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Abstract
Purpose To evaluate the predictive performance of statistical models which distinguishes different low back pain (LBP) 
sub-types and healthy controls, using as input predictors the time-varying signals of electromyographic and kinematic vari-
ables, collected during low-load lifting.
Methods Motion capture with electromyography (EMG) assessment was performed on 49 participants [healthy control 
(con) = 16, remission LBP (rmLBP) = 16, current LBP (LBP) = 17], whilst performing a low-load lifting task, to extract a 
total of 40 predictors (kinematic and electromyographic variables). Three statistical models were developed using functional 
data boosting (FDboost), for binary classification of LBP statuses (model 1: con vs. LBP; model 2: con vs. rmLBP; model 
3: rmLBP vs. LBP). After removing collinear predictors (i.e. a correlation of > 0.7 with other predictors) and inclusion of 
the covariate sex, 31 predictors were included for fitting model 1, 31 predictors for model 2, and 32 predictors for model 3.
Results Seven EMG predictors were selected in model 1 (area under the receiver operator curve [AUC] of 90.4%), nine 
predictors in model 2 (AUC of 91.2%), and seven predictors in model 3 (AUC of 96.7%). The most influential predictor was 
the biceps femoris muscle (peak �  = 0.047) in model 1, the deltoid muscle (peak � =  0.052) in model 2, and the iliocostalis 
muscle (peak � =  0.16) in model 3.
Conclusion The ability to transform time-varying physiological differences into clinical differences could be used in future 
prospective prognostic research to identify the dominant movement impairments that drive the increased risk.
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These slides can be retrieved under Electronic Supplementary Material.

Key points 
 
1. Different low back pain (LBP) subgroups and controls had different 

movement and control patterns when performing a low load lifting task.  

2. Seven to nine electromyography variables were able to classify different low 
back pain (LBP) subgroups and controls with excellent accuracy.  

3. Muscular activation patterns appear to be more useful biomarkers of an 
individual’s spinal health than kinematic predictors. 

4. Activities of muscles as distal as the ankle dorsiflexors, and as proximal as the 
deltoids, can contribute to the accuracy of predictive models in LBP research. 

5. Functional data boosting (Fdboost) as a technique can transform 
physiological differences in functional predictors (e.g. electromyography) into 
clinical differences. 
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Take Home Messages 
 
1. Individuals with low back pain move and activate their muscles differently 

during lifting from those in pain remission and healthy controls.   

2. Movement differences under pain can be used to aid clinical decision, 
especially in prognostication.  

3. Functional data boosting (FDboost) is able to map time-varying 
electromyography and kinematic differences onto clinical outcomes.  

4. Fdboost solutions are parsimonious and highly interpretable.  

5. Our approach could have great promise in delivering a breakthrough in 
predictive performance in prospective, cohort studies. 
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Introduction

Low back pain (LBP) has a global prevalence of close to 
half a billion [1] and ranks as the number one cause of years 
lived with disability [1]. LBP incurs a significant socio-
economic cost, with £1.6 billion incurred as health-related 
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expenditures, and £9.1 billion incurred as loss economic 
productivity within the UK alone [2]. Being able to pre-
dict the clinical course of LBP—i.e. whether it improves, 
persists, relapses, or worsens—is highly relevant since such 
knowledge would guide clinical expectations of recovery 
and would assist clinicians in matching different clinical 
phenotypes to specific interventions.

Increasingly, researchers are turning towards advance 
statistical learning techniques to develop accurate predic-
tion models for people with LBP using information from 
high-dimensional, multivariate biological signals [3]. Exist-
ing studies have used biological signals such as surface 
electromyography (sEMG) [4, 5], kinematics [6, 7], brain 
neuroimaging [3], and spine neuroimages [8] as candidate 
predictors; feeding into statistical learning techniques such 
as support vector machine (SVM) [3–6], neural networks 
[7], and natural language processing [8]. The excellent 
predictive accuracy of current models developed using a 
spectrum of biological signals and statistical techniques has 
demonstrated the potential for such methods to assist clinical 
decision-making [3–8].

