) for the axial MR images. These results demon-
strated the generalization capability of our DL model, which 
had good overall accuracy for cervical degenerative disease 
detection. The fROC curve and the precision-recall curve 
of the DL model in the external cervical MR image dataset 
are shown in Fig. 4.

Discussion

The aging of society has resulted in a significant increase 
in spinal images over the past decades, for both the grow-
ing burden of spinal disease and the more popularized 
application of MR. Artificial intelligence (AI) and machine 
learning (ML) technologies are playing a more critical role 

Table 3  Detailed performance of the deep learning model in the internal validation dataset, external validation dataset I, and external validation 
dataset II for the lumbar degenerative disc detection

Dataset Precision (95% CI) Recall (95% CI) F1-score (95% CI)

Sagittal MRI Axial MRI Sagittal MRI Axial MRI Sagittal MRI Axial MRI

Internal validation 0.971 (0.943, 0.995) 0.948 (0.898, 0.983) 0.971 (0.947, 0.990) 0.862 (0.818, 0.909) 0.971 (0.951, 0.987) 0.903 (0.870, 
0.935)

External valida-
tion I

0.785 (0.699, 0.869) 0.885 (0.809, 0.952) 0.753 (0.670, 0.837) 0.794 (0.710, 0.865) 0.768 (0.693, 0.838) 0.837 (0.762, 
0.895)

External valida-
tion II

0.737 (0.655, 
0.829)

0.670 (0.565, 
0.758)

0.843 (0.761, 
0.924)

0.905 (0.827, 
0.972)

0.787 (0.723, 
0.855)

0.770 (0.678, 
0.844)

Fig. 2  Free-response receiver operating characteristic (fROC) curve analysis of the deep learning model in the internal validation dataset (A), 
external validation dataset I (B) and external validation dataset II (C)
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in the diagnosis of spinal disorders [12]. Researchers and 
engineers are working together to develop AI-assisted 
diagnostic systems to improve the accuracy of diagnosis 
and reduce the disease burden on society. In recent years, 
machine learning techniques have been applied in the 
diagnosis of spinal disorders, such as spinal degenerative 
disease, trauma, oncology, and deformity. Recent literature 
also shows the potential of deep learning-based approaches 
for reliable quantifications of the vertebrae and discs and 
for facilitating decision-making in the treatment of lum-
bar disc herniations. However, most of the ML studies are 
based on limited data in a single center. It is essential to 
develop optimized algorithms that allow AI programs have 
the ability to analyze all kinds of images precisely from 
different medical centers with various scanning param-
eters. Furthermore, it is also crucial for an ideal AI system 
to give both qualitative and quantitative descriptions of 
the lesions. For example, in the case of intervertebral disc 
prolapse, the AI system should not only tell surgeons the 
level of the prolapsed disc, but also exhibit the borderline 

of the lesion and its relationship with other critical organs 
and tissues.

This study included a wide range of patients aged 
12–86 years to add a relatively wide variety of disc mor-
phology and hydration to the Deep Learning database. And 
it provided more reasonable results. The major findings 
of our study reveal that the deep learning algorithm has 
achieved good performance and is highly consistent with 
the radiologist’s expert reading for detecting lumbar degen-
erative disease. Several previous researches have reported 
automated detection of intervertebral disc degeneration 
using deep learning approaches [13]. However, these stud-
ies only use limited data from a single center to validate the 
performance. As an important step for evaluating a deep 
learning-based model, external validation is necessary for 
assessing the model’s robustness and generalization, which 
could avoid the overestimation of model performance caused 
by overfitting [14]. Various studies have demonstrated that 
the diagnostic performance of deep learning models can 
vary across different datasets [15, 16]. Our proposed model 

Fig. 3  Precision–recall (PR) curve analysis of the deep learning model in the internal validation dataset (A), external validation dataset I (B) and 
external validation dataset II (C)

Fig. 4  The free-response 
receiver operating characteristic 
(fROC) curve analysis (A) and 
precision-recall (PR) curve 
analysis (B) of the deep learning 
model in the external cervical 
MR image dataset
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showed high detective accuracy on both sagittal and axial 
views of T2-weighted MRI in the internal validation dataset. 
The model also had good robustness, achieving favorable 
performance in two external validation datasets.

Quantitative analysis provides valuable information and 
can help clinicians make better decisions, and some deep 
learning-based lumbar disc degeneration-related quantita-
tive models have been developed in recent years [2, 17, 18]. 
However, the reliability and validity of quantitative segmen-
tation and measurement of disease regions still need further 
validation in clinical practice. Moreover, the diseased area 
of the degenerative cervical spine is commonly irregular, 
with unclear boundaries in the MRI image, which makes 
the accurate annotation of the disease region difficult. Mean-
while, the quality of MR images is mainly dependent on the 
scanning parameters, which are usually changed across dif-
ferent institutions or even varied in each MR scanner in the 
same center [19]. Therefore, the subjective bias of assess-
ment and segmentation of lesion areas in the MR images 
seems inevitable, even between experienced radiologists 
[20]. This, in turn will have a substantial impact on the 
training and validation of the segmentation neural networks. 
Therefore, in this case, we choose to use detection networks 
to solve this problem rather than the segmentation networks 
such as U-Net.

An important distinction of our work from previous 
studies is the use of transfer learning to detect cervical disc 
herniation. Cervical and lumbar disc herniations are both 
degenerative spinal diseases in their pathophysiological 
mechanism, and the degenerative discs in the cervical and 
lumbar regions show similar characteristics in MR imaging. 
For these reasons, our research further explored the possibil-
ity of transferring the learning technique generated from the 
lumbar dataset to evaluate cervical disks. Although it was 
only a preliminary study, the results were quite inspiring. As 
a highly effective technique, transfer learning is suitable for 
dealing with medical images, particularly when faced with 
limited data [21, 22]. By using the transfer learning tech-
nique, Kermany et al. [23] built a generalized platform that 
could both classify diabetic macular edema and age-related 
macular degeneration on optical coherence tomography 
images and diagnose pediatric pneumonia on chest X-ray 
images. In this study, we also investigated the effectiveness 
of transfer learning in detecting cervical degenerative dis-
ease on limited T2-weighted MR images from 200 patients. 
We found that our model retained high detective accuracy, 
thereby illustrating the generalization of our proposed deep 
learning algorithm and the power of transfer learning to 
achieve good performance even with a small dataset.

There are several limitations of our study. First, although 
a relatively larger cohort from several institutions was col-
lected for model development and validation, we are still 
aware that the sample size is not big enough for a deep 

learning algorithm that contains millions of parameters. 
More patients from different hospitals should be collected 
to improve the accuracy of lumbar and cervical degenerative 
disease detection. Second, our study focused on the analysis 
of T2-weight MR images, which were most commonly used 
to investigate degenerative discs. However, other modalities 
such as radiographs, CT, and lumbar discography could also 
infer anatomic changes and help to exclude other diagnoses 
[24]. The fusion of multi-modality images such as CT and 
MR could be a promising area of future investigation. Third, 
although our model had achieved high accuracy in detect-
ing degenerative discs, there were some technical difficulties 
in the accurate identification of the boundary of a herni-
ated disc, especially the floor of the lesion in MRI. Further 
quantitative analysis, including characterization of different 
degeneration grades, would lead to more critical in clinical 
practice, which would also be our future work.

Conclusion

The proposed DL model can automatically detect lumbar 
and cervical degenerative disease on T2-weighted MR 
images with good performance, robustness, and feasibility 
in clinical practice.
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