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Abstract
Purpose  Hyaluronic acid plays an essential role in water retention of the intervertebral disc (IVD) and thus provides flexibil-
ity and shock absorbance in the spine. Hyaluronic acid gets degraded by hyaluronidases (HYALs), and some of the resulting 
fragments were previously shown to induce an inflammatory and catabolic response in human IVD cells. However, no data 
currently exist on the expression and activity of HYALs in IVD health and disease.
Methods  Gene expression, protein expression and activity of HYALs were determined in human IVD biopsies with different 
degrees of degeneration (n = 50 total). Furthermore, freshly isolated human IVD cells (n = 23 total) were stimulated with 
IL-1β, TNF-α or H2O2, followed by analysis of HYAL-1, HYAL-2 and HYAL-3 gene expression.
Results  Gene expression of HYAL-1 and protein expression of HYAL-2 significantly increased in moderate/severe disc 
samples when compared to samples with no or low IVD degeneration. HYAL activity was not significantly increased due 
to high donor–donor variation, but seemed overall higher in the moderate/severe group. An inflammatory environment, as 
seen during IVD disease, did not affect HYAL-1, HYAL-2 or HYAL-3 expression, whereas exposure to oxidative stress 
(100 µM H2O2) upregulated HYAL-2 expression relative to untreated controls.
Conclusion  Although HYAL-1, HYAL-2 and HYAL-3 are all expressed in the IVD, HYAL-2 seems to have the highest 
pathophysiological relevance. Nonetheless, further studies will be needed to comprehensively elucidate its significance and 
to determine its potential as a therapeutic target.
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Key points

1. HYAL-1, HYAL-2 and HYAL-3 are expressed in the human IVD.

2. Protein expression of HYAL-2 is significantly elevated during IVD 
degeneration. 

3. Inflammation does not affect HYAL-1, HYAL-2 or HYAL-3 
expression in human IVD cells.

4. Oxidative stress enhances HYAL-2 expression in human IVD cells.
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Introduction

Glycosaminoglycans (GAGs), which are major components 
of the extracellular matrix (ECM) of numerous connective 
tissues, including the intervertebral disc (IVD), are a family 
of negatively charged heteropolysaccharides. Chondroitin 
sulfate and keratan sulfate as the IVD-typical GAGs bind 
to an extended protein core, resulting in the brush-like pro-
teoglycan (PG) named aggrecan. The G1 domain at the 
N-terminal end of aggrecan interacts with hyaluronic acid 
(HA) and link protein and thus provides the hydrated gel 
structure seen in healthy IVDs, specifically in the nucleus 
pulposus (NP) [1, 2]. Hyaluronic acid (HA) itself is com-
posed of repeated disaccharide units of d-glucuronic acid 
and N-acetyl-d-glucosamine with a molecular weight of 
103–104 kDa (high molecular weight, HMW-HA) [3, 4].

Ample evidence has been provided over the past dec-
ades for the degradation of aggrecan with IVD degenera-
tion. In fact, enzymatic action by matrix metalloprotein-
ases (MMPs) and aggrecanases can target the interglobular 
domain (between the G1 and G2 domains), with MMP 
degradation typically happening earlier than aggrecanase 
degradation [5, 6]. Interestingly, mechanical overloading 
as a contributor to degeneration was shown to enhance 
MMP-associated cleavage of aggrecan [7]. Furthermore, 

changes in spatial distribution and disaccharide sulpha-
tion patterns of GAGs are commonly observed during IVD 
aging and degeneration [8–10].

HA degradation can occur via prokaryotic enzymes, 
including bacterial β-endoglycosidases and bacte-
rial β-exoglycosidases [11]. However, in the context of 
ECM maintenance and degeneration in human health 
and disease, the eukaryotic HA-degrading endo-β-n-
acetylhexosaminidases—also termed hyaluronidases 
(HYALs)—are of highest relevance, albeit other eukary-
otic enzymes (e.g., β-glucuronidase) also possess HA 
degrading activity [11]. HYALs preferentially degrade 
HA through cleavage at the β-(1,4)-linkage [12], but can 
also affect the integrity of chondroitin sulfate at reduced 
activity [13].

Six HYAL-like gene sequences have been identified in 
humans so far, sharing about 40% of their identity with 
one another: HYAL-1, HYAL-2, HYAL-3, HYAL-4, 
PH20 (= SPAM1) as well as a pseudo gene HYAL-Phyal1 
that is transcribed in humans, but is not translated [13]. 
Of these, HYAL-1 and HYAL-2 have been investigated 
in most detail. While both of these enzymes are located 
on chromosome 3p21.3 [14], they show differences with 
regard to substrates, location within the cellular compart-
ment and cleavage products [11, 15].