Despite their predictive value, prohibitive barriers exist 
towards a more generalized integration of advance predictive 
models into routine clinical practice. First, some biologi-
cal signals, such as brain neuroimages [3], are not feasible 
to be collected as routine in most clinical settings. Second, 
candidate biological signals should ideally be collected dur-
ing activities that are routinely assessed clinically, rather 
than more complex sporting manoeuvres such as golf [4]. 
Third, the current statistical techniques that are used do not 
produce solutions that are easily interpretable. For exam-
ple, the quantitative influence of each biological predictor 
on the response cannot be easily determined using neural 
networks and SVM. Fourth, the number of features that can 
be extracted from biological signals can be large, whilst 
parsimonious models may be more desirable clinically. A 
parsimonious model is not only more interpretable, but 
also it reduces the operational burden of subsequent data 
collection.

Lifting is an ideal task from which biological signals 
can be extracted to discriminate LBP status, given that it 
is commonly implicated as a risk factor for future LBP [9], 
it is a task that LBP individuals may fear performing [10], 
and it is a task which commonly provokes pain [11]. Com-
pared with healthy controls, people with LBP typically lift 
with greater thoraco-lumbar spinal flexion [12]; more anti-
phase lumbar-hip coordination [13]; greater accessory spi-
nal movements [14]; greater erector spinae, latissimus dorsi, 
rectus abdominis, and external oblique activity [15, 16]; and 
greater trunk flexor–extensor co-activation [15, 17]. Surpris-
ingly, no studies have considered the discriminatory value 
of these kinematic and EMG variables when used within 
a functional, time-series context. Functional variables may 

provide more information on an individual’s movement 
impairments than scalar variables (e.g. means, peaks), given 
that the former contains both magnitude and temporal infor-
mation. For example, physical impairments such as impaired 
flexion–relaxation response of the erector spinae have been 
found early in the trunk flexion phase [18]. This is in addi-
tion to the fact that spinal loads are not constant across the 
lifting and lowering phases [19].

The primary purpose of the present study is to develop 
and determine the predictive performance of statistical mod-
els to distinguish different LBP sub-types and healthy con-
trols from each other, using whole-body electromyographic 
and kinematic variables as predictors collected during a 
functional lifting task. Three models were developed to dis-
tinguish individuals with a current episode of LBP (LBP) 
from asymptomatic individuals (con); individuals in symp-
tom remission (rmLBP) from controls; and individuals with 
current LBP from those in remission. Herein, we used a 
state-of-the-art machine learning technique, termed func-
tional data boosting (FDboost). Potential benefits of FDboost 
in the present context are that it can perform variable selec-
tion simultaneously with model fitting.

Materials and methods

Design

This single-session study was conducted within the motion 
capture laboratory of the Centre of Precision Rehabilitation 
for Spinal Pain, University of Birmingham, UK, between 1 
May 2018 and 31 October 2018. The study obtained ethi-
cal approval from the Ethics Committee of the University 
of Birmingham, UK (ERN_17-1717). All participants pro-
vided written informed consent prior to participation, and 
the study adhered to the Declaration of Helsinki.

Participants

Participants between 18 and 55 years old with adequate 
conversational English language were invited to volunteer. 
Participants were eligible to be included into one of three 
groups based on the following criteria:

• Current low back pain (LBP): present episode of LBP 
lasting > 24 h, with a minimum intensity on the Numeri-
cal Rating Scale (NRS) score of greater than or equal to 
2/10 (0 no pain, 10 being maximal pain) [20].

• Remission low back pain (rmLBP): presently in symptom 
remission from a LBP episode experienced within the 
last year, with an NRS score of less than or equal to 1/10
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• Controls: no relevant history of LBP that limited their 
function and/or required treatment from a health profes-
sional in the past year.

Participants were excluded if they had previous spinal 
surgery, spinal fracture, rheumatologic, metabolic, infectious 
conditions as self-reported, with ability to perform at least 
10 full spinal flexion repetitions on screening, pregnancy, 
and any medical conditions which preclude safe execution 
of lifting.

