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Abstract
Purpose Multiple diverse factors contribute to musculoskeletal pain, a major cause of physical dysfunction and health-
related costs worldwide. Rapidly growing evidence demonstrates that the gut microbiome has overarching influences on 
human health and the body’s homeostasis and resilience to internal and external perturbations. This broad role of the gut 
microbiome is potentially relevant and connected to musculoskeletal pain, though the literature on the topic is limited. Thus, 
the literature on the topic of musculoskeletal pain and gut microbiome was explored.
Methods This narrative review explores the vast array of reported metabolites associated with inflammation and immune-
metabolic response, which are known contributors to musculoskeletal pain. Moreover, it covers known modifiable (e.g., diet, 
lifestyle choices, exposure to prescription drugs, pollutants, and chemicals) and non-modifiable factors (e.g., gut architecture, 
genetics, age, birth history, and early feeding patterns) that are known to contribute to changes to the gut microbiome. Par-
ticular attention is devoted to modifiable factors, as the ultimate goal of researching this topic is to implement gut microbiome 
health interventions into clinical practice.
Results Overall, numerous associations exist in the literature that could converge on the gut microbiome’s pivotal role in 
musculoskeletal health. Particularly, a variety of metabolites that are either directly produced or indirectly modulated by the 
gut microbiome have been highlighted.
Conclusion The review highlights noticeable connections between the gut and musculoskeletal health, thus warranting future 
research to focus on the gut microbiome’s role in musculoskeletal conditions.
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Introduction

The complex and multi-dimensional experience of pain 
involves various mechanisms, which are only partially 
understood. The relationship between gut microbiome (GM) 
and painful conditions has received increasing research 
attention. Growing evidence shows that GM is a crucial 
modulator of human physiological homeostasis, playing 
a not-fully-understood but undoubtedly significant role in 
systemic inflammation, immunity, circadian rhythm, and 
regulation of hormone levels; all these aspects of homeo-
stasis have been linked to pain. GM has been associated with 
visceral pain [1], inflammatory pain, headache, neuropathic 
pain, chronic pain, and opioid tolerance [2]. With contribu-
tions from multiple types of pain, musculoskeletal (MSK) 
pain is highly prevalent [3], a significant source of disabil-
ity [4], and a frequent reason for medical care [5]. There 
is initial evidence linking GM and MSK pain, though the 
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mechanisms are not clarified yet. This review covers the cur-
rent literature on the common mechanisms of GM and pain 
modulation, focusing on potential connections between GM 
and MSK pain mechanisms to help direct further research 
on the topic.

The composition of the GM is complex and spans three 
kingdoms (bacteria, archaea, fungi), and it has recently been 
expanded to include viruses [6]. In 2012, a paper pointed 
at the number of known species composing the GM to be 
over 1000 [7], while a more recent effort (2019) to study the 
composition raised that number to almost 2000 species [8].

The overall genomic material from intestinal microbes 
has been estimated to be greater than 100 times the size of 
the human genome [9]. While more than 99% of the GM 
bacteria are from only four phyla (Firmicutes, Bacteroi-
detes, Proteobacteria, and Actinobacteria), most bacteria in 
healthy adults come from Firmicutes or Bacteroidetes [10]. 
It is currently postulated that the microbiome population 
is shaped through adaptation that likely involves factors on 
multiple levels [11] (personal, interpersonal, environmental, 
and geographical).

GM samples for analysis are collected from stool, and 
microbiome profiling is conducted using, in most cases, 
culture-independent methods to sequence16S rRNA gene 
amplicons or shotgun sequencing of whole microbial com-
munities (metagenomics). Other methods for studying the 
GM population exist, such as whole microbial community 
RNA sequencing (metatranscriptomics), while proteomics 
and metabolomics can be used to obtain simultaneous infor-
mation about the host and microbiome [12]. The choice of 
method to use is often dictated by funding and technology, 
as higher costs and more complex methodologies accom-
pany more thorough analyses.

