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Abstract
Purpose Predictive models in spine surgery are of use in shared decision-making. This study sought to develop multivariable 
models to predict the probability of general and surgical perioperative complications of spinal surgery for lumbar degenera-
tive diseases.
Methods Data came from EUROSPINE’s Spine Tango Registry (1.2012–12.2017). Separate prediction models were built for 
surgical and general complications. Potential predictors included age, gender, previous spine surgery, additional pathology, 
BMI, smoking status, morbidity, prophylaxis, technology used, and the modified Mirza invasiveness index score. Complete 
case multiple logistic regression was used. Discrimination was assessed using area under the receiver operating characteristic 
curve (AUC) with 95% confidence intervals (CI). Plots were used to assess the calibration of the models.
Results Overall, 23′714/68′111 patients (54.6%) were available for complete case analysis: 763 (3.2%) had a general com-
plication, with ASA score being strongly predictive (ASA-2 OR 1.6, 95% CI 1.20–2.12; ASA-3 OR 2.98, 95% CI 2.19–4.07; 
ASA-4 OR 5.62, 95% CI 3.04–10.41), while 2534 (10.7%) had a surgical complication, with previous surgery at the same 
level being an important predictor (OR 1.9, 95%CI 1.71–2.12). Respectively, model AUCs were 0.74 (95% CI, 0.72–0.76) 
and 0.64 (95% CI, 0.62–0.65), and calibration was good up to predicted probabilities of 0.30 and 0.25, respectively.
Conclusion We developed two models to predict complications associated with spinal surgery. Surgical complications were 
predicted with less discriminative ability than general complications. Reoperation at the same level was strongly predictive 
of surgical complications and a higher ASA score, of general complications. A web-based prediction tool was developed at 
https ://sst.webau thor.com/go/fx/run.cfm?fx=SSTCa lcula tor.
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Introduction

Patients today are, correctly, much more involved in deci-
sion-making regarding their treatment than they used to be 
[1]. Physicians and surgeons treating spinal disorders should 
be able to make evidence-based predictions regarding the 
outcome of their treatments, based on reliable prognostic 
information. In the last few years, a number of statistical 

prediction models have been developed to predict the out-
come of spine surgery [2–8], mainly focusing on the ben-
efits of the intervention regarding pain relief, quality of life 
improvement and/or return to work.

In view of recent developments in shared decision-mak-
ing, not only the benefits but also the risks associated with 
different treatment modalities must be clearly communicated 
to the patient. For this reason, risk calculators have also been 
developed to predict complication rates [4, 9–13].

Lee et al. were the first to create a predictive model 
assessing the risk of medical complications following spine 
surgery and to develop an online tool for its clinical use [10]. 
Their study was based on a population of 1476 patients, split 
into two subsets for internal and cross-validation. Although 
successful, they acknowledged that the accuracy of such 
predictive models would be improved with greater power. 
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Also, their model only evaluated the risk for general medical 
complications and lacked a surgical complication counter-
part. Later on, they developed a model for surgical site infec-
tion—one of many possible surgical complications—on the 
same patient population [9]. The model showed reasonable 
success as far as its discriminative capacity was concerned, 
but no information was provided regarding how well the 
predictions were aligned with the observed outcomes (i.e. 
"calibration").

Kasparek et  al. [14] sought to validate the general-
medical complication model of Lee et al. [10]. In total, 44 
patients developed a medical complication in a population of 
273 patients undergoing spinal surgery. The model demon-
strated adequate prediction of the medical complication risk 
group (low, medium, high), but the authors conceded that, 
with only 273 patients, the analysis may have been under-
powered. Janssen et al. [15] investigated the validity of the 
surgical site infection model of Lee et al. [9] in a population 
of 898 patients undergoing thoracolumbar spine surgery. 
They demonstrated a Nagelkerke’s R2 of 0.01, indicating 
poor external predictive strength.

Kim et al. [16, 17] used artificial neural networks in addi-
tion to classic logistic regression methods to identify risk 
factors for various types of complication in two subsets of 
spine patients: those undergoing elective adult spinal deform-
ity surgery [16] and those undergoing posterior lumbar spine 
fusion [17]. They trained their multivariable models using 
data from the American College of Surgeons National Surgi-
cal Quality Improvement Program (ACS-NSQIP) database, 
and model performance was compared with that of a model 
containing just the American Society for Anesthesiology 
(ASA) score as predictor. The areas under the receiver oper-
ating characteristic curves (AUC) were better for the multi-
variable models (0.54–0.84, depending on the complication 
in question) than for ASA alone (0.37–0.52). This hence 
showed promising results in the advancing field of artificial 
neural network models. However, no online tool was devel-
oped for its further use or the assessment of its validity in the 
clinical setting. Indeed, neural networks are notoriously more 
challenging to use for the development of decision-support 
systems, since the most important input variables are more 
difficult to identify than they are in regression models.

The aforementioned studies focused on medical compli-
cations based on small databases, were conducted as single-
centre studies, had poor external validity, or used novel sta-
tistical/machine-learning approaches to produce models that 
do not easily lend themselves to further validation by others.