Lifting task

Participants performed a repetitive low-load (7% body 
weight [BW]) [21] lifting task of a basket (30 × 36 × 10 cm) 
from the ground surface, with the midpoint of the basket’s 
handle positioned 25 cm forward horizontally from the mid-
point of the foot on the ground. A horizontal distance of 
25 cm was close to a distance previously used [22], which 
could reasonably be performed by LBP individuals repeat-
edly as evaluated in pilot tests.

Lifting was performed barefooted, with the position of 
the foot fixed at 30 cm between the bilateral malleoli [23], 
with participants freely selecting a toe-out angle. Partici-
pants were instructed to “lift in a way that is most comfort-
able”, such that participants could lift in any bimanually 
symmetrical style [24]. Participants were also instructed to 
keep their heels on the ground and to maintain a broadly 
consistent lifting style throughout the task. A lifting repeti-
tion (defined below) where the heels lifted off the ground or 
participants grossly changed their lifting style (e.g. from a 
stoop fully extended knees to a squat with fully flexed knees) 
was rejected, and participants were reminded of the task 
requirements. Participants performed six sets of five con-
secutive repetitions of lifting, with an inter-set rest period 
of at least 5 min. Lifting was performed at a self-determined 
pace, with the natural frequency of lifting determined during 
practice, and subsequently fixed to that frequency using an 
auditory metronome.

Assessment

Marker trajectories were captured with eight motion cap-
ture cameras sampling at 250 Hz (BTS SMART-DX 6000, 
BTS Bioengineering Corp, Italy). Retroreflective 14-mm 
markers were placed on the feet bilaterally (first and fifth 
metatarsophalangeal head, posterior surface mid-calcaneus), 
pelvis (bilateral anterior and posterior superior iliac spines), 
bilateral acromion, and posterior surface of the mid-distal 
radioulnar joints (wrist).

Prior to EMG electrode placements, the skin was shaved, 
gently abraded, and wiped with alcohol, in accordance 
with the SENIAM guideline [25]. Fifteen wireless EMG 

electrode pairs sampling at 1000 Hz (BTS FreeEMG, BTS 
Bioengineering Corp, Italy) were placed unilaterally on the 
biceps brachii (BicepsB), anterior deltoid (AntDelt), latis-
simus dorsi (LatsD) (lateral to T9 over the muscle belly) 
[26], external oblique (EO) (approximately 15 cm lateral to 
the umbilicus) [26], rectus abdominis (RA) (3 cm lateral to 
umbilicus) [27], iliocostalis lumborum (Ileoc) (1 cm lateral 
to the L5 spinous process) [28], longissimus thoracis pars 
thoracis (Longis) (5 cm lateral to the T9 spinous process) 
[28], soleus (Sol), lateral gastrocnemius (GL), tibialis ante-
rior (TA), vastus lateralis (VL), rectus femoris (RF), sem-
itendinosus (ST), biceps femoris (BicepsF), and gluteus 
maximus (GMax). The side for EMG electrode placements 
was on the right for controls and on the side of previous/
current pain for the LBP groups.

Data processing

A virtual landmark termed “pelvis” was calculated using 
the proximal endpoint of the modelled inertial pelvic seg-
ment (“pelvis”) using the segment inertial and geometric 
properties of Dempster et al. [29] and Hanavan et al. [30], 
respectively. A virtual coordinate system was created with 
three virtual landmarks: the origin at the midpoint of bilat-
eral calcanei marker projected onto the floor, the midpoint of 
the bilateral first MTP marker projected onto the floor, and 
a landmark projected 10 cm vertically above the origin. The 
vertical and anterior–posterior (AP) linear displacements of 
the following markers/landmarks were calculated relative to 
the virtual coordinate system, normalized to the participant’s 
height, for use as predictors in the statistical model: right 
wrist (given task symmetry), right acromion, and pelvis. 
Marker trajectories were filtered with a low-pass, zero-lag, 
fourth-order, Butterworth filter (6 Hz).