Gut microbiome and pain

Gut microbiome homeostasis and disruption

In healthy individuals, GM is characterized by a state of 
dynamic homeostasis defined by the richness and diversity 
of the GM population [13] and by its stability and resil-
ience through perturbations of various types [14]. Numerous 
modifiable and non-modifiable factors play a role in deter-
mining the GM composition and its alterations (Table 1). In 
physiological homeostasis, the GM has been hypothesized 
to play a role in properly maintaining the permeability of 
the intestinal wall [15]. Such permeability is fundamental 
in how numerous antigens (from foods, pathogens, and gut 
microbes) are treated in the gut and how they affect the 
immune response [16].

Perturbations to a healthy GM ecosystem can result 
in dysbiosis, a distinct ecological state of the microbial 

community [59]. Dysbiosis could involve changes to criti-
cal bacterial species, leading to altered permeability, physi-
ological and metabolic functions, and ultimately predispos-
ing diseases. An example of dysbiosis is the so-called “leaky 
gut syndrome”, a condition characterized by altered perme-
ability of the intestinal walls to antigens [60], leading to 
systemic inflammation and aberrant immune response [61]. 
Other examples of diseases characterized by altered and spe-
cific gut microbiome blueprints include neurodegenerative 
diseases [62], metabolic syndrome [63], and inflammatory 
bowel disease [10].

In the case of painful conditions, a handful of specific 
species correlates with disease status. One example includes 
Faecalibacterium Prausnitzii (FP), whose lower concentra-
tions correlate with osteoarthritis severity in older female 
adults [64], and Crohn’s disease (a condition for which 
pain is the most common symptom) [65]. In line with these 
findings, higher concentrations of FP correlate with anti-
nociceptive effects in a rat model of Irritable Bowel Dis-
ease [66]. Other species relevant to painful conditions are 
the Streptococcus species, with an increase associated with 
knee osteoarthritis pain [67], or the Coprococcus species, 
the depletion of which has been associated with chronic 
widespread pain [68].

While individual species have been implicated in many 
conditions, overall evidence highlights that interactions 
among different species are complex and more likely to 
explain the pathophysiology of various diseases (including 
painful ones) than any single species alone. For example, a 
recently published study found that a combination of spe-
cies correctly predicted the diagnosis of 88% of fibromyalgia 
patients [69].

Gut microbiome, inflammation, immune response, 
and impact on host physiology

The current evidence converges on the crucial role of GM in 
mediating systemic inflammation. In a state of inflammation 
(both local and systemic), the body can change how stimuli 
are perceived and processed. For example, in an inflamma-
tory state, noxious stimuli can produce an increased response 
to pain, known as hyperalgesia, while non-noxious stimuli 
can be perceived as painful, known as allodynia [70]. The 
state of low-grade chronic systemic inflammation has been 
theorized to predispose to chronic pain and other chronic 
diseases [71].

Converging evidence highlights that GM can impact 
the inflammatory state by producing various metabolites 
(explained in the next section) and modulating systemic 
inflammatory cytokines production. For example, a study 
on healthy subjects linked the GM composition to the capac-
ity to produce inflammatory cytokines (IL-1b, IL-6, TNFα, 
IFNγ, IL-17, and IL-22) [72]. A recent study on cytokine 
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levels in SARS-CoV-2 patients highlighted that cytokine 
levels mediated by the GM composition were associated 
with the magnitude of the COVID-19 severity [73]. Another 
study on mice suggested GM modulating specific cytokines 
by affecting T cells [74].

Several reviews also emphasized the proven link between 
GM and immune-mediated inflammatory response. The 
modulatory changes that the GM has on the immune 
response are mediated by changes to the function of B and T 
cells, which also influences the host’s resistance to pathogens 

Table 1  Known contributing 
factors to GM composition and 
alteration

Examples References

Non-modifiable factors
Gut architecture Microphysical gut structure [17]

Macrophysical gut structure [17]
Human genetics FUT2 [18]

NOD2 [19]
LCT [20]

Birthing history Vaginal delivery [21]
C-section [22]

Early feeding patterns Breastfeeding [23]
Formula [24]

Age (or life stages) Children, [25]
Adults, [26]
Elderly [27]

Geographic location Climate, [28]
Lifestyles, [29]
Genetic background, [30, 31]
Dwelling location, [32]
Food access, [33]
Employment [34]