In the present study our aim was to combine previously 
identified individual predictors of outcome, e.g. number 
of previous spine surgeries [18, 19], age [20], ASA score 
[21], complexity of the surgery [22], BMI [23], and smok-
ing status [24, 25] in a multivariable model to predict 
complications, using a large multicentre dataset from the 

EUROSPINE “Spine Tango” registry [26]. We sought to 
develop two models and a web-based tool for predicting the 
likelihood of incurring a perioperative complication in con-
nection with spine surgery: one focusing on general medical 
complications and the other, on surgical complications.

Methods

Source of data

This was a retrospective multicentre registry data-based 
study of prospectively collected data within the EURO-
SPINE “Spine Tango” Registry [26]. The analysis of these 
routinely collected, anonymised data was approved by the 
Swiss Ethics Committees for research involving humans 
[27].

The registry currently includes over 120 ‘000 surgical 
patient cases from several spine centres from more than 20 
countries. Medical history and surgical details are docu-
mented by the surgeon using the Spine Tango surgery form, 
as are surgical and general medical complications arising 
between admission and discharge.

Participants

Inclusion and exclusion criteria

Patients included in the present study were operated on 
between January 2012 and December 2017. All included 
patients had spine surgery for degenerative disorders of the 
lumbar spine in one of the participating EUROSPINE Spine 
Tango centres. Patients aged between 18 and 95 were iden-
tified on the basis of a "main pathology" documented as 
"degenerative disease", and "level of intervention" as “thora-
columbar”, “thoraco-lumbo-sacral”, ‘‘lumbar’’, “lumbo-
sacral” or ‘‘sacral” on the Spine Tango 2011 Surgery form. 
All patient cases with missing values for the variables indi-
cated below were excluded from the analysis (see later).

Outcome

We defined two independent binary (presence/absence) 
outcome variables describing perioperative complications. 
First, the occurrence of a surgical complication arising either 
intraoperatively (nerve root damage, spinal cord damage, 
dura lesion, vascular injury, fractures of vertebral struc-
tures) and/or postoperatively before discharge (epidural or 
other hematoma, radiculopathy, CSF leak/pseudomenin-
gocele, motor/sensory dysfunction, bowel/bladder dysfunc-
tion, wound infection, implant malposition, implant failure, 
wrong level). Second, the occurrence of a general compli-
cation arising either intraoperatively (anaesthesiological, 
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cardiovascular, pulmonary, thromboembolism, death) and/
or postoperatively before discharge (cardiovascular, pulmo-
nary, cerebral, kidney/urinary, liver/gastrointestinal, throm-
boembolism, death).

Predictors

The selection of predictors was based on evidence of their 
predictive capacity in the current literature [18–25, 28]. All 
the predictor variables are collected systematically in the 
registry and are typically known or decided upon preopera-
tively, on the "admission" section of the Spine Tango Form. 
They included: age; sex (male, female); whether patients had 
had previous spine surgery (if so, whether at the same or on 
a different spinal level); body mass index (BMI, < 20, 20–25, 
26–30, 31–35, > 35 kg/m2); smoking status (no, yes); mor-
bidity state [using the American Society of Anaesthesiolo-
gists Physical Status Score (ASA; scored 1–5)]; the modified 
Mirza Invasiveness Index (representing the invasiveness of 
the planned surgical procedure) [29, 30]; the presence of an 
additional pathology (other than degenerative disease, such 
as fracture/trauma, non-degenerative deformity, infection, 
tumour, etc.); planned preoperative prophylaxis (infection, 
thromboembolism, ossification); and planned intraoperative 
technology (conventional or minimally invasive spine sur-
gery (MISS)/less invasive spine surgery(LISS)).

Sample size

Sample size considerations for prediction models need to 
take into account whether the outcome number of events is 
large enough for fitting multiple predictor models, taking all 
relevant predictors into account simultaneously. The gener-
ally accepted rule is to have at least ten events per variable 
[30–32]. Given that, in the planned study, 10 independent 
predictor variables were to be evaluated simultaneously, this 
implied at least 100 events (occurrence of a complication) 
observed for each of the outcomes, a condition that was met 
for the generation of separate models to predict general med-
ical complications and surgical complications (see later).

Missing data

A complete case analysis was used for the development of 
the prediction models. As such, cases with any missing data 
regarding the previously noted predictors or outcomes were 
excluded from the analysis. The results were reanalysed at 
a later stage in a sensitivity analysis based on imputed data.

Statistical analysis methods

Descriptive statistics included median and interquartile 
ranges or mean and standard deviations (SD) for continuous 

variables and counts and percentages of total for categorical 
variables. The two binary outcome variables, general medi-
cal perioperative complications and surgical perioperative 
complications, were addressed with multiple logistic regres-
sion models fitted to each outcome.

Predictor models with many prognostic indicators tend 
to fit the data used in the study optimally, but predictions 
for new subjects perform less well. This problem is known 
as overfitting. To address overfitting in our models, we used 
shrinkage, a technique in which the regression coefficients 
of the prediction models are multiplied by a global shrinkage 
factor (a real number < 1), leading to a reduction in their val-
ues ("shrinkage") towards zero. We used the dfbeta method 
[33] to derive a separate global shrinkage factor for each of 
the two models. This method is equivalent to leave-one-out 
cross-validation (LOOCV), which is a common but less effi-
cient approach that is difficult to apply to large datasets [33] 
such as the present one. Original and shrunken regression 
coefficients were presented as odds ratios (OR) with 95% 
confidence intervals (CI).