EMG signals were high-pass-filtered with a fast Fourier 
transform at 40 Hz to remove the electrocardiogram artefact. 
Subsequently, the signals were rectified and low-pass-filtered 
with a zero-lag, fourth-order, Butterworth filter (5 Hz) [31]. 
The maximal EMG amplitude of each muscle per repetition 
was extracted and averaged within a set to create a normal-
izing factor [32]. EMG amplitude of each muscle per lifting 
set was divided by the normalizing factor. The RA EMG 
signals were excluded due to movement artefact occurring in 
individuals who lifted with significant magnitudes of trunk 
flexion, such that the electrodes were lifted from the body 
surface.

One lifting repetition was defined from the time when 
the load left the ground, to a fully upright body posture, and 
when the load contacted the ground again. Two phases were 
defined: lifting started when the positive-vertical velocity of 
the right acromion marker exceeded 10%, and ended when it 
dropped below 10% of its peak vertical velocity during each 
set. Lowering began when the negative-vertical velocity of 
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the right acromion marker exceeded 10%, and ended when 
it dropped below 10% of its peak vertical velocity during 
each set. Segmentation of the kinematic and EMG signals 
was undertaken independently for each lifting and lowering 
phase and was time-normalized to 101 data points.

Statistical model

Simple linear regression and logistic regression were used 
for between-group comparisons in the baseline demographic 
and pain characteristics, for continuous and categorical vari-
ables, respectively.

Three scalar-on-function (SoFR) logistic regression 
models were used for binary classification of LBP statuses 
(model 1: con vs. LBP; model 2: con vs. rmLBP; model 3: 
rmLBP vs. LBP). A SoFR model is one where the response 
variable takes on scalar values, and the covariates take on 
functional (or scalar) values. Functional regression models 
are extensions of standard regression models such as gen-
eralized additive models. Fourteen EMG and six kinematic 
(vertical and AP displacements of three markers/landmarks) 
functional variables were available for each lifting and low-
ering phase, making a total of 40 predictors. For each model, 
EMG and kinematic variables were independently screened 
for high collinearity, and variables which exhibited a high 
absolute correlation of > 0.7 with all other EMG and kin-
ematic covariates [33], respectively, were excluded. The 
number of functional predictors retained was 30 for model 
1 and 2 and 31 for model 3. All functional variables were 
demeaned as a pre-processing step, so that different predic-
tors had equal potential to be included in the model. For each 
model, we adjusted for the effects of sex (male vs. female) 
by including it as a predictor, meaning that the final number 
of predictors included in model 1 was 31, model 2 was 31, 
and model 3 was 32.

We used component-wise gradient boosting for model 
fitting [34]. The algorithm is an iterative procedure which 
successively adds one covariate to the model, like a sequen-
tial forward stepwise regression, with the ability to handle 
functional covariates, perform variable selection, and allow 
for penalized estimation. In order to estimate the optimal 
number of iteration to optimize the negative log-likelihood 
of the Bernoulli distribution, cross-validation was performed 
on 25 bootstrap samples of the data, each with a roughly 
similar ratio of individuals in each group. The area under the 
receiver operating characteristic curve (AUC) was used to 
quantify the model’s ability to discriminate the two groups. 
All analyses were performed using R version 3.5.3, using 
the “FDboost” package [34], and the codes with results are 
found in the following repository [35].

Results

Forty-nine participants participated in the study (con-
trol = 16, rmLBP = 16, LBP = 17), the demographic and 
clinical characteristics of which are shown in Table 1. The 
group-averaged kinematic and EMG waveforms are reported 
in Figs. 1 and 2.