Members of minorities Ethnicity [35, 36]
Self-identified race [33]
Sexual identity [33]
Gender status [33]

Modifiable factors
Diet Dietary patters

Western [37]
Mediterranean [38]
Pro- or anti-inflammatory dietary tendencies [39]

Lifestyle choices Smoking, [40]
Alcohol consumption, [41]
Exercise [42]

Traumatic events Traumatic brain injury, [43, 44]
Spinal cord injury, [45, 46]
Chronic stress [47, 48]

Interventions Probiotic, [49]
Prebiotic, [50]
Fecal microbiota transplant (FMT) [51]

Prescription Drugs Antibiotics, [52]
Proton pump inhibitors, [53]
Laxatives, [54]
Metformin [55]

Exposure to chemicals pollutants, 
or drugs

Cadmium chloride, [56]
Arsenite, [57]
glyphosate [58]
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[75]. These immune function changes also impact the vari-
ous GM-mediated cytokines and chemokines levels’ (e.g., 
IL-1, IL-6, IL-10, TGFβ, TNFα, IFNγ, IL-17, and IL-22). 
Such changes have been related to a variety of alterations 
of physiological homeostasis, including metabolic func-
tion (insulin resistance and obesity [76], exercise-induced 
stress behavior and its impact on the gut-microbiota-brain 
axis [77], and cancer [78]), modulation of nerve function 
(blood–brain barrier integrity and brain health [79]), and 
autoimmunity [80].

Gut microbiome metabolites as possible 
contributors to pain

The GM produces a broad spectrum of metabolites that 
impact the human body on multiple levels (Table 2), from a 
local impact on the GI tract to organ-specific distal from the 
GI tract to systemic [81]. The GM’s multiple metabolites 
that correlate with pain will be addressed in this section to 
highlight the possible involvement of specific pathways and 
mechanisms that should be investigated in future studies and 
could become relevant for potential therapies.

GM in humans produces various hormones (or com-
pounds acting as such), so GM can be considered an endo-
crine organ functionally [98]. This definition relies on the 
fact that GM produces numerous chemicals that act via the 
bloodstream to distal sites in the human body. These hor-
mones can be classified as being directly produced by the 
GM or indirectly regulated by the GM.

Hormones (and compounds acting as hormones) 
directly produced by the gut microbiome

The first group includes chemicals that mediate pain, includ-
ing short-term fatty acids (SCFAs) and neurotransmitters 
(including some precursors). SCFAs are produced in the 
large intestine by the GM through anaerobic fermentation 
of dietary fibers [99]; bacteria from the Bacteroidetes phy-
lum mainly produce propionate, while bacteria from the 
Firmicutes phylum mainly produce butyrate [82]. SCFAs 
play a critical role in modulating intestinal inflammation 
and epithelial barrier function [82]; dysfunction at the epi-
thelial barrier level is one of the leading causes of “leaky gut 
syndrome” that plays a vital role in various painful condi-
tions. Moreover, SCFAs produced in the gut can enter the 
bloodstream [82], further contributing to the modulation of 
systemic inflammation [81]. For example, butyrate and pro-
pionate serum levels were significantly altered in a group 
of subjects affected by fibromyalgia compared to healthy 
controls [69].

Serotonin, dopamine, noradrenaline, glutamate, and 
GABA are directly produced by the GM or indirectly regu-
lated by it. Dopamine, long considered a key modulator of 
reward-seeking behavior, is produced in large quantities in 
the gut [100]; it also participates in the immune response 
[101], thus being important in the modulation of systemic 
inflammation. Interestingly, at least 50% of dopamine is 
synthesized in the gut, with GM likely playing a significant 
part in the production process [102]. Its complex role in the 
human body includes a modulatory function for chronic pain 
through the nigrostriatal and mesolimbic pathways [103]. 
Also, growing evidence has been mounting on the implica-
tions of dopamine dysregulation in the brain as a pivotal 
player in chronic pain’s sensory and affective aspects [84]. 
A review of mice studies strongly suggested that alterations 
in the GM significantly compromise dopaminergic neuro-
transmission in the brain [85].

