Skip to main content

Advertisement

Log in

Cervical immobilization in trauma patients: soft collars better than rigid collars? A systematic review and meta-analysis

  • Review Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Introduction

Rigid cervical spine following trauma immobilization is recommended to reduce neurological disability and provide spinal stability. Soft collars have been proposed as a good alternative because of the complications related to rigid collars. The purpose of this study was to perform a systematic review on soft and rigid collars in the prehospital management of cervical trauma.

Method

A systematic review was performed following the PRISMA guidelines. Search terms were (immobilization) AND (collar) AND ((neck) OR (cervical)) to evaluate the range of motion (ROM) and evidence of clinical outcome for soft and rigid collars.

Results

A total of 18 studies met eligibility criteria including 2 clinical studies and 16 articles investigating the range of motion (ROM). Four hundred and ninety-six patients at a mean age of 32.5 years (SD 16.8) were included. Measurements were performed in a seated position in twelve studies. Eight articles reported the ROM without a collar, 7 with a soft collar, and 15 with a rigid collar. There was no significant difference in flexion/extension, bending and rotation following immobilization with soft collars compared to no collar. Rigid collars provided significantly higher stability compared to no collar (p < 0.005) and to soft collars in flexion/extension and rotation movements (p < 0.05). The retrospective clinical studies showed no significant differences in secondary spinal cord injuries for soft collar (0.5%) and for rigid collar (1.1%). One study, comparing immobilization without a collar compared to that with a rigid collar, found a significant difference in neurologic deficiency and supraclavicular nerve lesion.

Conclusion

Although rigid collars provide significant higher stability to no collar and to soft collars in flexion/ extension and rotation movements, clinical studies could not confirm a difference in neurological outcome.

Level of Evidence

II, Systematic Review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sundstrom T, Asbjornsen H, Habiba S, Sunde GA, Wester K (2014) Prehospital use of cervical collars in trauma patients: a critical review. J Neurotrauma 31:531–540. https://doi.org/10.1089/neu.2013.3094

    Article  Google Scholar 

  2. Chiu WC, Haan JM, Cushing BM, Kramer ME, Scalea TM (2001) Ligamentous injuries of the cervical spine in unreliable blunt trauma patients: incidence, evaluation, and outcome. J Trauma 50:457–463; discussion 464. https://doi.org/10.1097/00005373-200103000-00009

  3. Hasler RM, Exadaktylos AK, Bouamra O, Benneker LM, Clancy M, Sieber R, Zimmermann H, Lecky F (2012) Epidemiology and predictors of cervical spine injury in adult major trauma patients: a multicenter cohort study. J Trauma Acute Care Surg 72:975–981. https://doi.org/10.1097/TA.0b013e31823f5e8e

    Article  Google Scholar 

  4. Trauma ACoSCo (2012) Advanced Trauma Life Support (ATLS) Student Course Manual. In., Chicago, IL.

  5. (PHTLS) PTLS (2010) Prehospital Trauma Life Support Committee of The National Association of Emergency Medical Technicians in Cooperation with The Committee on Trauma of The American College of Suregons. In. Jones & Bartlett Learning, Burlington, MA.

  6. Davis JW, Phreaner DL, Hoyt DB, Mackersie RC (1993) The etiology of missed cervical spine injuries. J Trauma 34:342–346. https://doi.org/10.1097/00005373-199303000-00006

    Article  CAS  Google Scholar 

  7. Kwan I, Bunn F, Roberts I (2001) Spinal immobilisation for trauma patients. Cochrane Database Syst Rev:CD002803. https://doi.org/10.1002/14651858.CD002803

  8. Hauswald M, Braude D (2002) Spinal immobilization in trauma patients: is it really necessary? Curr Opin Crit Care 8:566–570. https://doi.org/10.1097/00075198-200212000-00014

    Article  Google Scholar 

  9. Totten VY, Sugarman DB (1999) Respiratory effects of spinal immobilization. Prehosp Emerg Care 3:347–352. https://doi.org/10.1080/10903129908958967

    Article  CAS  Google Scholar 

  10. Patterson H (2004) Emergency department intubation of trauma patients with undiagnosed cervical spine injury. Emerg Med J 21:302–305. https://doi.org/10.1136/emj.2003.006619

    Article  CAS  Google Scholar 

  11. Deasy C, Cameron P (2011) Routine application of cervical collars—what is the evidence? Injury 42:841–842. https://doi.org/10.1016/j.injury.2011.06.191

    Article  Google Scholar 

  12. Ham WH, Schoonhoven L, Schuurmans MJ, Leenen LP (2016) Pressure ulcers, indentation marks and pain from cervical spine immobilization with extrication collars and headblocks: an observational study. Injury 47:1924–1931. https://doi.org/10.1016/j.injury.2016.03.032