The optimal number of iterations was 201 for model 
1, 364 for model 2, and 614 for model 3. Based on the 
optimal iteration number, seven predictors (two lifting and 
five lowering) were selected in model 1 (con vs. LBP), 
which achieved an out-of-bag AUC of 90.4%; nine predic-
tors (three lifting, six lowering) were selected in model 
2 (con vs. rmLBP) which achieved an out-of-bag AUC 
of 91.2%; and seven predictors (one lifting, six lowering) 
were selected in model 3 (rmLBP vs. LBP) which achieved 
an out-of-bag AUC of 96.7%. Table 2 provides a qualita-
tive summary of the discriminatory value of the selected 

Table 1  Mean (standard 
deviation) of demographic and 
pain-related characteristics

NRS Numerical Rating Scale, TSK Tampa Scale for Kinesiophobia, PASS-20 Pain Anxiety Symptoms 
Scale-20, ODI Oswestry Disability Index
* Significantly different from control
+ Significantly different from rmLBP

Control (n = 16) rmLBP (n = 16) LBP (n = 17)

Female/male 9/7 6/10 13/4+

Age (years) 29.94 (9.61) 38.69 (10.54)* 39.76 (11.00)*
Height (cm) 168.38 (6.61) 171.69 (11.22) 168.68 (7.78)
Weight (kg) 68.48 (13.65) 71.18 (11.49) 71.37 (12.57)
Pain (NRS: 0 no pain–10 max pain) – 1 (0) 4.06 (1.94)+

TSK (17 no fear–68 max fear) – 36.25 (5.66) 39.76 (6.01)
PASS-20 (0 no anxiety–200 max anxiety) – 31.19 (19.79) 36.06 (18.16)
ODI (0 no disability–50 max disability) – 2.69 (3.11) 10.76 (6.14)+

Lifting phase duration (s) 1.05 (0.13) 1.11 (0.12) 1.13 (0.20)
Lowering phase duration (s) 1.13 (0.16) 1.18 (0.14) 1.22 (0.28)
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predictors. The time-varying �-coefficient plots for each 
predictor in each model can be found in Figs. 3, 4 and 5. 
The predictor with the largest magnitude of � coefficient 
was the BF muscle with peak � of 0.047 at the early phase 

(0% cycle) of lowering in model 1, the deltoid muscle with 
peak � of 0.052 at the late phase (100% cycle) of lowering 
in model 2, and the Ileoc muscle with peak � of 0.16 at the 
early phase (0% cycle) of lowering in model 3 (Table 2).

Fig. 1  Group mean amplitude normalized (%) linear envelopes of the: 
a lower limb muscles, b hip, trunk, and upper limb muscles, during 
lifting and lowering phases. TA tibialis anterior, SOL soleus, GL gas-
trocnemius lateralis, VL vastus lateralis, RF rectus femoris, BicepsF 
biceps femoris, ST semitendinosus, GMax gluteus maximus, EO 

external oblique, Longis longissimus thoracis pars thoracis, Ileoc ili-
ocostalis lumborum, LatsD latissimus dorsi, BicepsB biceps brachii, 
Delt deltoids, con control, rmLBP remission low back pain, LBP low 
back pain



1850 European Spine Journal (2020) 29:1845–1859

1 3

To provide another visualization to interpret the models’ 
solutions, the group-averaged waveform values were input-
ted into the model, and the predicted cumulative increase in 
class probabilities was calculated when a change occurred 
across all time points (0–100% cycle) of the lifting or lower-
ing phases (Figs. 6, 7 and 8). As one example, if a 1% unit 
increase in BF muscle activity were to occur across all time 
points during lowering, the probability of being in the LBP 
group increases, which plateaus after 50% of the lowering 
phase cycle (Fig. 6). In other words, most of the difference 
between groups for the BF muscle in lowering phase lie in 
the first half of the task duration.

Discussion

In the present study, functional kinematic and EMG predic-
tors in a simple lifting task were used to predict LBP statuses 
utilizing FDboost. Our models revealed that 7–9 EMG vari-
ables collected during lifting and lowering produced excel-
lent predictive probabilities. More importantly, our models 
are highly interpretable, in that a parsimonious number of 
physiological relationships could be understood to increase 
the certainty of different LBP sub-types.

