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Abstract
Purpose This single-center study aimed to develop a convolutional neural network to segment multiple consecutive axial 
magnetic resonance imaging (MRI) slices of the lumbar spinal muscles of patients with lower back pain and automatically 
classify fatty muscle degeneration.
Methods We developed a fully connected deep convolutional neural network (CNN) with a pre-trained U-Net model trained 
on a dataset of 3,650 axial T2-weighted MRI images from 100 patients with lower back pain. We included all qualities of 
MRI; the exclusion criteria were fractures, tumors, infection, or spine implants. The training was performed using k-fold 
cross-validation (k = 10), and performance was evaluated using the dice similarity coefficient (DSC) and cross-sectional area 
error (CSA error). For clinical correlation, we used a simplified Goutallier classification (SGC) system with three classes.
Results The mean DSC was high for overall muscle (0.91) and muscle tissue segmentation (0.83) but showed deficiencies in 
fatty tissue segmentation (0.51). The CSA error was small for the overall muscle area of 8.42%, and fatty tissue segmentation 
showed a high mean CSA error of 40.74%. The SGC classification was correctly predicted in 75% of the patients.
Conclusion Our fully connected CNN segmented overall muscle and muscle tissue with high precision and recall, as well 
as good DSC values. The mean predicted SGC values of all available patient axial slices showed promising results. With an 
overall Error of 25%, further development is needed for clinical implementation. Larger datasets and training of other model 
architectures are required to segment fatty tissue more accurately.
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Abbreviations
MRI  Magnetic resonance imaging
CNN  Convolutional neural network
AI  Artificial intelligence
ML  Machine learning
SD  Standard deviation

DSC  Dice similarity coefficient
CSA  Cross-sectional area
SGC  Simplified Goutallier classification
PACS  Picture archiving and communication system

Introduction

Low back pain (LBP) generally correlates with the grade 
of fatty infiltration of the lumbar multifidus muscle [1], 
independent of the weight and activity of the patient. Fatty 
degeneration is also present in lumbar spine segments 
with different modic changes, ranging from type I to III, 
due to disc degeneration [2]. In summary, degeneration 
of the lumbar paravertebral musculature seems to influ-
ence the outcomes of patients with degenerative spinal 
degeneration [3–5]. As described in more detail below, we 
questioned whether an automated method could reliably 
detect fatty infiltration in the paravertebral musculature. In 
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recent years, artificial intelligence (AI) has been increas-
ingly used for image analysis. In the field of medical image 
processing, computational models based on convolutional 
neural networks (CNNs) show promising results in pattern 
recognition and image segmentation. For this work, we 
specifically chose a model that uses a U-NET architecture, 
established as a fast and secure method for the automated 
semantic segmentation of biomedical images. This model 
uses a fully convolutional network and replaces upsam-
pling operators with pooling operations and is specifically 
designed for image segmentation [6].

The implementation of such a model for semantic 
segmentation tasks in CT imaging precisely and reliably 
predicts the segmentation of subcutaneous and paraspinal 
muscles [7]. Approaches that implemented CNNs for MRI 
image processing showed that the segmentation of the sag-
ittal spine can characterize pathologies in the interverte-
bral discs as well as automatically segment the spinal cord 
in defined single MRI slices [8]. The widespread adoption 
of U-net models is mainly attributed to their high util-
ity and overall good segmentation, even with a limited 
amount of training data [9]. As outlined in Bardis et al., 
the performance of such a U-Net model directly scales 
with the number of available training data and may only 
plateau around a database of over 160 datasets, depend-
ing on the segmentation task. In response, our focus was 
to define reliable ground-truth data [10]. This study aims 
to develop a CNN to segment multiple consecutive axial 
magnetic resonance imaging (MRI) slices of the lumbar 
spinal muscles of patients with lower back pain and auto-
matically classify fatty muscle degeneration.