    Article  Google Scholar 

  13. Nunez-Patino RA, Rubiano AM, Godoy DA (2020) Impact of cervical collars on intracranial pressure values in traumatic brain injury: a systematic review and meta-analysis of prospective studies. Neurocrit Care 32:469–477. https://doi.org/10.1007/s12028-019-00760-1

    Article  Google Scholar 

  14. Stiell IG, Wells GA, Vandemheen KL, Clement CM, Lesiuk H, De Maio VJ, Laupacis A, Schull M, McKnight RD, Verbeek R, Brison R, Cass D, Dreyer J, Eisenhauer MA, Greenberg GH, MacPhail I, Morrison L, Reardon M, Worthington J (2001) The Canadian C-spine rule for radiography in alert and stable trauma patients. JAMA 286:1841–1848. https://doi.org/10.1001/jama.286.15.1841

    Article  CAS  Google Scholar 

  15. Vaillancourt C, Charette M, Kasaboski A, Maloney J, Wells GA, Stiell IG (2011) Evaluation of the safety of C-spine clearance by paramedics: design and methodology. BMC Emerg Med 11:1. https://doi.org/10.1186/1471-227X-11-1

    Article  Google Scholar 

  16. Resuscitation AaNZCo (2016) Guideline 9.1.6—Management of suspected spinal injury

  17. Service QA (2017) Clinical practice procedures: Trauma/Cervical Collar. https://www.ambulance.qld.gov.au/docs/clinical/cpp/CPP_Cervical%20collar.pdf.

  18. Innovation AfC (2020) Use of Foam Collars for Cervical Spine Immobilisation- Initial Management Principles. https://www.aci.health.nsw.gov.au/get-involved/institute-of-trauma-and-injury-management/clinical/trauma-guidelines/Guidelines/use-of-foam-collars-for-cervical-spine-immobilisation-initial-management-principles.

  19. Zideman DA, De Buck ED, Singletary EM, Cassan P, Chalkias AF, Evans TR, Hafner CM, Handley AJ, Meyran D, Schunder-Tatzber S, Vandekerckhove PG (2015) European resuscitation council guidelines for resuscitation 2015 Section 9. First Aid Resuscitation 95:278–287. https://doi.org/10.1016/j.resuscitation.2015.07.031

    Article  Google Scholar 

  20. Resuscitation AaNZCo (2017) ANZCOR Guideline 9.1.6—Management of Suspected Spinal Injury. http://resus.org.au/wpfbfile/anzcor-guideline-9-1-6-spinal-jan16-pdf/.

  21. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6:e1000097. https://doi.org/10.1371/journal.pmed.1000097

    Article  Google Scholar 

  22. Ivancic PC (2013) Effects of orthoses on three-dimensional load-displacement properties of the cervical spine. Eur Spine J 22:169–177. https://doi.org/10.1007/s00586-012-2552-0

    Article  Google Scholar 

  23. Conrad BP, Rechtine G, Weight M, Clarke J, Horodyski M (2010) Motion in the unstable cervical spine during hospital bed transfers. J Trauma 69:432–436. https://doi.org/10.1097/TA.0b013e3181e89f58

    Article  Google Scholar 

  24. Asha SE, Curtis K, Healy G, Neuhaus L, Tzannes A, Wright K (2021) Neurologic outcomes following the introduction of a policy for using soft cervical collars in suspected traumatic cervical spine injury: a retrospective chart review. Emerg Med Australas 33:19–24. https://doi.org/10.1111/1742-6723.13646

    Article  Google Scholar 

  25. Lin HL, Lee WC, Chen CW, Lin TY, Cheng YC, Yeh YS, Lin YK, Kuo LC (2011) Neck collar used in treatment of victims of urban motorcycle accidents: over- or underprotection? Am J Emerg Med 29:1028–1033. https://doi.org/10.1016/j.ajem.2010.06.003

    Article  Google Scholar 

  26. Barati K, Arazpour M, Vameghi R, Abdoli A, Farmani F (2017) The effect of soft and rigid cervical collars on head and neck immobilization in healthy subjects. Asian Spine J 11:390–395. https://doi.org/10.4184/asj.2017.11.3.390

    Article  Google Scholar 

  27. Ghorbani F, Kamyab M, Azadinia F, Hajiaghaei B (2016) Open-design collar vs. conventional philadelphia collar regarding user satisfaction and cervical range of motion in asymptomatic adults. Am J Phys Med Rehabil 95:291–299. https://doi.org/10.1097/PHM.0000000000000374