Model performance

To assess model performance, we evaluated how well the 
predicted probability of a complication corresponded to the 
actual observed complication rate, by assessing the model’s 
discriminative ability and calibration. Discrimination was 
examined using the area under the receiver operating char-
acteristic curve (AUROC, or c-statistic) with 95% CI. In 
the ROC curve, sensitivity is plotted against 1-specificity. 
In general, an AUC of 0.5 suggests no better discrimination 
than tossing a coin, 0.6–0.7 is considered possibly help-
ful, 0.7–0.8 is considered acceptable, 0.8–0.9 is considered 
excellent, and more than 0.9 is considered outstanding [34].

Calibration of a prediction model measures the agreement 
between observed outcomes and predictions. In the present 
study, internal calibration of the two models was assessed 
using calibration plots. Internal calibration refers to agree-
ment between observed and predicted probabilities in the 
sample in which the model was developed, showing how 
well the model represents the observed reality and whether 
it tends to over- or underestimate the probability of an event 
[35–37].

Sensitivity analysis

A sensitivity analysis was performed to assess the poten-
tial bias in the results as a consequence of using complete 
case analysis. For this reason, a single dataset was imputed 
based on the assumption that data were missing at random 
(MAR). The imputed dataset was obtained from doing a 
single imputation, in which missing values for our predic-
tors (e.g. missing smoking status, BMI or ASA score) were 
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filled using multivariate imputation based on chained equa-
tions [38, 39]. After single imputation the coefficients of 
the two models, corresponding AUC’s and their calibration 
plots were re-estimated, using the aforementioned methods.

All analyses were conducted using R for Windows [40], 
using the packages openxlsx, tableone, pROC, tidyverse, 
shrink [33], boot, biostatUZH, mice [39] and gbm. The 
work was carried out following the concept of reproducible 
research, and the R-code is available upon request [41]. The 
results of the study were reported according to the TRIPOD 
guidelines [42].

Results

Participants

Figure 1 shows the flowchart for patient inclusion in the 
study. In total, 68′111 cases were registered in the database 
at the time of data export. Of these, 54′452 were degen-
erative cases, of which 43′557 included the lumbar spine 
(according to the definition above). Selecting patients 
between age 18 and 95  years resulted in 43′461 cases. 
Using a complete case approach to the analysis, the final 
sample size was N = 23′714, with the total number of cases 
excluded being 19′747 (45.4%). The variables with the most 
missing data were smoking status (39.4%), morbidity sta-
tus (18.2%) and BMI (15.4%). The baseline characteristics 
of the final study group are shown in Table 1. The mean 
age was 58.9 (15.7 SD) years, and 11,450 (48.3%) were 
males. In total, 16,921 (71.4%) patients had had no previ-
ous surgery. Patients were most frequently (9176; 38.7%) in 
the BMI category 26–30 kg/m2. Most participants, 18,799 
(79.3%), did not smoke. The most common morbidity state 
was ASA-2 (12,941 (54.6%) patients). The median Mirza 
score was 2 (interquartile range 1 to 7). Most participants 
had infection prophylaxis (22,832; 96.3%), and the majority 
had thromboembolism prophylaxis (17,754; 74.9%). There 
were more conventional technologies used (9437; 39.8%) 
than MISS/LISS (2502; 13.7%); the most commonly used 
technology was microscope (14,268; 60.2%).

Details regarding the incidence of the different types of 
complication are shown in Table 2 for general medical com-
plications and Table 3 for surgical complications. Overall, 
763/23,714 (3.2%) patients had a general medical complica-
tion and 2534/23,714 (10.7%), a surgical complication, indi-
cating that sufficient events were observed to be able to fit 
the multiple prediction models. The most common intraop-
erative general complication was of a cardiovascular nature 
(25; 0.11%) and the most common postoperative general 
complication, postoperative kidney/urinary problems, being 
reported in 200 (0.84%) cases. The most common intraoper-
ative surgical complication was dural tear, being reported in 

1638 (6.91%) cases, with motor dysfunction being the most 
common postoperative surgical complication 168 (0.71%).

Model development

Model predicting general medical complications

The calculated shrinkage factor for the general medical 
complication model was 0.98, indicating that not much 
overfitting was present. The odds ratios, their 95% confi-
dence intervals (CI) and the p values for the shrunken pre-
diction model for general medical complications are shown 
in Table 4. Higher age (OR 1.03, 95% CI 1.03–1.04 per 
year) was associated with greater odds of having a com-
plication. An ASA score of 2 or more was also associated 
with greater odds of having a complication, with the effect 
being more marked the higher the ASA score (ASA 2, OR 
1.6, 95% CI 1.2–2.12; ASA 3, OR 2.98, 95% CI 2.19–4.07; 
ASA 4, OR 5.62, 95% CI 3.04–10.41), as were more com-
plex procedures according to the modified Mirza score (OR 
1.03, 95% CI 1.02–1.04 per point increase) and conventional 

Fig. 1  Patient selection flowchart
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surgical technology having been used (OR 1.32, 95% CI 
1.12–1.54). Using infection prophylaxis (OR 0.59, 95% CI 
0.37–0.92) was associated with reduced odds of a general 
medical complication.