Materials and methods

Study subjects

This retrospective study was approved by the local ethics 
committee (Approval Number: 298/20-ek) and was per-
formed in accordance with the Declaration of Helsinki. 
During this process, the need for informed consent was 
waived. We included MRI examinations of patients with 
non-traumatic back pain of the lower spine. We recruited 
patients from 2015–2020 who underwent MRI diagnostics 
and were treated conservatively at our university hospital. 
Patients with traumatic injuries, age below 17 years, preex-
isting spine implants, detectable tumors, or infection were 
excluded. For inclusion, consecutive axial images of the 
lumbar spine of more than two lumbar segments from each 
patient were required. A total of 100 patients with 3,650 
axial T2-weighed turbo spin echo (tse) sequence MRI 
images of the lumbar spine were included in our database.

MRI Imaging

Three different MRI scanners were used during the patient 
inclusion: 1.5 Tesla MRI (Aera, Siemens, Erlangen, Ger-
many) or 3.0 Tesla MRI (Siemens Trio, Siemens or Philips 
Ingenia, Best, The Netherlands). All T2-weighted tse 
sequence of the lower spine were considered. There was 
no selection process concerning the quality of imaging; 
patients with movement artifacts or overall poor MRI qual-
ity were still included. Even though no quality metrics were 
collected, all included MRIs fulfilled following criteria: 
Good delineation of the extensor spinae muscle compart-
ment, absence of strong motion artifacts, usable for clinical 
diagnosis without the need of repeating the examination.

Inclusion criteria and patient demographics

Overall, we included 100 patients selected from 133 patients 
with T2-weighted tse sequence MRI diagnostics in the years 
2015–2020. Exclusion criteria were detection of fractures, 
tumors, spine implants, or infection in the examined patients 
at the time of MRI diagnostics. The exclusion was due to 
detected fractures (n = 14) and pre-existing spine implants 
(n = 19). Of the patient population, 55% were female 
(female = 55, male = 45), with a mean age of 68.1 ± 14.77 
(range: 19–92). We selected patients with axial images of 
L1-S1 superior endplate, a minimum of 3 intervertebral seg-
ments was set as pre-condition for inclusion. Overall, we 
included 3650 images from 100 patients, with an average of 
365 images per patient. Highest and lowest image count per 
patient were 19 and 140 images respectively.

Generation of ground truth labels and csv files

From the included patients, every axial T2-weighed tse 
sequence MRI image of the lumbar spine was extracted 
as a single axial slice and saved in digital imaging and 
communications in medicine (DICOM) format after being 
anonymized. Ground truth masks were created by a spine 
surgery specialist with ten years of clinical and radiologi-
cal experience using segmentation software (Materialize-
Mimics Version 22.0.0.524 Löwen, Belgium). We seg-
mented the original images into labels of the erector spinae 
and multifidus muscles as a combined mask. The muscle 
segmentation area was defined as all tissues included by 
the fascia of the erector spinae and multifidus muscles. 
We decided to include the multifidus muscle given its high 
clinical relevance for lumbar spine stability [11] and the 
boundary between the multifidus and erector spinae is 
frequently indistinguishable. After muscle segmentation, 
individual threshold adaptation was applied to define the 
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ground truth for the fatty tissue within the muscle group. 
For grading of fatty muscle degeneration of the lumbar 
erector spinae and multifidus muscles, a simplified Goutal-
lier (SGC) classification system was used to differentiate 
between normal/mild (< 10% fat content), slight/moder-
ate (< 50%), and severe (> 50%) fatty degeneration [12]. 
The classification was applied as the ground truth and the 
predicted fatty tissue divided by the overall muscle area. 
We calculated the data needed for classification from the 
segmented areas assessed by two independent researchers.

Labels were saved for both muscle sections, as well as 
separate labels for the right and left muscle sections. The 
same procedure was applied to fatty tissue segmentation 
labels. All labels were saved in three 3-channel.jpg files 
at 320 × 320-pixel resolution (Fig. 1c). All segmentations 
were controlled by a second reviewer (certified spine sur-
geon). Original images and labels were fitted using cus-
tom software.csv files for the direct implementation in a 
Python 3.6 environment to prepare the data for further 
processing.

U‑Net Model Training and Optimization

As our semantic segmentation model, we used a fully con-
nected deep neural network based on the U-Net architecture 
(Fig. 1b) [13].