    Article  Google Scholar 

  28. Carter VM, Fasen JA, Roman JM Jr, Hayes KW, Petersen CM (1996) The effect of a soft collar, used as normally recommended or reversed, on three planes of cervical range of motion. J Orthop Sports Phys Ther 23:209–215. https://doi.org/10.2519/jospt.1996.23.3.209

    Article  CAS  Google Scholar 

  29. Hostler D, Colburn D, Seitz SR (2009) A comparison of three cervical immobilization devices. Prehosp Emerg Care 13:256–260. https://doi.org/10.1080/10903120802706195

    Article  Google Scholar 

  30. Miller CP, Bible JE, Jegede KA, Whang PG, Grauer JN (2010) Soft and rigid collars provide similar restriction in cervical range of motion during fifteen activities of daily living. Spine (Phila Pa 1976) 35:1271–1278. https://doi.org/10.1097/BRS.0b013e3181c0ddad

  31. Holla M (2012) Value of a rigid collar in addition to head blocks: a proof of principle study. Emerg Med J 29:104–107. https://doi.org/10.1136/emj.2010.092973

    Article  CAS  Google Scholar 

  32. McGrath T, Murphy C (2009) Comparison of a SAM splint-molded cervical collar with a Philadelphia cervical collar. Wilderness Environ Med 20:166–168. https://doi.org/10.1580/08-WEME-BR-220R1.1

    Article  Google Scholar 

  33. Porter A, Difrancesca M, Slack S, Hudecek L, McIntosh SE (2019) Improvised vs standard cervical collar to restrict spine movement in the backcountry environment. Wilderness Environ Med 30:412–416. https://doi.org/10.1016/j.wem.2019.07.002

    Article  Google Scholar 

  34. James CY, Riemann BL, Munkasy BA, Joyner AB (2004) Comparison of cervical spine motion during application among 4 rigid immobilization collars. J Athl Train 39:138–145

    Google Scholar 

  35. Chi CH, Wu FG, Tsai SH, Wang CH, Stern SA (2005) Effect of hair and clothing on neck immobilization using a cervical collar. Am J Emerg Med 23:386–390. https://doi.org/10.1016/j.ajem.2005.02.006

    Article  Google Scholar 

  36. Whitcroft KL, Massouh L, Amirfeyz R, Bannister GC (2011) A comparison of neck movement in the soft cervical collar and rigid cervical brace in healthy subjects. J Manipulative Physiol Ther 34:119–122. https://doi.org/10.1016/j.jmpt.2010.12.007

    Article  Google Scholar 

  37. Graziano AF, Scheidel EA, Cline JR, Baer LJ (1987) A radiographic comparison of prehospital cervical immobilization methods. Ann Emerg Med 16:1127–1131. https://doi.org/10.1016/s0196-0644(87)80469-9

    Article  CAS  Google Scholar 

  38. Tescher AN, Rindflesch AB, Youdas JW, Jacobson TM, Downer LL, Miers AG, Basford JR, Cullinane DC, Stevens SR, Pankratz VS, Decker PA (2007) Range-of-motion restriction and craniofacial tissue-interface pressure from four cervical collars. J Trauma 63:1120–1126. https://doi.org/10.1097/TA.0b013e3180487d0f

    Article  Google Scholar 

  39. Cline JR, Scheidel E, Bigsby EF (1985) A comparison of methods of cervical immobilization used in patient extrication and transport. J Trauma 25:649–653. https://doi.org/10.1097/00005373-198507000-00013

    Article  CAS  Google Scholar 

  40. Hussain MH, Corsar K (2019) Semirigid cervical spine collar and risk of missing significant soft tissue injuries. BMJ Case Rep 12. https://doi.org/10.1136/bcr-2018-228761

  41. Barkana Y, Stein M, Scope A, Maor R, Abramovich Y, Friedman Z, Knoller N (2000) Prehospital stabilization of the cervical spine for penetrating injuries of the neck—is it necessary? Injury 31:305–309. https://doi.org/10.1016/s0020-1383(99)00298-3

    Article  CAS  Google Scholar 

  42. Ottosen CI, Steinmetz J, Larsen MH, Baekgaard JS, Rasmussen LS (2019) Patient experience of spinal immobilisation after trauma. Scand J Trauma Resusc Emerg Med 27:70. https://doi.org/10.1186/s13049-019-0647-x

    Article  Google Scholar 

  43. Ozdogan S, Gokcek O, Katirci Y, Corbacioglu SK, Emektar E, Cevik Y (2019) The effects of spinal immobilization at 20 degrees on intracranial pressure. Am J Emerg Med 37:1327–1330. https://doi.org/10.1016/j.ajem.2018.10.010