Model predicting surgical complications

The calculated shrinkage factor for the surgical complication 
model was 0.97. The odds ratios, their confidence intervals 
(95% CI) and the p values for the shrunken prediction model 
for surgical complications are shown in Table 5. Higher 
age (OR 1.02, 95% CI 1.01–1.02), previous spine surgery 

at the same level (OR 1.9, 95% CI 1.71–2.12), BMI over 
35 (OR 1.29, 95% CI 1.00–1.67), an ASA score of 3 (OR 
1.23, 95% CI 1.06–1.43), a higher modified Mirza score (OR 
1.01, 95% CI 1.00–1.01), any additional spine pathology 
(OR 1.3, 95% CI 1.14–1.49), ossification prophylaxis (OR 
2.18, 95% CI 1.38–3.46) and conventional surgical technol-
ogy having been used (OR 1.12, 95% CI 1.02–1.22) were 
each associated with an increased odds of having a surgical 
complication. Male gender (OR 0.81, 95% CI 0.75–0.89) 
was associated with decreased odds of incurring a surgical 
complication, as was using thromboembolism prophylaxis 
(OR 0.85, 95% CI 0.77–0.94).

Model performance

The ROC’s for the models can be seen in Fig. 2 (general 
medical complications) and Fig. 3 (surgical complications). 
The AUC for the model for general complications was 0.74 
(95% CI: 0.72–0.76), while that for surgical complications 
was 0.64 (95% CI: 0.62–0.65) after shrinkage. The calibra-
tion plots for the two models are shown in Fig. 4 (general 
complications) and Fig. 5 (surgical complications). In the 
calibration curve for the general complications model, the 
observed values agreed well with the predicted values up 
to a predicted probability of 0.3. However, beyond this 

Table 1  Baseline characteristics of the study group

*Multiple responses possible

Variable Number

N 23,714
Age (mean (SD)) years 58.9 (15.7)
Gender = male (%) 11,450 (48.3)
Any additional pathology (%) 1949 (8.2)
Previous surgery (%)
No previous surgery 16,921 (71.4)
Surgery at the same level 3567 (15.0)
Surgery at a diff. level 3226 (13.6)
BMI kg/m2 (%)
 < 20 906 (3.8)
20 – 25 7677 (32.4)
26 – 30 9176 (38.7)
31 – 35 4243 (17.9)
 > 35 1712 (7.2)
Smoker = no (%) 18,799 (79.3)
Morbidity (%)
ASA1 6369 (26.9)
ASA2 12,941 (54.6)
ASA3 4296 (18.0)
ASA4 108 (0.5)
Modified Mirza index (median [IQR]) 2.0 [1.0, 7.0]
Prophylaxis*
No prophylaxis (%) 380 (1.6)
Infection prophylaxis (%) 22,832 (96.3)
Thromboembolism prophylaxis (%) 17,754 (74.9)
Ossification prophylaxis (%) 116 (0.5)
Technology*
Conventional (%) 9437 (39.8)
MISS/LISS (%) 3237 (13.7)
Loops (%) 2502 (10.6)
Endoscope (%) 39 (0.2)
CASS (%) 126 (0.5)
Microscope (%) 14,268 (60.2)
Neuromonitoring (%) 1115 (4.7)
Other (%) 666 (2.8)

Table 2  General complication counts and percentages in the group of 
23,714 patients

*Multiple responses possible

Variable Number

N 23,714
Total number patients with any general complication 

(%)
763 (3.2)

Intraoperative general complications*
None (%) 23,648 (99.72)
Anaesthesiological (%) 21 (0.09)
Cardiovascular (%) 25 (0.11)
Pulmonary (%) 5 (0.02)
Thromboembolism (%) 3 (0.01)
Death (%) 0 (0)
Other (%) 16 (0.07)
Postoperative general medical complications*
None (%) 23,006 (97.01)
Cardiovascular (%) 146 (0.62)
Pulmonary (%) 82 (0.35)
Cerebral (%) 42 (0.18)
Kidney/urinary (%) 200 (0.84)
Liver/GI (%) 88 (0.37)
Thromboembolism (%) 22 (0.09)
Death (%) 7 (0.03)
Other (%) 201 (0.85)
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point, higher predicted probability values corresponded to 
much lower observed values, and the confidence intervals 
increased markedly. The same pattern was seen for the surgi-
cal complications model, but there the inflection point was 
reached at a predicted probability of about 0.25.

Sensitivity analysis

The estimated coefficients for the predictors in the dataset 
with single imputation are shown in "Appendix" (Tables 8 
and 9). Shrinkage factors calculated for the single imputa-
tion method were 0.985 for general medical complications 
and 0.980 for surgical complications. Recalculating the AUC 
for the single imputation dataset resulted in an AUC of 0.75 
(95% CI: 0.74–0.76) for general medical complications and 
an AUC of 0.64 (95% CI: 0.63–0.65) for surgical complica-
tions. These results were then compared to the complete 
case dataset. The ROC curves and calibration plots for the 
sensitivity analysis can also be found in "Appendix" (Figs. 6, 
7, 8, 9).