The established database of 100 patients resulted in 3650 
images that were used to train segmentations models in a 
k-fold cross-validation study with k = 10. For each individual 
fold ten patients were randomly selected, and their respective 
images used as the test dataset. The remaining images of the 
database were then used as training data for the segmenta-
tion model of that particular fold. The training data was then 
further divided into training and validation datasets in a ratio 
of 80/20. Data augmentation was performed using shift, 
scale, and rotation operations, as well as elastic deformation 
and optical distortion on both images and masks (Fig. 1a) 
[14]. The model training was performed over 25–30 epochs. 
The selected hyperparameters were tuned manually prior to 
the study. As the objective function, we used a combination 
of dice and focal loss to include both a region-based model 
penalty for incorrect segmentation boundaries as well as a 

Fig. 1  Work steps for the development of the semantic segmenta-
tion model. (a) examples of MRI and ground truth segmentation 
masks before (original) and after applying augmentation functions 
(transformed), (b) Overview of the U-Net architecture, (c) Example 

for automatically segmented muscle tissue (left) and the respective 
ground data (right), (d) Visual concept for the dice similarity coeffi-
cient (DSC) metric with regards to ground truth and prediction masks
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distribution-based penalty to prevent over-fitting behaviour 
owing to the relatively small number of training images [15]. 
All data processing and deep learning model computations 
were performed using the Pytorch V 1.7.0 framework. The 
development, training, and validation were performed using 
Windows 10 Pro, Intel I7-9700CPU, NVIDIA GTX 2060 
8 GB RAM, 16 GB 3200 MHz System RAM, Visual Studio 
code V 1.55.1, and Python v3.6.

Statistical analysis

The segmentation results generated by the CNN-based net-
work were compared with the ground truth labels. To vali-
date the segmentation results, we calculated the dice similar-
ity coefficient (DSC). We also calculated the cross-sectional 
area (CSA) and error of the segmented CSA for each image. 
Additionally, precision and recall for muscle and fatty tissues 
were included to further investigate the model performance. 
For each slice, the metrics were calculated and averaged for 
each patient. Additionally, the mean values for each metric 
were calculated across all slices (Graph Pad Prism software 
7, La Jolla, USA).

Results

In total, 100 MRI of the lumbar spine with 3650 slices 
were used for automatic image segmentation. Descriptive 
data are shown in Table 1. Our U-Net-based network was 
able to segment 3,629 MRI slices for overall muscle area 
(99.45%), 3,633 slices for muscle tissue area (99.56%), and 
3,507 slices for fatty tissue area (96.11%). The mean time 
for segmentation per image was 15 ms.

The mean segmentation area of all included MRI slices 
(n = 3,649) for muscle, muscle tissue, and fatty tissue did 
not differ significantly between ground truth and model seg-
mentation for overall muscle but did for muscle tissue and 
fatty tissue (3,153.63 vs. 3,199.77  mm2, p < 0.30; 2,780.87 
vs. 2,656.11  mm2, p < 0.0001; and 500.18 vs. 557.69, 
p < 0.0001, respectively). The DSC for overall muscle, 

muscle tissue, and fatty tissue was 0.91 ± 0.13 (95% CI Inter-
val 0.90–0.91), 0.83 ± 0.14 (95% CI Interval 0.83–0.84), 
and 0.51 ± 0.25 (95% CI Interval 0.50–0.52), respectively 
(Fig. 2). Precision and recall were high for overall muscle 
segmentation and muscle tissue segmentation (0.92 and 
0.90, and 0.82 and 0.86, respectively). Predicted segmenta-
tion of fatty tissue showed low values for precision and recall 
concordant with a low DSC (0.54 and 0.53, respectively). 
The mean CSA error resulted in similar results with low 
errors for overall muscle and muscle tissue segmentation 
(8.42 and 14.00  mm2), with larger errors for fatty tissue seg-
mentation (40.74  mm2; Fig. 2). The mean results for all MRI 
slices of the datasets for overall muscle, muscle tissue, and 
fatty tissue segmentation prediction are shown in Table 2.