Serotonin, a complex neuromodulator that regulates 
various processes [104], including mood regulation [105], 
learning and memory skills [106], and various other physi-
ological processes, is estimated to be produced 90% in the 
gut [107]. Of specific importance for pain, serotonin plays a 
crucial role in the gut-brain axis [108], connecting the cen-
tral nervous system and the gastrointestinal tract bidirection-
ally [109]. The decades-old concept of the gut-brain axis has 

Table 2  GM metabolites as possible contributing mechanisms of pain

Hormones (or compounds acting as hormones) References

Direct 
effect from 
GM

Short chain 
fatty acids

 Butyrate [69, 82]
 Propionate [69, 82]

Neurotransmit-
ters

 Serotonin [83]
 Dopamine [84, 85]
 Noradrenaline [86]
 Glutamate [87, 88]
 GABA [87, 88]

Indirect 
effect from 
GM

Hypothalamic–
pituitary–
adrenal axis 
(HPA)

 Cortisol [89]

GI hormones  Leptin [90–92]
 Ghrelin [93]

Vitamins and nutrients References

D [94, 95]
B1-Thiamine [96]
B2-Riboflavin
B3-Nicotinic acid
B5-Pantothenic acid
B6-Pyridoxine
B7-Biotin
B9-Folic acid
B12-Cyanocobalamin [96, 97]
para-aminobenzoic acid [96]
Inositol
choline
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recently been broadened to include the GM in the so-called 
gut-brain-microbiome axis [110] (or the microbiota-gut axis 
[111]); this more inclusive concept owes to the growing evi-
dence of the GM’s role in modulating the gut-brain pathway 
[112]. For example, GM (through various species, includ-
ing Clostridia, Bacteroides, and Escherichia [113]) can alter 
serotonin levels by affecting the production of tryptophan, 
serotonin’s precursor [114]. Moreover, the brain-gut micro-
biome axis modulates other different physiological functions 
associated with pain, such as modulation of the systemic 
inflammation in various mice models [115], alteration of 
the GI tract function [116] and directly impacting different 
kinds of painful syndromes [83] in humans.

The production of noradrenaline has been associated 
with both specific species (Escherichia, Saccharomyces, 
and Bacillus [117]) and alpha diversity levels in different 
studies [118]. This key neurotransmitter plays a role in pain 
modulation [86] and analgesia [119]. Moreover, noradrena-
line plays a definite role in the mediation of inflammation 
[120], participating in both the acute and the chronic regu-
lation of the immune response [121] through its effect on 
the autonomic nervous system [122] and regulation of the 
circadian rhythm [123].

Glutamate and GABA, functioning respectively as the 
primary excitatory [124] and inhibitory [125] neurome-
tabolites in the central nervous system, play various key 
physiological roles (e.g., inflammation [126]), including the 
processing and modulation of pain [87]. Alterations in the 
metabolism of both molecules have been associated with 
chronic pain [88]. Various gut microbes participate in the 
production of both these metabolites. For example, certain 
species have been found to directly produce glutamate (Lac-
tobacillus and Bifidobacterium [127]), whereas Bacteriodes 
have been associated with GABA production and related 
specific brain signatures typical of depression [128].

Hormones indirectly produced by the gut 
microbiome

The second group of indirect regulation of hormones by the 
GM includes cortisol (chief stress hormone in the hypotha-
lamic–pituitary–adrenal axis (HPA) [129]) and the GI hor-
mones ghrelin and leptin, which are also relevant mediators 
and modulators of pain. Cortisol is the principal stress hor-
mone in humans [130]. While it does not directly affect pain 
[131], a chronic cortisol dysfunction can negatively impact 
the body’s ability to cope with prolonged stress. Maladaptive 
responses to stress can perpetuate widespread inflammation 
and pain, potentially sustaining mechanisms predisposing to 
chronic pain [89]. In mice models, specific pathogens in the 
GM (e.g., E. Coli infection) can heighten the HPA activity 
levels, thus driving the stress response higher than in cases 
where the GM is free of such pathogens [132].