The physiological relationships between muscle activa-
tion and the prediction of LBP were partially supported 
by existing literature, even though the latter focused on 

hypothesis testing rather than prediction. Falla et al. [11] 
reported greater EMG amplitude of the lumbar erector spi-
nae, during sub-maximal lifting and lowering in LBP indi-
viduals compared to controls. Haddas et al. [36] reported 
greater EMG amplitude of the multifidus (L5 level) muscle 
during the early phase of maximal effort lifting in individu-
als with LBP compared to controls. In addition, high-density 
EMG revealed that LBP individuals recruited more caudal, 
and controls recruited more cranial regions of the lum-
bar erector spinae during a sub-maximal lifting task [11]. 
Regional differences in activation of the erector spinae at 
different phases during the lifting task were not reported 
[11]. The present study showed that greater lumbar extensor 
activity increased the certainty of being in the LBP group, 
which concurred with Falla et al. [11]. However, we also 
found that more activity in the cranial Longis muscle in the 
early lifting phase and more activity in the caudal Ileoc mus-
cle in the early lowering phase increased the certainty of 
being in the LBP group.

The evidence on whether muscular activity differs 
between healthy controls and individuals in LBP remis-
sion is conflicting in part because of the varying motor 
tasks investigated. When performing 90° walking turns, 
there were no differences in EMG amplitude of the deep 
multifidus, lumbar longissimus, and thoracic longissimus 
muscles between individuals in rmLBP and controls [37]. 
Yet, individuals in rmLBP demonstrated greater thoracic 

Fig. 2  Group mean linear displacement (m) in the: a vertical and b 
anterior–posterior direction of the wrist and shoulder marker, and pel-
vis landmark, during lifting and lowering phases. RACR  right acro-

mion, RWRST right wrist, con control, rmLBP remission low back 
pain, LBP low back pain
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longissimus activity than controls when sitting in a long lor-
dotic posture [38]. Chiou et al. [39] reported no differences 
in EMG amplitude of the erector spinae muscles (at T12 and 
L4 levels) during sub-maximal and maximal prone lumbar 
extensions. A previous study reported greater erector spinae 
(L1 level) activity but similar activities of the multifidus (L5 
level) and EO in individuals in LBP remission during the 
lifting phase, compared to controls [40]. Given that lifting as 
a task is commonly implicated as a risk factor for future LBP 
[9], and that it is a task LBP individuals often have a fear of 
performing [10], it is suggested that future studies should 
focus their efforts on collecting predictors from this task.

Pain has been shown to alter the activities of muscles both 
local and remote to the dominant site of pain, such that their 
collective response to pain may be seen as a coordinative 
strategy to ensure consistent task performance despite pain 
[41–43]. We observed that individuals who used more ham-
strings and less upper limb muscles to lower the load had a 
greater certainty of being in the LBP, relative to the rmLBP 
group (Table  2). The compensatory muscular strategy 

between the lower and upper limbs provides evidence of 
the importance of quantifying whole-body muscular coor-
dination patterns as potential risk factors in LBP research. 
Interestingly, all studies comparing differences in muscular 
activity between different LBP sub-types during a lifting 
task have focused on measuring muscle activity only of the 
abdominal, trunk extensor, and hip extensor muscles [11, 
36, 40, 44]. The present findings uniquely demonstrate that 
activities of muscles as distal as the ankle dorsiflexors, and 
as proximal as the deltoids, can contribute to the accuracy 
of predictive models in LBP research.

Previous studies have reported altered kinematics 
between individuals with and without LBP at the ankle, 
knee, and hip joints [45] and even altered inter-segmental 
coordination between the lumbar–hip and between the 
hip–knee joints during lifting [13]. However, no differences 
in trunk, hip, knee, ankle linear and angular displacements, 
velocities, and accelerations were reported between people 
with and without LBP during the lifting and lowering phase 
of a 12 kg box from the floor [44]. Given that Lariviere 

Table 2  Qualitative directional 
effect muscle activation 
alterations have on predicted log 
odds of being in the alternative 
group (LBP for models 1 and 3, 
rmLBP for model 2)