Results for the SGC showed that 75% of the patients were 
classified correctly by our network. None of the 100 patients 
in the ground truth or predicted groups were classified as 
SGC III. For ground truth data, 47 patients were classified 
as SGC I showing below 10 percent fatty tissue inside the 
muscle area and 53 patients as SGC II showing 10–50% 
fatty tissue respectively. Our network classified 54 patients 
as SDC I and 46 patients as SGC II, effectively underesti-
mating segmented fatty tissue overall. Boxplots of ground 
truth and prediction show greater heterogeneity for SGC II 
supporting the thesis of bigger errors when more fatty tissue 
is present in the respective MRI images (Fig. 3).

Discussion

We successfully implemented a U-Net-based segmentation 
model to accurately identify the muscle area of the erector 
spinae and multifidus muscles in consecutive axial lumbar 
MRI slices of patients with lower back pain. To our knowl-
edge, no studies have combined segmentation of the erector 
spinae and multifidus muscles with simultaneously imple-
mented segmentation of intramuscular fatty tissue of the 
paravertebral lumbar muscles.

Recently, other publications showed good results using 
CNNs for muscle segmentation in CT imaging, with a 
DSC of 0.94 (standard deviation 0.04) for the erector spi-
nae muscle group [16]. Comparatively speaking, the lower 
locational resolution and contrast dependencies (depend-
ent on the weight of the patient, humidity, and others) 
are factors that make standardized segmentation on MRI 
imaging challenging [17]. For muscle fatty infiltrations in 
MRI imaging of the cervical spine, Weber et al. showed 
promising results to segment the deep cervical extensors, 
with a high DSC value of up to 0.887 for segmentation of 
the muscle area of the deep cervical spine extensors [18]. 
With a DSC of 0.91, our network can keep pace for seg-
mentation of the extensor spinae compartment of the lower 
spine. A mean CSA error of 8% and high precision and 

Table 1  Subject characteristics of the Training/Validation and Testing 
dataset

*Data are numbers of subjects, with the number of MRI scans, axial 
T2 weighted turbo spin echo (tse) slices in parenthesis, †Data are 
mean ± standard deviation, with the range in parenthesis

Characteristics Dataset

Number of Subjects* 100 (100 MRIs, 3,649 slices)
Age (years)† 68.1 ± 14.77 (19–92)
Female: male (%) 55:45
Height (m) 1.7 ± 0.09 (1.5–1.96)
Weight (kg) 86.9 ± 20.31 (50–140)
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recall underline this statement. This trend continued for 
the segmentation of the muscle tissue with a DSC of 0.83 
and high precision and recall. Segmentation predictions of 
fatty tissue inside the muscle were subpar, with low DSC 
(0.51), precision and recall values, and the highest non-
segmented slice (142 MRI slices) count without any fatty 
tissue identification. A reason for non-identification was 
the comparatively small fatty tissue area (mean, 500.18 
 mm2) that was more frequently present for slices in the 
lower lumbar area and smaller muscle areas. In segmented 
slices, a high mean CSA error of 40.74%, with a standard 

deviation of ± 106.72, showed a high variance in the seg-
mented fatty tissue area.

We hypothesize that this effect was partly due to fatty 
streaks, representing most of the fatty tissue inside the mus-
cle, which was strongly under- or over-segmented by the net-
work. Caudal images showed lower muscle and fatty tissue 
areas, which could explain the poor quality of fat segmenta-
tion, especially in the lumbosacral spine (Fig. 4, lower rows).

Comparing the overall score for the three-class SGC, 25 
of 100 patients were labeled incorrectly compared to the 
ground truth. The high total error, mostly attributable to the 

Fig. 2  Scatterplots for dice similarity coefficient (DSC), CSA error, 
Violin plots for dice similarity coefficient (DSC), and cross-sectional 
area (CSA) error. (a) Scatterplots showing the dice similarity coef-
ficient (DSC) and cross-sectional area (CSA) mean indicated as a line 

for muscle and fatty tissue; (b) Violine Plots showing the dice simi-
larity coefficient (DSC) and cross-sectional area (CSA) median repre-
sented as a line for fatty tissue and muscle tissue, respectively
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low DSC in fatty tissue segmentation, opposes the direct 
clinical implementation of the system in this state.

