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Abstract
Purpose  Disc herniations are usually treated by decompression of the spinal nerves via a partial nucleotomy. As a conse-
quence of reduced disc height (DH), reduced intradiscal pressure (IDP) and increased range of motion (ROM), accelerated 
degeneration may occur. Nucleus replacement implants are intended to restore those values, but are associated with the risk 
of extrusion.
Methods  In six fresh frozen lumbar spinal segments (L2-3/L3-4/L4-5/L5-S1, age median 64.5 years (57–72), Pfirrmann 
grade 2–3), a prolapse was provoked through a box defect (6 × 10 mm) in the annulus. The herniated nucleus material was 
removed and replaced by a novel collagen-based nucleus implant. An annulus closure device sealed the defect. ROM, neu-
tral zone (NZ) and IDP were measured in the (1) intact and (2) defect state, (3) postoperatively and (4) after cyclic loading 
(n = 100,000 cycles) applying pure moments (± 7.5 Nm) in flexion–extension, lateral bending and axial rotation. Additionally, 
the change in DH was determined. Extrusion of implants or nucleus material was evaluated macroscopically.
Results  In all specimens, a prolapse could be provoked which decreased DH. Subsequent nucleotomy changed ROM/NZ and 
IDP considerably. Initial values could be restored by the implantation. Macroscopically, none of the implants nor nucleus 
material did migrate after cyclic loading.
Conclusions  In this study, a prolapse followed by a nucleotomy resulted in a biomechanical destabilisation. Implantation 
of the nucleus replacement combined with an annulus closure restored the intact condition without showing signs of extru-
sion nor migration after cyclic loading. Hence, nucleus replacements could have a new chance in combination with annulus 
closure devices.

Keywords  Lumbar disc herniation · Nucleotomy · Nucleus replacement · Annulus repair · In vitro study

Introduction

Acute low back pain is often associated with lumbar disc 
herniation. However, its exact causes are still not com-
pletely investigated. The surgical standard for treating disc 
herniations with acute low back pain with associated signs 
of nerve impingement is usually the decompression of the 
spinal nerves by performing a partial nucleotomy without 
the subsequent reconstruction of the defect in the annular 
wall [1, 2].

Various studies report symptomatic reherniations after 
lumbar discectomy up to 17% [3–9]. Repeated surgical treat-
ments that are necessary to manage these reherniations are 
associated with lower success rates compared to the treat-
ments of the initial herniations [2, 10, 11]. Biomechanically, 
this partial nucleotomy might lead to a reduction in disc 
height (DH) and intradiscal pressure (IDP) with an increase 
in range of motion (ROM) [12, 13]. This might result in an 
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accelerated degeneration [14, 15] due to the inappropriate 
compressive load on the annulus [12, 14, 15] which mani-
fests radiographically as disc bulging [16, 17]. Furthermore, 
the loss of disc height could lead to overstressing of the facet 
joints [18]. On one hand, this might cause degeneration of 
the facet joints, as well. On the other hand, painful com-
pression of the nerve roots could be the consequence of the 
accompanied narrowing of the intervertebral foramina [18].

In order to prevent the disc from reherniation as well as 
from accelerated degeneration processes due to the nucle-
otomy, other treatments for disc herniations have focused on 
preserving more nucleus volume. Beside the sequestrectomy 
treatment which reduced the rate of reherniations from 10 to 
5% [19], nucleus replacement implants have been developed 
with the intention of restoring DH, ROM and IDP. In prin-
ciple, the restoration of those properties was successful [13, 
20], but the problem of extrusion could not be solved yet [13, 
21]. Hence, the idea was to combine a nucleus replacement 
implant with an annulus sealing device in order to prevent 
extrusion while restoring the biomechanical properties of 
the intact disc.

Different sealing methods as adhesive bonding or differ-
ent suture materials for annulus repair exist and have been 
investigated [22–24]. Often, those techniques failed and 
thus resulted in nucleus extrusion, again [25–27]. The use 
of mechanical annulus repair devices with anchoring in the 
bony endplate or vertebra adjacent to the treated disc seemed 
to be more promising [9, 28].