If β coefficient is positive or negative over the task cycle, only the directional effect with the largest magni-
tude for each predictor is reported. If β coefficient has dual signs (positive and negative) over the task cycle, 
directional effects with the largest magnitude for each sign are reported
Cycle—early: 0–33% cycle; mid: 34–66% cycle; late: 67–100% cycle
Direction of effect—↑: increase; ↓ decrease
Groups—LBP low back pain, rmLBP remission low back pain
Muscles—TA tibialis anterior, SOL soleus, GL gastrocnemius lateralis, VL vastus lateralis, RF rectus femo-
ris, ST semitendinosus, BicepsF biceps femoris, GMax gluteus maximus, EO external oblique, Ileoc ili-
ocostalis lumborum, Longis longissimus thoracis pars thoracis, LatsD latissimus dorsi, Delt deltoids, 
BicepsB biceps brachii

Model 1 Model 2 Model 3
Control versus LBP (↑ log 
odds of LBP)

Control versus rmLBP (↑log 
odds of rmLBP)

rmLBP versus LBP 
(↑ log odds of LBP)

Lift
Early ↓VL ↓SOL

↓VL
↓LatsD

Mid ↑Longis (T9)
Late ↑VL ↑SOL

↑ VL
↑ Longis (T9)

Lower
Early ↑TA

↑BicepsF
↑EO
↑Ileoc (L5)

↑BicepsF
↑Longis (T9)

↑Ileoc(L5)
↓Longis(T9)

Mid
Late ↓EO

↓BicepsB
↑SOL
↑GL
↓BicepsF
↓GMax
↓Longis (T9)
↑Delt

↑BicepsF
↑ST
↓BicepsB
↓Delt
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et al. [44] reported greater thoracic erector spinae activity 
during the lifting and lowering phases in people with LBP 
compared to controls, taken with the present findings, mus-
cular activation strategies may be more useful biomarkers 
of an individual’s spinal health than kinematic predictors. It 
remains to be investigated whether EMG predictors of LBP 
status would be selected once inclusion of a thorough set of 
functional kinematic predictors is considered.

Despite the optimism of the models present, the current 
study has some limitations. First, this study had a relatively 
small sample size compared to the number of predictors. 
The number of participants in the present study was, how-
ever, comparable to other similar researches in clinical 

biomechanics (n = 41 in [46], n = 44 in [47]). Results from 
the study will enable future researchers to fit the presently 
reported model’s learning curve to inverse power law mod-
els [48] and to estimate the sample size needed to achieve 
a desired classification performance. Second, the variables 
used for model building were collected in a single ses-
sion, which although reflected a typical clinical assessment 
scenario, may not reflect normal movement behaviour in 
daily living. With more advance wearable sensor technol-
ogy emerging which allows remote biomechanics analysis 
[49], the methods employed presently can be exploited to 
yield statistical models which have greater ecological valid-
ity, and ultimately better personalized predictive accuracy. 

Fig. 3  Beta coefficients (log odds) at each 1% cycle of selected pre-
dictors in model 1 (con vs. LBP). a Lifting and b lowering predictors. 
BicepsB biceps brachii, BicepsF biceps femoris, EO external oblique, 

Ileoc iliocostalis lumborum, Longis longissimus thoracis pars thora-
cis, TA tibialis anterior, VL vastus lateralis, con control, lbp low back 
pain
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Third, we did not include age as a predictor during model 
building even though individuals with LBP and rmLBP were 
significantly older than controls. Even though previous stud-
ies have reported age-related differences in movement and 
control strategies [50, 51], these differences were examined 
between adult cohorts with ~ 40 years in age gap. Lastly, 
given the cross-sectional nature of this study, we view the 
current work through the lens of a “hypothesis generation” 
framework, where we explored the predictive value of 
functional kinematic and EMG variables in a LBP setting. 
Future work would be to build predictive models using func-
tional movement variables and subjective reports of pain, 

psychological function and physical function, and patient 
characteristics in a prospective cohort setting.