We also evaluated threshold image processing for auto-
mated segmentation of fatty tissue after segmentation of the 
whole muscle area. Since we see great potential in the direct 
segmentation of fine grained areas like the fatty tissue in 
our use case, we decided against redevelopment. Other seg-
mentation tasks can profit from trained networks abilitiy to 
segment these tissues with high accuracy and we see further 
potential in CNN based segmentation processes.

This study had several limitations. Since we conducted 
this study as a single-center study, we can only affirm results 
for three different MRI scanners, which limits the generali-
zation of our results significantly. Images with low quality 
or noise were not excluded, which generally led to a larger 
potential segmentation prediction error.

Considering these limitations, segmentation prediction 
for overall muscle area and muscle tissue of the erector spi-
nae and multifidus muscles were good and predicting the 
SGC from the mean values of all available axial slices per 

Table 2  Performance of the CNN network

Shown is cross-sectional area (CSA) of GT and PS, dice similarity coefficient (DSC) as well as precision and recall. Data are presented as 
mean ± standard deviation, with lower and upper 95% confidence interval (CI) in parenthesis. Mean CSA error is shown as a percentage. N 
indicates the number of MRI slices. Abbreviations: DSC, dice similarity coefficient; CSA, cross-sectional area; GT, ground truth labels; PS, pre-
dicted segmentation area
Data are presented as mean ± standard deviation, with lower and upper 95% CI in parenthesis. Mean CSA error is shown as a percentage. N 
indicates the number of MRI slices. Abbreviations: DSC, dice similarity coefficient; CSA, cross-sectional area; GT, ground truth labels; PS, pre-
dicted segmentation area

Segmentation N = 3649 Overall muscle Muscle tissue Fatty tissue

CSA  (mm2) GT 3,153.63 ± 1,435.33 (3,107.04–
3,200.21)

2,780.87 ± 1,275.51 (2,739.47–
2,822.27)

500.180 ± 350.27 (488.811–511.548)

PS 3,199.77 ± 1,413.97 (3,153.87–
3,245.66)

2,656.11 ± 1,224.23 (2,616.37–
2,695.84)

557.685 ± 356.50 (546.115–569.256)

DSC 0.91 ± 0.13 (0.90–0.91) 0.83 ± 0.14 (0.83–0.84) 0.51 ± 0.25 (0.50–0.52)
Mean CSA error 8.42 ± 21.64 (7.72–9.12) 14.00 ± 24.19 (13.21–14.78) 40.74 ± 106.72 (37.28–44.20)
Precision 0.92 ± 0.11 (0.91–0.92) 0.82 ± 0.13 (0.81–0.82) 0.54 ± 0.22 (0.53–0.55)
Recall 0.90 ± 0.14 (0.90–0.91) 0.86 ± 0.15 (0.86–0.87) 0.53 ± 0.29 (0.53–0.54)

Fig. 3  Box plot for simplified 
Goutallier classification for 
group I and II for prediction 
(left) and ground truth (right)



780 European Spine Journal (2022) 31:774–782

1 3

Fig. 4  Exemplary segmentation 
results of good and insufficient 
quality. First row: exemplary 
good results for automated 
muscle segmentation  vs. ground 
truth label; second row: exem-
plary good result for fatty tissue 
segmentation; third row: insuf-
ficient muscle tissue segmenta-
tion vs. ground truth; fourth 
row: insufficient fat segmenta-
tion  vs. ground truth
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patient showed promising but not clinically relevant auto-
mated results.

Other architectures, especially generative adversarial net-
works (GANs), could be a way to improve model accuracy 
when segmenting more streaky areas, such as the segmen-
tation of fatty tissue. Furthermore, the clinical correlation 
with age, weight, BMI, and height of the examined section 
of the spine would use this automated process, with more 
far-reaching implications for clinicians and stakeholders. 
Since lower back pain is the most prevalent symptom in 
orthopedics, we plan to expand our dataset and correlate 
clinical parameters with the results of fatty degeneration to 
gain insight into the connection between MRI-representative 
pathologies and patient symptoms.
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