The aim of this study is to evaluate whether a colla-
gen-based nucleus replacement implant similar to the one 
described by Wilke and Heuer [13, 29] in combination with 
a biomechanically and clinically evaluated annulus closure 
device [9, 28, 30] is generally capable of adequately restor-
ing the biomechanical properties of an intact disc. Apart 
from that, it should be verified by a long-term test whether 
the implants stayed intact, in place and hence, sufficiently 
reduced the risk of reherniations.

Methods

Specimens

Eight monosegmental lumbar segments were obtained from 
four fresh frozen human cadaver spines (L2-S1, age median 
64.5 years (57–72 years), BMD median 100.1 mgCaHA/cm3 
(78.3–163.5 mgCaHA/cm3), 2 m:2f) (Table 1). All soft tis-
sue was removed preserving all bony structures, the interver-
tebral discs, ligaments and facet capsules. Prior to prepa-
ration, MRI and CT were performed. BMD was assessed 
through a QCT measurement. Criteria for general exclu-
sion were fractures, tumors, a low disc height (≤ 6.5 mm), 
patients with osteoporosis (overall BMD ≤ 80.0 mgCaHA/ Ta
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cm3), severe degeneration or other diseases that might have 
influenced the biomechanical properties of the specimens. 
Six specimens with a degeneration grade 2 or 3 (according 
to Pfirrmann [31]) and a posterior disc height of 8.1 mm 
(7.2–10.4 mm) have been included into the trial. Six to eight 
screws (Spax 3 × 20) were inserted into the cranial endplate 
of the upper and the caudal endplate of the lower verte-
brae before embedding in polymethylmethacrylate (PMMA, 
Technovit 3040, Heraeus Kulzer, Wehrheim, Germany). 
Flanges were mounted on the PMMA embedment for proper 
mounting into the testing machines. Until testing, specimens 
were stored in triple sealed polyethylene bags at −20 °C. 
Prior to testing, the specimens have been carefully thawed 
overnight at +4 °C.

Test protocol

ROM, IDP and change in DH were measured in the intact 
state, after creating a defect, postoperatively and after 
dynamic loading (n = 100,000 cycles). ROM and neutral 
zone (NZ) were assessed during a quasistatic flexibility 
test in a universal spine tester [32] by simultaneous optical 
motion tracking with the Vicon MX13 system (Vicon Motion 
Systems Ltd., Oxford, UK). Pure moments of ±7.5 Nm were 
applied in flexion–extension (FE; + : flexion, − : extension), 
lateral bending (LB; + : left LB, − : right LB) and axial rota-
tion (AR; + : left AR, − : right AR). A special pressure sen-
sor for measurements up to 50 bars (Mammendorfer Institut 
für Physik und Medizin GmbH, Mammendorf, Germany) 
was implanted from lateral to measure hydrostatic pres-
sure directly in the centre of the nucleus pulposus during 
the flexibility test (Fig. 1). After each flexibility test, the 
change in DH was measured in an Instron materials testing 
machine (Instron 8871, Norwood, MA, USA) by applying 
an axial load of 100 N resulting in different travel paths 
of the testing cylinder (resolution 10 µm) (Fig. 2a). For a 
worst-case scenario, a box-cut defect was cut into the pos-
terolateral part of the annulus using a box-cutting tool with 
the size of 6 mm x 7 mm. The part that was cut out from 
the annulus was removed, and the actual size of the created 
defect was measured. The specimens were then subjected to 
a dynamic cyclic loading test protocol with 5,000 cycles that 
has already been used in a previous study [28] to provoke a 
prolapse through the defect in the annulus. In this so-called 
hula hoop test, a sinusoidal axial load ranging from 100 to 
600 N was applied at 5 Hz, eccentrically with a lever arm of 
30 mm from the longitudinal axis of the specimen [28]. The 
specimens were caudally flanged onto a rotation base with 
a rotation speed of 360°/min, so that the created moment 
acted circumferentially (Fig. 2). In case a clear prolapse 
(Fig. 3) could be observed after completing 5,000 cycles of 
the hula hoop test, only the nucleus material that completely 
extruded and the nucleus material within the annulus were 

removed. Volume and weight were measured and recorded. 
It was replaced by a nucleus implant which is a native highly 
compressed collagen-type-I matrix (RESTORE, 3D Spine 
Matrix Biotechnologie GmbH, Krems, Austria). Addition-
ally, a CE-marked and recently FDA-approved annulus clo-
sure device (Barricaid®, size 10, Intrinsic Therapeutics Inc., 
Woburn, MA, USA) sealed the defect.  