The ability to transform time-varying physiological dif-
ferences into differences in clinical outcomes could be used 
in future research to predict those likely to develop LBP. 
Whilst this is not the focus of the current work, it certainly 
provides the foundation to examine this in a longitudinal 
study. Although it is interesting to use such models to predict 
who has or doesn’t have LBP, clinically it is certainly more 
relevant to be able to predict who is likely to develop LBP, 
persistence, and its relapse and identify the dominant move-
ment impairments that drive the increased risk that would 

Fig. 4  Beta coefficients (log odds) at each 1% cycle of selected pre-
dictors in model 2 (con vs. rmLBP). a Lifting and b lowering pre-
dictors. BicepsF biceps femoris, Delt deltoids, GL gastrocnemius 

lateralis, GMax gluteus maximus, Longis longissimus thoracis pars 
thoracis, SOL soleus, VL vastus lateralis, con control, rmlbp remis-
sion low back pain
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Fig. 5  Beta coefficients (log 
odds) at each 1% cycle of 
selected predictors in model 3 
(rmLBP vs. LBP). a Lifting and 
b lowering predictors. BicepsB 
biceps brachii, BicepsF biceps 
femoris, Delt deltoids, Ileoc 
iliocostalis lumborum, Longis 
longissimus thoracis pars thora-
cis, LatsD latissimus dorsi, ST 
semitendinosus
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have direct implications for management and preventative 
strategies. FDboost can also be extended to performing 
regression analysis, where the outcome is a continuous vari-
able (e.g. fear-avoidance levels). Given that explicit reports 
may not correspond to actual implicit measurements of an 
individual’s psychophysical status [10], currently, it is not 
feasible to perform implicit measurements of an individual’s 
psychophysical status in a clinical environment due to the 

lengthy time involved. In such a scenario, a statistical model 
can be trained in a laboratory environment that predicts 
implicit psychophysical levels using objectively collected 
movement variables and measure the pertinent movement 
variables clinically to predict their likely implicit psycho-
physical levels.

Fig. 6  Predicted cumulative probability of being in the LBP group 
given an input of each group’s (con and LBP) average waveform for 
each selected predictor in model 1. a Lifting and b lowering predic-
tors. Probabilities reflect the additive increase in certainty given the 
observed difference between groups in EMG amplitude for every 1% 

of the movement cycle. BicepsB biceps brachii, BicepsF biceps femo-
ris, EO external oblique, Ileoc iliocostalis lumborum, Longis longis-
simus thoracis pars thoracis, TA tibialis anterior, VL vastus lateralis, 
con control, LBP low back pain
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Conclusions

Our approach of using functional kinematic and EMG vari-
ables collected in a simple, yet clinically relevant task such 
as lifting, in conjunction with FDboost, produced clinically 
interpretable models that retain good to excellent predictive 

capability. If the approach used presently can be extended 
to include predictors collected using wearable sensors, 
then our models could have great promise in delivering the 
breakthrough in predictive performance that can be feasibly 
implemented in a busy clinical environment.

Fig. 7  Predicted cumulative probability of being in the rmLBP group 
given an input of each group’s (con and rmLBP) average waveform 
for each selected predictor in model 2. a Lifting and b lowering pre-
dictors. Probabilities reflect the additive increase in certainty given 
the observed difference between groups in EMG amplitude for every 

1% of the movement cycle. BicepsF biceps femoris, Delt deltoids, GL 
gastrocnemius lateralis, GMax gluteus maximus, Longis longissimus 
thoracis pars thoracis, SOL soleus, VL vastus lateralis, con control, 
rmLBP remission low back pain
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Fig. 8  Predicted cumulative 
probability of being in the LBP 
group given an input of each 
group’s (rmLBP and LBP) aver-
age waveform for each selected 
predictor in model 3. a Lifting 
and b lowering predictors. 
Probabilities reflect the additive 
increase in certainty given the 
observed difference between 
groups in EMG amplitude for 
every 1% of the movement 
cycle. BicepsB biceps brachii, 
BicepsF biceps femoris, Delt 
deltoids, Ileoc iliocostalis 
lumborum, Longis longissimus 
thoracis pars thoracis, LatsD 
latissimus dorsi, ST semitendi-
nosus, rmLBP remission low 
back pain, LBP low back pain
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