Discussion

Summary and Interpretation

We developed two models to predict general medical and 
surgical complications during spine surgery, based on the 
data collected within the EUROSPINE Spine Tango reg-
istry over a period of 6 years. The issue of overfitting was 
addressed by using shrinkage.

The ASA grade had the largest odds ratio for the prob-
ability of incurring a general complication, with a higher 
grade increasing the odds. The effect of the ASA grade on 
the incidence of general and surgical complications in spine 
surgery has been shown in numerous previous studies [21, 
44–47].

Previous spine surgery at the same vertebral level had 
the largest per point odds ratio for an increased probability 
of a surgical complication. Nonetheless, very high values 
in continuous variables such as age or the modified Mirza 
score, which also increased the odds of a complication, 

Table 3  Surgical complication counts and percentages in the group of 
23,714 patients

*Multiple responses possible

Variable Number

N 23,714
Total number of patients with any surgical complica-

tion (%)
2534 (10.7)

Intraoperative surgical complications*
None (%) 21,891 (92.31)
Nerve root damage (%) 89 (0.38)
Spinal cord damage (%) 9 (0.04)
Dural tear (%) 1638 (6.91)
Vascular injury (%) 14 (0.06)
Fracture of vertebral structures (%) 25 (0.11)
Other (%) 95 (0.40)
Postoperative surgical complications*
None (%) 22,748 (95.93)
Epidural hematoma (%) 152 (0.64)
Other hematoma (%) 55 (0.23)
Radiculopathy (%) 157 (0.66)
CSF leak/pseudomeningocele (%) 87 (0.37)
Motor dysfunction (%) 168 (0.71)
Sensory dysfunction (%) 141 (0.59)
Bowel/bladder dysfunction (%) 90 (0.38)
Wound infection superficial (%) 87 (0.37)
Wound infection deep (%) 60 (0.25)
Implant malposition (%) 44 (0.19)
Implant failure (%) 17 (0.07)
Wrong level (%) 5 (0.02)
Other (%) 167 (0.70)

Table 4  Shrunken regression coefficients for the general complica-
tions model

Odds 
Ratio 
(OR)

95% Confi-
dence interval 
(CI)

p value

(Intercept) 0 0–0.01  < 0.0001
Age years 1.03 1.03–1.04  < 0.0001
Gender = male 0.92 0.79—1.07 0.26
Previous surgeries
At the same level 0.99 0.79–1.23 0.91
At a different level 1.12 0.93–1.36 0.24
BMI kg/m2

20–25 1.16 0.77–1.73 0.47
26–30 0.92 0.62–1.38 0.70
31–35 0.97 0.64–1.48 0.89
 > 35 1.11 0.7–1.76 0.65
Smoker = no 0.91 0.75–1.11 0.37
Morbidity
ASA2 1.6 1.2–2.12 0.001
ASA3 2.98 2.19–.07  < 0.0001
ASA4 5.62 3.04–10.41  < 0.0001
Mirza score 1.03 1.02–1.04  < 0.0001
Any additional pathology 1.24 1–1.55 0.051
Prophylaxis
No prophylaxis 0.5 0.2–1.27 0.15
Infection prophylaxis 0.59 0.37–0.92 0.02
Thromboembolism prophylaxis 1.17 0.97–1.41 0.11
Ossification prophylaxis 1.89 0.76–4.68 0.17
Technology used
Conventional technology 1.32 1.12–1.54 0.0007
MISS/LISS 0.91 0.71–1.17 0.46
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could potentially exceed the per point odds ratio of previ-
ous spine surgery. The effect of previous spine surgery is 
already known and has been quantified before in data from 
the same registry [18, 19], and higher age and/or more inva-
sive procedures have also been shown in previous studies 
to be associated with a greater likelihood of incurring a 
surgical complication [22, 43]. Our model also showed an 
increase in odds for surgical complications when additional 
non-degenerative spine pathologies are present. A possible 
explanation for this could be that the additional pathology 
makes the intervention more difficult and non-standard 
methods have to be used.

The models developed in the present study can be used 
when discussing a possible surgical intervention in a shared 
decision-making situation, along with models predicting 
the possible benefits or expected average outcomes, where 
models/baseline variables to predict individual outcome are 
not available. By using the regression coefficients from the 
model, one can estimate the risk of having either a surgical 

or medical complication in an individual patient. For exam-
ple, a male patient, age 40 y, body mass index between 20 
and 25 kg.m−2, non-smoker, without previous spinal surgery, 
ASA score of 1, undergoing L5–S1 posterior discectomy 
without posterior fusion (Mirza Score = 1), no additional 
pathologies, using prophylaxis for infection and thrombo-
embolism have a calculated risk of 5.11% for having a surgi-
cal complication. The same patient has a calculated risk of 
0.87% of suffering a medical complication.

In comparison, a female patient age 59 y, body mass 
index between 26 and 30 kg.m−2, smoker, previous surgery 
at the same level, ASA score of 2, undergoing L4–S1 poste-
rolateral fusion with pedicle screws and no decompression 
(Mirza score = 6), no additional pathologies, using infec-
tion and thromboembolism prophylaxis have a calculated 
risk of 16.8% of experiencing a surgical complication and a 
calculated risk of 2.76% of developing a medical complica-
tion. This preoperative knowledge might help patients and 
surgeons alike to decide upon their next treatment steps that 
could be taken pre- or perioperatively to minimise the risk 
of a complication, e.g. smoking cessation, weight loss, less 
invasive surgery. Based on the predictor models, a freely 
available, web-based prediction tool has been developed 
https ://sst.webau thor.com/go/fx/run.cfm?fx=SSTCa lcula tor.