After implantation, the specimens were subjected to a 
long-term dynamic cyclic loading protocol (hula hoop) for 
100,000 cycles. Possible extrusion of either the implants 
or nucleus material was evaluated macroscopically. X-ray 
images were compared to detect signs of subsidence. After 
the test, all specimens have been cut in the transverse plane. 
Material migrations into the surrounding nucleus and annu-
lus tissue of the disc could be detected by manipulation.

Statistical analysis

Statistical analysis was performed with SPSS (IBM® SPSS® 
Statistics version 24; IBM Corp., Armonk, NY) for the change 
in DH, the ROM and IDP measurements of the tested lumbar 
segments in every testing condition. Normal distribution could 
not be proven by Shapiro–Wilk test with a p value of 0.05. 
Therefore, median and ranges are provided for all data and 
nonparametric tests for distribution-free data were performed. 

Fig. 1   Universal spine tester [32] where the flexibility test was per-
formed to measure ROM and IDP. The IDP pressure sensor was 
implanted from lateral (green cable) to measure hydrostatic pressure 
directly in the centre of the nucleus pulposus
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Significant differences were assessed using the Friedman test 
with a significance level set to α = 0.05. A Bonferroni post hoc 
test was used to correct error rates within the single groups.

Results

In all specimens, a clear prolapse with extruded nucleus 
material could be provoked successfully (Fig. 3). The pro-
lapse was provoked through a box-cut defect by applying 
5,000 cycles of dynamic cyclic loading (hula hoop test). 
After the removal of the nucleus material, the implantation 
of the nucleus replacement and the annulus closure device 
could be performed appropriately. After the long-term 
dynamic cyclic loading for 100,000 cycles, neither macro-
scopic migration, subsidence nor extrusion of the implants, 
the nucleus or other disc material could be observed (Fig. 4).

The disc height did not considerably decrease due to 
the box-cut defect in the posterolateral part of the annulus. 
The defect actually measured in average 6 mm x 10 mm 
(Table 1 ). Subsequently to the dynamic cyclic loading of 
5,000 cycles, the nucleus material that extruded through 
these defects and the nucleus material within the annulus 
were removed. The average volume of the removed material 
was 0.24 cm3 (0.15–0.30 cm3), and the average weight was 
0.33 g (0.17–0.33 g) (Table 1 ). This led to a clear decrease 
in DH, 0.5 mm in average (0.3–0.7 mm) (Fig. 5). The DH 
could be almost restored to the initial value by the implan-
tation of the nucleus implant (volume of 0.33 cm3 (range 
0.24–0.37 cm3), Table 1) in combination with the annulus 
closure device (Fig. 5). DH significantly decreased 0.8 mm 
in average (0.3–1.2 mm) after the long-term cyclic loading 
(100,000 cycles) with p = 0,035.

Accordingly, the flexibility test did not show any clear 
differences of the median intact ROM and NZ values 

Fig. 2   a Instron servo-hydraulic materials testing machine with rota-
tional base and piston for axial load application. b DH measurement 
with application of an axial load of 100 N. c Hula hoop test: Dynamic 

cyclic loading with sinusoidal load application from 100–600 N at a 
lever arm of 30 mm

Fig. 3   Herniated disc with laminotomy to enable observation of the 
prolapse of the disc that was provoked during the cyclic loading with 
5000 cycles
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after creating the box-cut defect. ROM and NZ slightly 
increased except in flexion. The provocation of the pro-
lapse and removal of nucleus material led to an increase 
in ROM and NZ in all tested motion directions, even 
significantly for the median ROM values in right LB to 
− 5.1°, compared to intact −4.5° (p = 0.035) and right AR 

to −2.6°, compared to intact −2.1° (p = 0.014) (Fig. 6). 
Due to the implantation of the nucleus replacement and 
annulus closure implants, the ROM and NZ values of the 
intact specimens could be attained completely, whereas 
after cyclic loading, those values increased again and sig-
nificantly for flexion (p = 0.019), extension (p = 0,035) and 
left LB (p = 0.035) (Fig. 6).