    Article  Google Scholar 

  44. Ireland CJ, Zeitz KM, Bridgewater FH (2008) Acquiring and maintaining competence in the application of extrication cervical collars by a group of first responders. Prehosp Disaster Med 23:530–536. https://doi.org/10.1017/s1049023x00006373

    Article  Google Scholar 

  45. Lerner EB, Moscati R (2000) Duration of patient immobilization in the ED. Am J Emerg Med 18:28–30. https://doi.org/10.1016/s0735-6757(00)90043-3

    Article  CAS  Google Scholar 

  46. Drain J, Wilson ES, Moore TA, Vallier HA (2020) Does prehospital spinal immobilization influence in hospital decision to obtain imaging after trauma? Injury 51:935–941. https://doi.org/10.1016/j.injury.2020.02.097

    Article  Google Scholar 

  47. McDonald N, Kriellaars D, Weldon E, Pryce R (2021) Head-neck motion in prehospital trauma patients under spinal motion restriction: a pilot study. Prehosp Emerg Care 25:117–124. https://doi.org/10.1080/10903127.2020.1727591

    Article  Google Scholar 

  48. Thezard F, McDonald N, Kriellaars D, Giesbrecht G, Weldon E, Pryce RT (2019) Effects of spinal immobilization and spinal motion restriction on head-neck kinematics during ambulance transport. Prehosp Emerg Care 23:811–819. https://doi.org/10.1080/10903127.2019.1584833

    Article  Google Scholar 

  49. Hammacher ER, van der Werken C (1996) Acute neck sprain: "whiplash’ reappraised. Injury 27:463–466. https://doi.org/10.1016/0020-1383(96)00064-2

    Article  CAS  Google Scholar 

  50. Ricciardi L, Stifano V, D’Arrigo S, Polli FM, Olivi A, Sturiale CL (2019) The role of non-rigid cervical collar in pain relief and functional restoration after whiplash injury: a systematic review and a pooled analysis of randomized controlled trials. Eur Spine J 28:1821–1828. https://doi.org/10.1007/s00586-019-06035-9

    Article  Google Scholar 

  51. Kornhall DK, Jorgensen JJ, Brommeland T, Hyldmo PK, Asbjornsen H, Dolven T, Hansen T, Jeppesen E (2017) The Norwegian guidelines for the prehospital management of adult trauma patients with potential spinal injury. Scand J Trauma Resusc Emerg Med 25:2. https://doi.org/10.1186/s13049-016-0345-x

    Article  Google Scholar 

  52. Prasarn ML, Hyldmo PK, Zdziarski LA, Loewy E, Dubose D, Horodyski M, Rechtine GR (2017) Comparison of the vacuum mattress versus the spine board alone for immobilization of the cervical spine injured patient: a biomechanical cadaveric study. Spine (Phila Pa 1976) 42:E1398–E1402. https://doi.org/10.1097/BRS.0000000000002260

    Article  Google Scholar 

  53. Maschmann C, Jeppesen E, Rubin MA, Barfod C (2019) New clinical guidelines on the spinal stabilisation of adult trauma patients—consensus and evidence based. Scand J Trauma Resusc Emerg Med 27:77. https://doi.org/10.1186/s13049-019-0655-x

    Article  Google Scholar 

  54. Thorvaldsen NO, Flingtorp LD, Wisborg T, Jeppesen E (2019) Implementation of new guidelines in the prehospital services: a nationwide survey of Norway. Scand J Trauma Resusc Emerg Med 27:83. https://doi.org/10.1186/s13049-019-0660-0

    Article  Google Scholar 

  55. Stanton D, Hardcastle T, Muhlbauer D, van Zyl D (2017) Cervical collars and immobilisation: a South African best practice recommendation. Afr J Emerg Med 7:4–8. https://doi.org/10.1016/j.afjem.2017.01.007

    Article  CAS  Google Scholar 

  56. Morrissey JF, Kusel ER, Sporer KA (2014) Spinal motion restriction: an educational and implementation program to redefine prehospital spinal assessment and care. Prehosp Emerg Care 18:429–432. https://doi.org/10.3109/10903127.2013.869643

    Article  Google Scholar 

Download references

Acknowledgement

We would like to thank Robert Röhle, M.Sc. at the Charité Berlin, University Hospital Berlin, Germany, for his help with the meta-analysis.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik C. Bäcker.

Ethics declarations

Conflict of interest

The authors declare that they do not have any conflict of interest.

Ethical consent

No ethical approval was required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bäcker, H.C., Elias, P., Braun, K.F. et al. Cervical immobilization in trauma patients: soft collars better than rigid collars? A systematic review and meta-analysis. Eur Spine J 31, 3378–3391 (2022). https://doi.org/10.1007/s00586-022-07405-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-022-07405-6

Keywords

Navigation