The GI hormone ghrelin has an anti-inflammatory effect 
by increasing the level of anti-inflammatory cytokines in 
the serum. Rat-model studies exploring the role of ghrelin 
on pain showed its anti-nociceptive effects on acute pain 
[133], neuropathic pain [134], and inflammatory pain [135]. 
In humans, evidence points to a modulatory effect of GM on 
the serum levels of ghrelin [93]. Though this evidence is not 
conclusive, it also points to a participating role of ghrelin on 
the gut-brain axis when dealing with stress [136], furthering 
its potential role in mediating pain.

Leptin participates in the pathogenesis of neuropathic 
pain [90], but it also has a role in immunometabolic 
inflammation, characteristic of many chronic pain con-
ditions [91]. Moreover, a study suggests that serum con-
centration of leptin may be a promising biomarker for 
predicting acute pain transition to chronic [92]. The effect 
of leptin on inflammation and immunometabolism makes 
it a potential candidate for the therapeutic development 
of novel interventions for treating autoimmunity [137] 
and metabolic diseases [138]. In rat models, the number 
of specific gut microbial species populations correlates 
with the modulation of serum levels of leptin [139]. In 
humans, the GM indirect modulation of leptin appears to 
be regulated through the production of other metabolites, 
such as SCFAs [140].

Vitamins and nutrients produced by the gut 
microbiome

A healthy GM contributes to the production of various 
vitamins and nutrients [141], the lack of many of which 
have been associated with pain (e.g., Vitamins of the B 
group and Vitamin D).

There is a well-established body of evidence that 
many microbes that reside in the gut produce vitamins 
of the B group [142]. Among the group B vitamins, the 
largest body of literature focuses on the positive effects 
of vitamin B12 in painful conditions, particularly for 
decreased low back pain and neuralgia [97]. The evi-
dence for the other vitamins that are part of the B group 
is weak and unable to differentiate between individual 
vitamins' effects because these vitamins are most often 
administered together in available studies. For example, 
a Cochrane review from 2008 [96] highlighted that the 
vitamin B group positively affects neuropathic pain and 
patients' functional level. Overall, the analgesic effect of 
the group B vitamins could be explained by anti-inflam-
matory, anti-nociceptive, and neuroprotective effects 
widely described in the literature.

For vitamin D, the evidence is less strong. While there 
is evidence that vitamin D levels in the plasma affect the 
gut microbiome [143], no evidence could be found of the 
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reverse association. Significant literature points to the 
association between vitamin D and pain severity. A sys-
tematic review and meta-analysis of observational studies 
pointed at a significant association between vitamin D and 
low back pain [144], though it did not find an association 
between this vitamin and pain intensity. Moreover, two 
other reviews found that vitamin D supplementation has a 
meaningful, beneficial effect of reducing pain in patients 
experiencing chronic pain [94] and chronic widespread 
pain [95] while being safe. While the mechanisms behind 
this pain-decreasing effect are currently unclear, it has 
been postulated that they may have to do with the anti-
inflammatory effect of vitamin D [94].

Other metabolites produced by the gut microbiome 
with a potential indirect effect on pain

A growing body of evidence suggests that epigenetics and 
mRNA expression are altered in pain subjects [97]. Vari-
ous metabolites produced by the GM have an active role in 
epigenetics, for example, acetyl-CoA [145], lactate [146], 
glycine [147], serine [148], and methionine [149]. More-
over, preliminary evidence points to a potential role for 
Acetyl-CoA and lactate in the immune and inflammatory 
responses [150, 151]. Interestingly, specific B vitamins 
(including B2, B3, B5, B6, B9, and B12) also participate 
in regulating genetic responses to environmental factors 
(epigenetics) through the modulation of chromatin-mod-
ulating enzymes [152]. Overall, the presence of these cur-
rently poorly understood mechanisms points to the over-
arching complexity and involvement of multiple systems 
in the painful experience.

Gut microbiome and specific pain 
syndromes

Inflammatory and neuropathic pain

A study on inflammatory pain [153] found that nociceptive 
pain signal is decreased in germ-free mice compared to 
conventional mice. The authors concluded that the interac-
tions between microbiome and host are essential in modu-
lating inflammatory pain. Another study [154] highlighted 
that pernicious changes in the GM of mice correlate with 
temporomandibular joint (TMJ) inflammatory pain. Sub-
sequent improvement of GM through fecal transplantation 
caused a reduction in such pain, strongly suggesting that 
careful manipulation of the GM has the potential to be 
used as a therapeutic approach.