The IDP measurements during the flexibility tests showed a 
similar tendency (Fig. 7). Although the box-cut defect did not 
generally lead to a decrease in the IDP, the range in LB was 
remarkably larger (Fig. 7). After the prolapse and removal of 
the nucleus material, IDP decreased in all motion directions 
and significantly in right LB to 0.5 MPa, compared to intact 
0.8 MPa (p = 0.035) (Fig. 7), accordingly to the findings in 
ROM and DH. The implantation of the native collagen-type-
I nucleus implant and annulus closure device increased IDP 
again, so that the initial values of the intact specimens have 
been reached in all motion directions, except in extension. 
After the long-term cyclic loading with 100,000 load cycles, 
IDP did change, but not following the same pattern for dif-
ferent loading planes as it could be observed for the ROM 
(Figs 6, 7).

Fig. 4   Transverse section through a disc following 100,000 cycles of loading. Both the nucleus replacement (tweezer tip) and the annulus repair 
device (posterior to the nucleus replacement) are still contained within the disc periphery on the posterolateral aspect of the annulus

Fig. 5   Median and ranges for the change of DH in mm after loading 
with 100 N in all testing conditions, *p < 0.05
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Discussion

With the present study, we showed that a nucleus replace-
ment implant (native highly-compressed collagen-type-I 
matrix) could prevent further disc herniation following 
discectomy treatment while restoring the biomechanical 
properties of an intact disc again if it is combined with 
an annulus closure device. Macroscopically, no signs of 
migration, subsidence or extrusion of the implants or 
disc material could be detected after a long-term cyclic 
loading test for 100,000 cycles. With the combination of 
both types of implants, it was possible to restore the bio-
mechanical properties (based on DH, ROM, NZ and IDP 
measurements) of an intact segment in a normal, physi-
ological state.

As the prevention from reherniations seems to be suc-
cessful combining the nucleus replacement implant with 

the annulus closure device, it could be concluded that the 
annulus closure device was the part of the combination 
that inhibited extrusions in human lumbar discs. This 
assumption complies with results from a previous biome-
chanical study with the annulus closure device stand-alone 
performed by Wilke et al. [28] and with clinical experi-
ences with this annulus closure device from Parker et al. 
and Thomé et al. [9, 30].

Primary restoration of the biomechanical properties was 
not possible with the annulus closure device alone [28] but 
potentially with a previous version of the nucleus replace-
ment implant used in this study stand-alone [13, 29] and 
with a prosthetic disc nucleus [20]. Unfortunately, the 
restored biomechanical values could not be maintained dur-
ing long-term testing, in general [28] or because of extrusion 
[29]. In the present study, restoring the biomechanical values 
for DH, ROM, NZ and IDP was possible by the implanta-
tion of the nucleus replacement implant combined with the 

Fig. 6   Median and ranges 
for ROM (brighter bars) and 
NZ (more intense bars) in all 
motion planes FE (+ : flexion, 
− : extension), LB (+ : left 
lateral bending, − : right lateral 
bending) and AR (+ : left axial 
rotation, − : right axial rotation) 
for pure moments of ± 7.5 Nm 
assessed with the spine tester, 
*p < 0.05

Fig. 7   Median and ranges for 
IDP in all motion planes FE, 
LB and AR for pure moments 
of ± 7.5 Nm assessed with the 
spine tester, *p < 0.05; a exten-
sion, right LB, right AR and b 
flexion, left LB, left AR
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annulus closure device. It could be assumed that the nucleus 
replacement implant was the part of the implant combina-
tion that was responsible for the general restoration of the 
biomechanical properties.

However, during long-term cyclic loading for 100,000 
cycles the biomechanical properties of the tested specimens 
deteriorated. Especially, this became obvious in the decrease 
in DH, and the higher flexibility (ROM and NZ) in flexion, 
extension and left LB. This could be explained by dehy-
dration of the disc over time and starting decomposition of 
the human specimens due to the long testing time period. 
Because of the long-term cyclic loading test with a duration 
of 8 h, the total testing protocol including specimen dissec-
tion and preparation could not be realised within 20 h of test-
ing which was recommended by Wilke et al. [33]. Changes 
in the material properties of the nucleus implant due to that 
dehydration could not be investigated within this biome-
chanical in vitro study, but the effect should be comparable 
to the previous stand-alone testing [13]. The focus of the 
long-term cyclic loading test lied on the evaluation of pos-
sible migration or extrusion of either one of the implants or 
disc or nucleus material, respectively. Therefore, the results 
of the biomechanical parameters gained after this long-term 
test should not be over-interpreted.