To assess the performance of our models in terms of dis-
crimination, we calculated ROC curves and their AUC’s. 
The model predicting medical complications showed an 
AUC of 0.74, which can be considered as acceptable, and 
which was similar to the AUC of 0.76 reported for the model 
of Lee et al. [10]. The discriminative ability of the model 
predicting surgical complications was less good, with an 
AUC of just 0.64, but might still be considered possibly 
helpful. A possible explanation for the lower AUC for the 
surgical complications model might be that surgical com-
plications in general could be less predictable and might be 
more dependent on the surgeon skill and experience rather 
than the patient’s baseline characteristics that have been 
included in our model, although previous studies have shown 
that the chosen variables do have a predictive value for com-
plications in degenerative spine surgery. In comparison, gen-
eral complications could depend more on the physical status 
of the patient and hence be better able to be predicted.

Internal calibration was assessed using calibration plots. 
In the calibration plot for the general complications model 
we saw that the observed probabilities agreed well with the 
estimated probabilities for low predicted probabilities, and 
thus, the model shows a relatively satisfactory goodness-of-
fit in that region. Beyond a predicted probability of approxi-
mately 0.3, however, the predicted values showed a clear 
overestimation of the reality and thus led to an overpredic-
tion of complication risks. The same applied to the model 
for surgical complications, which tended towards overes-
timation from a probability of about 0.25 onwards. One 

Table 5  Shrunken regression coefficients for the surgical complica-
tions model

Odds 
Ratio 
(OR)

95% Confi-
dence interval 
(CI)

p value

(Intercept) 0.05 0.03–0.07  < 0.0001
Age years 1.02 1.01–1.02  < 0.0001
Gender = male 0.81 0.75–0.89  < 0.0001
Previous surgeries
At the same level 1.9 1.71–2.12  < 0.0001
At a different level 1 0.88–1.13 0.97
BMI kg/m2

20–25 0.96 0.77–1.21 0.74
26–30 0.99 0.79–1.23 0.91
31–35 1.11 0.88–1.4 0.39
 > 35 1.29 1.00–1.67 0.05
smoker = no 0.99 0.89–1.1 0.86
Morbidity
ASA2 1.07 0.95–1.21 0.24
ASA3 1.23 1.06–1.43 0.007
ASA4 1.02 0.57–1.82 0.95
Mirza score 1.01 1–1.01  < 0.0001
Any additional pathology 1.3 1.14–1.49 0.0001
Prophylaxis
No prophylaxis 0.7 0.44–1.1 0.12
Infection prophylaxis 0.8 0.61–1.05 0.11
Thromboembolism prophylaxis 0.85 0.77–0.94 0.001
Ossification prophylaxis 2.18 1.38–3.46 0.0009
Technology used
Conventional technology 1.12 1.02–1.22 0.018
MISS/LISS 1.11 0.97–1.25 0.12

https://sst.webauthor.com/go/fx/run.cfm?fx=SSTCalculator
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possible explanation for this could be that the complication 
rates in our dataset were low and therefore the risk of, and 
accuracy in predicting, an unfavourable event was also very 
low. In other words, in reality there were no cases with high 
risk and thus high-risk cases could not be used to train the 
model. Either way, this phenomenon should be considered, 

if a comparatively high probability above 0.25–0.30 is given 
during the risk assessment, when using these models.

The aforementioned findings were confirmed in sensi-
tivity analyses using single imputation for missing data. In 
these we found similar tendencies regarding the influence of 

Fig. 2  ROC curve general 
complication model. AUC 0.74 
(95% CI: 0.72–0.76)

Fig. 3  ROC curve surgical 
complication model. AUC 0.64 
(95% CI: 0.62–0.65)
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the different predictor variables, the calculated AUCs for the 
ROC analyses and the calibration curves.

Tendencies for overfitting of our models appeared to be 
very small, as our shrinkage factors were close to 1. This 
suggests that the models may be applicable to populations 

outside of the given study group, although this should be 
verified by external validation.

Reported complication rates in spine surgery for degen-
erative disease range from 3.7 to 16%, depending on the 
definition of complication used and the technique being 

Fig. 4  Calibration plot for general complication model. The y-axis 
describes the observed average probability of complications; x-axis 
describes the models corresponding to predicted values.The red line 

indicates optimal calibration; the black line represents the models’ 
calibration with confidence limits given by the yellow area

Fig. 5  Calibration plot surgical complication model. The y-axis 
describes the observed average probability of complications; x-axis 
describes the models corresponding to predicted values. The red line 

indicates optimal calibration; the black line represents the models 
‘calibration with confidence limits as yellow area
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focused on [48–50]. In our population we found 3.2% medi-
cal complications and 10.7% surgical complications. A prob-
lem in the current literature is the reliability of complication 
reporting since there are no generally acknowledged report-
ing standards [51]. Overall, we found no notable discrep-
ancy with the previously reported complication rates in our 
population group. When the number of cases in the registry 
has increased sufficiently to include a variable reflecting, for 
example, the type or geographical region of the contributing 
centres, it may be possible to calibrate/customise the model 
to accommodate differences in the thresholds for reporting.