Neuropathic pain, caused by a lesion to a nerve of the 
somatosensory nervous system, has also been impacted by 

GM-mediated alterations of inflammatory metabolites in 
rats [155]. Another study [156] used a chronic constric-
tion injury model of neuropathic pain on mice and found 
that GM modulates neuropathic pain by affecting T cell-
mediated immune and inflammatory responses. This find-
ing underlines the relevance of the GM to the modulation 
of pain even when pain is mechanically induced. Another 
study on adults affected by HIV experiencing neuropathic 
pain found that gut dysbiosis-driven loss of alpha diversity 
in GM was significantly associated with peripheral neu-
ropathic pain [157]. The authors described that increased 
pro-inflammatory and decreased anti-inflammatory GM 
metabolites could explain these results.

Pain perception and generalized pain

Chronic pain and Fibromyalgia

Chronic widespread pain (CWP) has been characterized 
by decreased alpha diversity of the GM. In a study on a 
chronic widespread pain population, Coprococcus comes 
was the most significantly reduced species in the GM [68]. 
A study also found that the alpha diversity of GM is reduced 
in fibromyalgia patients [158]. This study's participants 
significantly reduced the population of bacteria from the 
Bifidobacterium and Eubacterium genera. This finding is 
interesting because both of these genera participate in the 
metabolism of neurotransmitters in the host. Further analysis 
of the serum metabolome discovered significant changes in 
the levels of glutamate and serine. The authors concluded 
that the changes in the GM were associated with changes in 
neurotransmitter metabolism, which contributed to fibromy-
algia's clinical presentation.

Pain perception

Based on the framework that correlates the gut-brain axis 
to various diseases, a recent study showed that acute pain 
perception and anxiety state were associated with specific 
species within the GM of young, healthy males [159]. Spe-
cifically, pain sensitivity showed a positive association with 
bacteria from the Firmicutes phylum and a negative associa-
tion with bacteria from the Bacteroidetes phylum. Moreover, 
a correlation was observed between anxiety state and the 
Bifidobacterium genus. Nonetheless, acute pain perception 
and anxiety were not directly correlated.

Another study that looked at stool classification to ascer-
tain GM's status found that stool consistency was a signifi-
cant predictor of pain perception in healthy subjects [160]. 
This study used the Bristol Stool Form Scale (a widely used 
diagnostic medical tool designed to classify human stool 
into seven categories) and found a significant and positive 
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association with pain and anxiety. Even though this study 
did not look directly at the correlation between GM and 
Bristol Stool Form Scale, other studies did [161], finding 
the associations significant and worthy of inclusion in future 
studies on GM.

Opioid tolerance

The opioid epidemic affecting the US has severe repercus-
sions on individuals and society. On the one hand, the long-
term use of opioids for various pain conditions has been 
associated with adverse changes in the GM; on the other 
hand, the GM may predispose and even mediate the opioid 
tolerance that results from chronic exposure to opioids [162]. 
From an individual's health perspective, opioid use and gut 
microbiome health interaction seem reciprocally interactive.

The mechanisms involved have been postulated to vary 
from opioid use, possibly inducing gut dysbiosis, disrupting 
the gut barrier (resulting in the "leaky gut syndrome" men-
tioned above), and facilitating the translocation of pernicious 
bacteria. Other hypothesized mechanisms include initiating 
Toll-Like Receptors (TLRs)-mediating gut inflammation 
(with concurrent releasing of pro-inflammatory cytokine), 
and regulating neuronal excitability in the peripheral nerv-
ous system [2].

GM and musculoskeletal pain

OA pain

Though various reviews could be found on GM and OA 
[163, 164], only one considered the impact of GM compo-
sition on pain symptoms [165]. Sánchez Romero et al., who 
reviewed GM and OA pain, found only three studies on the 
subject. Overall, the review highlighted weak evidence for 
the link between GM and OA pain, mainly due to the lack 
of high-quality research.