In order to investigate the implant combination in a worst-
case scenario, a box-cut defect of 6 mm x 10 mm was cut out 
of the posterolateral part of the annulus. During preliminary 
testing, the enlargement of the defect could be observed, 
so that a cutting tool of 6 mm x 7 mm was used to create a 
standardised defect of the desired size. It could be assumed 
that because of the high initial IDP of the specimens, the 
annulus fibres have been subjected to high tensile loads, but 
relaxed after the defect which resulted in a bigger defect. 
One limitation of the established box-cut defect is that it is 
not physiologic and that, hence, the prolapse is not provoked 
physiologically. To the best of our knowledge, in vitro, a pro-
lapse in an intact disc has not been provoked by simulation 
of physiologic activities without any defect so far. Only with 
superphysiological loading conditions, such as hyperflexion 
[34] compressive loads [35, 36] or under complex loading 
conditions [37–40], the provocation of a prolapse has been 
already reported as well as through a bigger defect [28]. As 
the worst-case scenario for the annulus closure device used 
in this study was already established in its previous biome-
chanical investigation by Wilke et al. [28], the findings of 
both studies are more comparable. Furthermore, this former 
biomechanical investigation reported a decreasing likelihood 
of herniations with increasing degree of degeneration [28, 
41]. In this study, limitations result from the small but gen-
erally accepted specimen number [33] specimen number 
with a higher median age of 64.5 years than patients usu-
ally treated and with a mild to moderate degeneration of 
grade 2 to 3, according to Pfirrmann [31] (Table 1). Hence, 

the successful provocation of a prolapse seemed to be more 
likely through the box-cut defect. Finally, in all segments, a 
prolapse through the box cut could be provoked successfully. 
Another limitation might be the small amount of removed 
and replaced nucleus material (Table 1). Considering lat-
est findings for the treatment of disc herniations, as much 
nucleus material as possible, should be preserved in order 
to prevent reherniations [19].

Interestingly, the box cut itself did not change the bio-
mechanical properties of the disc measurably till the pro-
lapse occurred and nucleus material was removed. It could 
be assumed that the matrix of the nucleus pulposus itself 
or fibres in the transition zone sufficiently prevent nucleus 
material from extrusion. The slight decrease in IDP in flex-
ion resulting from the box cut and again the increase in IDP 
after removal of the herniated material as well as the IDP 
increase in left AR could be a sign of migrations of the 
nucleus material towards the defect. This could be explained 
by changes in the pressure and stress distribution [42] that 
was generated during the flexibility test by the unilaterally 
impaired disc.

Based on the results after implantation, it can be con-
cluded that the combination of the novel nucleus replace-
ment and the annulus closure device was able to restore the 
biomechanical properties of the intact disc. Subsequently 
after the implantation, ROM and IDP were higher than in the 
intact disc. A larger volume of nucleus replacement that was 
implanted compared to the removed material could explain 
this. With respect to a possible remaining compressibility 
of the synthesised nucleus replacement material within the 
disc right after implantation, the primarily higher values 
for ROM and IDP could have been compensated during the 
long-term testing, again.

This study aimed to biomechanically investigate the use 
of a novel nucleus replacement in combination with an annu-
lus closure device for the treatment of lumbar herniations 
in order to prevent reherniations and to inhibit accelerated 
degeneration of the herniated segment. In general, restoring 
disc height and stability of the segment should be possible 
with nucleus replacement implants [13]. However to the 
best of our knowledge, none of the many existing concepts 
for nucleus replacement developed so far was able to assert 
themselves due to the high risk of extrusion [29].

In this biomechanical in vitro study, it was verified for the 
first time that the closure of a large defect in the annulus and, 
simultaneously, restoration of the biomechanical properties 
of an intact motion segment could be possible. Furthermore, 
the combination of the nucleus replacement implant and 
annulus closure device did not show any signs of implant 
extrusion or reherniation after long-term dynamic testing. 
Appropriate distribution of compressive loads of the annu-
lus in different movements could be regained which might 
inhibit accelerated degeneration [12, 14, 15]. Considering 
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the findings of this biomechanical in vitro study, nucleus 
replacement implants could get a new chance if they are 
combined with annulus closure devices.
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