Strengths and limitations

We view the use of a large multicentre database for model 
development as a relative advantage regarding the predic-
tion of complications in lumbar spine surgery, when com-
pared with other models previously developed. The model 
developed by McGirt et al. [4] used a single-centre database. 
The ACS-NSQIP [13] was developed using a heterogeneous 
patient population, and by only accepting one Current Pro-
cedural Terminology (CPT) code for each risk calculation, 
it may have underestimated the complexity of the surgery 
[52, 53], since many spine surgery cases comprise multiple 
procedures in one operation. In our model, complex spine 
surgery is taken into account using the modified Mirza index 
[29, 54]. Ratliff et al. [12] used the large MarketScan data-
set, which included mostly younger patients. As the authors 
themselves conceded, this can be seen as a major limitation, 
since an increasing number of spine patients are elderly, due 
to the effects of degenerative disease on the aging spine [55]. 
A drawback of Lee et al.’s predictive model [9, 10] is that it 
was developed using only 1476 patients, which may not be a 
large enough sample. In addition to the above, our prediction 
of surgical complications included a range of different types, 
both intraoperatively and prior to discharge, rather than only 
surgical site infection [9], although our model was not able 
to specifically predict the likelihood of incurring any par-
ticular surgical complication or its severity. Including the 
modified Mirza index as a measure of surgical invasiveness 
obviated the need to sub-divide the data to produce separate 
predictor models for different spine surgical procedures of 
varying complexity and hence improved the overall power 
of the results.

A limitation of our study was that the prediction models 
were not validated using an external dataset. Although we 
tried to avoid overfitting of our models by using shrinkage, 
this is not a substitute for an actual external validation.

Another limitation of the study was the complete case 
analysis approach (i.e. we only included patients for whom 
there were no missing data), which could have introduced 

selection bias. The missing data are the result of the incom-
plete filling out of the Spine Tango surgery forms by the 
participating surgeons. We tried to address this limitation 
by performing a sensitivity analysis using single imputation 
and found our results to be robust. In the present study there 
was no analysis of complications occurring after hospital 
discharge, since the collected data were focused on compli-
cations during the hospital stay, as recorded on the Tango 
Surgery form. Finally, surgeons and patients using these 
models should keep in mind that the developed models tend 
to overestimate risks when assessing higher risk situations, 
as discussed in detail above.

We also emphasise that not only the risks, but also the 
benefits of surgery should be communicated adequately to 
the patient, such that both can be taken into account when 
making decisions about surgery. As such, any risk calcula-
tions using our model should ideally go hand in hand with 
estimates of pain and functional improvement when plan-
ning surgery.

Implications for future research

To ensure their broader applicability, our models should be 
externally validated. Also, separate prediction models could 
be developed for different spine pathologies, which would 
further increase their applicability. Analogous models could 
also be built looking at the risk of complications after dis-
charge using the data from the Spine Tango Follow-Up form, 
which documents complications arising after hospitalisation 
up to many years’ follow-up. Similarly, models predicting 
the likelihood of clinically relevant improvements in patient-
oriented outcomes should be developed.

Conclusion

We were able to build two predictor models that can be used 
to predict the probability of incurring a complication dur-
ing or shortly after spine surgery (before discharge). Of the 
two models, general complications were able to be predicted 
with greater discriminative ability than surgical complica-
tions. Reoperations at the same level were a predominant 
predictive factor for surgical complications, and a higher 
ASA score showed the highest odds for general complica-
tions. Complication rates were in the expected range, as 
reported in the literature. A freely available, web-based pre-
diction tool has been developed for the purposes of further 
testing and validation https ://sst.webau thor.com/go/fx/run.
cfm?fx=SSTCa lcula tor

The findings of this study are relevant for patient counsel-
ling and informed and shared decision making.

https://sst.webauthor.com/go/fx/run.cfm?fx=SSTCalculator
https://sst.webauthor.com/go/fx/run.cfm?fx=SSTCalculator
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Appendix

Unshrunken baseline models

See Tables 6, 7.

Table 6  Unshrunken regression 
coefficients for the general 
complications model

Odds Ratio (OR) 95% Confidence inter-
val (CI)

p value

(Intercept) 0.002 0.001–0.005  < 0.0001
Age years 1.034 1.027–1.041  < 0.0001
Gender = male 0.915 0.786–1.065 0.252
Previous surgeries
At the same level 0.987 0.789–1.225 0.906
At a different level 1.126 0.925–1.365 0.23
BMI kg/m2

20–25 1.163 0.787–1.784 0.469
26–30 0.923 0.624–1.417 0.701
31–35 0.969 0.643–1.51 0.884
 > 35 1.115 0.708–1.798 0.647
smoker = no 0.91 0.744–1.119 0.362
Morbidity
ASA2 1.614 1.221–2.166 0.001
ASA3 3.064 2.249–4.226  < 0.0001
ASA4 5.863 3.061–10.724  < 0.0001
Mirza score 1.03 1.024–1.037  < 0.0001
Any additional pathology 1.249 0.998–1.553 0.049
Prophylaxis
No prophylaxis 0.491 0.174–1.2 0.142
Infection prophylaxis 0.579 0.376–0.941 0.019
Thromboembolism prophylaxis 1.174 0.971–1.428 0.103
Ossification prophylaxis 1.917 0.667–4.349 0.165
Technology used
Conventional technology 1.325 1.129–1.556 0.001
MISS/LISS 0.908 0.702–1.162 0.453
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Table 7  Unshrunken regression 
coefficients for the surgical 
complications model