A Dutch study highlighted significant correlations 
between GM composition and knee OA [166]. The results 
were significant after adjusting for smoking, alcohol intake, 
and BMI. A more prominent presence of Streptococcus spe-
cies in the subjects' stool samples was associated with more 
severe knee osteoarthritis (assessed through joint effusion) 
and increased OA knee pain. The results were replicated 
using a different Dutch cohort; Streptococcus species were 
also significantly associated with OA pain in this case. The 
authors were able to determine that the inflammation local-
ized at the knee joint was driving the link between GM and 
pain; thus, they concluded that GM could be a potential way 
to treat OA-driven knee pain,

Another study compared symptomatic vs. asymptomatic 
hand OA in a large cohort (n = 1388) [167]. It found differ-
ences in the relative abundance of specific species, such as 
a low relative abundance of the genus Roseburia and a high 
relative abundance of the genera Biophila and Desulfovibrio 
in the symptomatic hand pain group. The study also found 
alterations in functional pathways relative to amino acids, 
carbohydrates, and lipid metabolism. Overall, the authors 
concluded that GM-related metabolic dysfunction might 
play a part in how systemic inflammation links to OA's pain 
symptoms.

A prior study examined GM after a 12-week supplemen-
tation of Green-lipped mussel extract or glucosamine sulfate 
[168] The consumption of either compound did not signifi-
cantly correlate with changes in the GM; however, it showed 
decreases in various species associated with higher inflam-
matory status (e.g., Clostridia and Staphylococcus) and an 
increase in species associated with decreased inflammatory 
status (e.g., Lactobacillus and Eubacterium). The authors 
concluded that GM should be considered when studying the 
pathogenesis and treatment of musculoskeletal conditions.

LBP obese subjects

Only one study explored the association between back pain 
and GM composition [169]. The study looked at a cohort 
of 36 obese subjects with (n = 14) or without (n = 22) LBP, 
a subset of a larger trial on Vitamin D supplementation. 
The study found significant differences in specific bacte-
rial genera between groups; Adlercreutzia, Roseburia, and 
Uncl. Christensenellaceae were significantly more abundant 
in LBP participants, while Dialister and Lactobacillus were 
more abundant among those without LBP. The authors also 
concluded that increased inflammation could have been the 
cause for such association, thus suggesting an underlying 
mechanism found elsewhere in scientific literature.

Conclusion

No single gut species or combination of gut species has 
been consistently associated with health conditions across 
different host populations. This inconsistency may be due to 
multiple causes, the foremost of which is that the literature 
on the topic is relatively recent and lacks comprehensive 
and systematic studies to understand this complex area of 
research fully. For example, it could be that the changes 
in microbiome species across different populations, ages, 
genetic backgrounds, and lifestyles converge into different 
patterns of pathological microbiota populations. These com-
plex interactions would require large longitudinal studies to 
be addressed and are challenging to run for multiple reasons, 
including costs, time demands, and participant attrition.
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Furthermore, it could be that some subsets of affected 
host populations may be more prone than others to changes 
in microbiota composition leading to pathological outcomes; 
this possibility could be mediated by a variety of mecha-
nisms, including genetic predispositions and overall health 
status. If this is the case, the complexity of researching the 
topic will require access to large datasets and, potentially, 
broad cooperation among research groups to power studies 
large enough to address the complexity of the subject related 
to health and disease. Last, it could be that the intricacy of 
the interaction is due to a bidirectional, self-feeding pattern. 
In this case, an initial perturbation of the GM could lead 
to obesity and changes in diet, leading to pain and intol-
erance to physical activity, thus further exacerbating GM 
alterations.

In conclusion, research is still nascent on the potential 
role of GM in MSK pain, as evidenced by the scarcity of 
literature on this topic; nonetheless, a good amount of sci-
entific research highlights numerous possible mechanistic 
contributors to this association, thus justifying further inves-
tigation. This combination of scarce literature and multiple 
plausible mechanisms raises several questions and strongly 
encourages more research in the area. Such research should 
answer questions on the association between GM and mus-
culoskeletal pain and if this relationship is causal. Moreover, 
it should assess the specific GM changes that drive MSK 
pain and what mechanisms and therapeutic targets could be 
identified for clinical interventions. Ideally, a combination 
of larger systematic cohort studies and clinical trials could 
help determine these associations and their feasibility for 
implementation in clinical practice.
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