Odds Ratio (OR) 95% Confidence inter-
val (CI)

p value

(Intercept) 0.045 0.03–0.066  < 0.0001
Age years 1.018 1.014–1.021  < 0.0001
Gender = male 0.809 0.743–0.882  < 0.0001
Previous surgeries
At the same level 1.945 1.747–2.164  < 0.0001
At a different level 0.998 0.877–1.133 0.974
BMI kg/m2

20–25 0.961 0.768–1.215 0.735
26–30 0.987 0.789–1.246 0.907
31–35 1.112 0.881–1.417 0.379
 > 35 1.303 1.007–1.696 0.046
smoker = no 0.99 0.887–1.107 0.86
Morbidity
ASA2 1.077 0.954–1.217 0.232
ASA3 1.239 1.062–1.447 0.007
ASA4 1.02 0.544–1.777 0.948
Mirza score 1.01 1.005–1.015  < 0.0001
Any additional pathology 1.313 1.145–1.502  < 0.0001
Prophylaxis
No prophylaxis 0.69 0.432–1.088 0.114
Infection prophylaxis 0.792 0.604–1.057 0.102
Thromboembolism prophylaxis 0.847 0.768–0.936 0.001
Ossification prophylaxis 2.241 1.371–3.517 0.001
Technology used
Conventional technology 1.12 1.021–1.229 0.016
MISS/LISS 1.11 0.975–1.261 0.112
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Table 8  Sensitivity analysis: shrunken coefficients for the general 
complications model

Odds 
Ratio 
(OR)

95% Confi-
dence interval 
(CI)

p value

(Intercept) 0 0  < 0.0001
Age years 1.03 1.02–1.04  < 0.0001
Gender = male 0.94 0.83–1.06 0.32
Previous surgeries
At the same level 0.91 0.76–1.1 0.33
At a different level 1.18 1.01–1.39 0.043
BMI kg/m2

20–25 1.07 0.76–1.5 0.70
26–30 0.84 0.6–1.18 0.33
31–35 0.92 0.65–1.31 0.65
 > 35 0.97 0.66–1.42 0.86
Smoker = no 1.02 0.86–1.21 0.83
Morbidity
ASA2 1.84 1.47–2.31  < 0.0001
ASA3 3.63 2.83–4.67  < 0.0001
ASA4 5.97 3.46–10.32  < 0.0001
Mirza score 1.03 1.03–1.04  < 0.0001
Any additional pathology 1.26 1.05–1.52 0.015
Prophylaxis
No prophylaxis 0.81 0.41–1.61 0.55
Infection prophylaxis 1.5 1.04–2.15 0.03
Thromboembolism prophylaxis 1.22 1.05–1.43 0.012
Ossification prophylaxis 2.07 1.01–4.25 0.048
Technology used
Conventional technology 1.22 1.07–1.39 0.004
MISS/LISS 0.8 0.65–1 0.05

Table 9  Sensitivity analysis: shrunken coefficients for the surgical 
complications model

Odds 
Ratio 
(OR)

95% Confi-
dence interval 
(CI)

p value

(Intercept) 0.03 0.02–0.03  < 0.0001
Age years 1.01 1.01–1.02  < 0.0001
Gender = male 0.8 0.75–0.86  < 0.0001
Previous surgeries
At the same level 1.93 1.77–2.1  < 0.0001
At a different level 1.09 0.98–1.21 0.097
BMI kg/m2

20–25 1.02 0.85–1.22 0.86
26–30 0.96 0.8–1.15 0.66
31–35 1.08 0.9–1.3 0.40
 > 35 1.31 1.07–1.61 0.008
smoker = no 0.99 0.9–1.07 0.75
Morbidity
ASA2 1.26 1.15–1.38  < 0.0001
ASA3 1.42 1.26–1.6  < 0.0001
ASA4 1.04 0.61–1.77 0.88
Mirza score 1.01 1.01–1.02  < 0.0001
Any additional pathology 1.33 1.19–1.49  < 0.0001
Prophylaxis
No prophylaxis 1.11 0.84–1.47 0.47
Infection prophylaxis 1.33 1.11–1.6 0.002
Thromboembolism prophy-

laxis
0.97 0.9–1.05 0.44

Ossification prophylaxis 2.05 1.4–3.01 0.0002
Technology used
Conventional technology 0.93 0.86–1 0.044
MISS/LISS 0.9 0.82–1 0.058

Sensitivity analysis

See Tables 8, 9 and Figs. 6, 7, 8, 9.
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Fig. 6  Sensitivity analysis: ROC curve for general complications

Fig. 7  Sensitivity analysis: ROC curve for surgical complications
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Fig. 8  Sensitivity analysis: calibration plot for general complications

Fig. 9  Sensitivity analysis: calibration plot for surgical complications
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