Fig. 1   Mechanism of HA degradation. a HA is cleaved by HYALs 
at hexosaminidic β (1–4) linkages between glucuronic acid and 
N-acetylglucosamine. b Membrane-anchored HYAL-2 cleaves HMW 
HA to small MW HA, which is then internalized into lysozomes and 
further cleaved to oligosaccharides by HYAL-1. In the IVD, oligo-

saccharides have been shown to exhibit biological (e.g., pro-inflam-
matory) activity. In the IVD, the expression of HYAL-2 is increased 
with oxidative stress as well as with degeneration (but in a subset of 
samples), yet not in a simulated inflammatory environment
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The process of HA cleavage (Fig.  1) is initiated by 
HYAL-2, a cell surface glycosylphosphatidylinositol-
anchored protein that acts in cooperation with CD44 [16, 
17], by degrading HMW-HA into intermediate sized frag-
ments of approximately 10–20 kDa [14]. These fragments 
are partially taken up by the cell upon interaction with 
surface HA receptors (endocytosis) [14, 15] and partially 
released into the extracellular space [17]. Upon endocytosis, 
HYAL-1 further degrades these fragments into oligosaccha-
rides (predominantly tetrasaccharides) within endosomal-
lysosomal structures in the cell. Fragments are then released 
by exocytosis or further cleaved by the lysosomal enzymes 
β-d-glucuronidase and β-N-acetyl-d-hexosaminidase into 
individual sugars [13, 15, 18]. Aside from enzymatic reac-
tions, in vivo degradation of HA can also occur through 
reactive oxygen species (ROS), as described in detail by 
Stern et al. [11].

Larger HYAL-2-induced fragments (oligomers) and 
smaller HYAL-1-induced fragments (e.g., tetramers) have 
both been described to possess biological activity, thereby 
affecting a variety of cellular processes in a cell-type and 
size-specific manner [19–23]. More specifically, various 
types of HA fragments were shown to be able to promote 
inflammation in, e.g., immune cells (10–400 kDa) [19] 
(35kDA) [24], chondrocytes (6-mer oligosaccharides) 
[25] and also IVD cells (6–12 disaccharides) [26] (Fig. 1), 
although not all studies show an effect (4 mer as well as 
range between 4 and 200 kDa) [27, 28]. Interestingly, inflam-
matory conditions have been described to further induce the 
expression and activity of HYALs in certain cell and tissue 
types [29, 30], although it is currently unclear whether cells 
in degenerated IVDs (which are characterized by inflamma-
tion [31, 32]) retain a similar feedback mechanism.

Aside from inflammation, the degenerating IVD pos-
sesses various other microenvironmental characteristics that 
might affect HYAL metabolism, including reduced pH [33, 
34] and enhanced oxidative stress [35]. It has previously 
been shown that the activity of HYALs is pH-dependent. 
While human HYAL-1 as a lysosomal enzyme is most active 
around pH 4.0 [36], the pH optimum for the membrane-
associated HYAL-2 is around 6.0 [17]. Such a reduced pH 
is typically achieved through the activation of the Na+/H+ 
exchanger 1 (NHE1) upon interaction with CD44 [16]. 
As degeneration-associated accumulation of lactic acid 
in IVDs leads to a drop in pH as low as 5.7 in severely 
affected tissues [33, 34], the pH microenvironment of the 
IVD may further modulate HYAL-2 activity. Concomitant 
with a degeneration-associated reduction in pH, enhanced 
generation of ROS has been described in the IVD [35, 37]. 
While ROS have previously been shown to induce post-
translational oxidative modification of collagens such as 
crosslinking and unfolding [38, 39], their role in modulat-
ing the HYAL metabolism have not yet been investigated. 

However, bronchial epithelial cells demonstrated increased 
HYAL-2 expression and activity when exposed to ROS [40] 
and similar response patterns may also exist for IVD cells.

Despite the functional importance of HA (and PGs) in the 
IVD, the role and regulation of HYALs in IVD health and 
disease are currently unknown. Therefore, the aim of this 
study was to identify the expression and activity of HYAL-1, 
HYAL-2 and HYAL-3 in human IVD tissue with different 
degrees of degeneration and to test whether their expression 
is regulated under inflammatory or oxidative stress condi-
tions in vitro.

Materials and methods

Human IVD tissue

The collection of human IVD tissue from patients under-
going spinal surgery was approved by the Cantonal ethics 
Committee Zurich, Switzerland (#EK-16/05) as well as 
by the Ethics Committee of the Charité Berlin, Germany 
(#EA2/087/11). Informed consent was obtained from all 
patients.

Samples used for direct analysis of HYAL expression/
activity (n = 34, mixture of NP and AF) were immediately 
cooled after intraoperative excision and thereafter shock fro-
zen at − 80 °C. Using preoperative MRIs, the degree of IVD 
degeneration in these samples was determined according to 
Pfirrmann et al. [41], using an adopted 4-grade classification 
scale as previously described [42, 43]. Specifically, discs 
were graded as non-degenerated (grade 1), mildly degen-
erated (grade 2), moderately degenerated (grade 3) and 
severely degenerated (grade 4) (Table 1).

Samples used for cell isolation (Pfirmann grade 3–4, 
disc herniation or DDD) were transferred into DMEM/F12 
(D8437, Sigma-Aldrich, USA) with 3% anti–anti (15240062, 
Gibco, USA) upon intraoperative excision and immediately 
transported to the laboratory for further processing (n = 15). 
Due to the degeneration status of the specimens as well 
as the posterior surgical approach used in most cases, no 
separation of nucleus pulposus and annulus fibrosus was 
performed.

Primary cell culture

Tissue samples of mixed degeneration grades were cut into 
pieces and incubated in a sterile solution of 0.2% collagenase 
NB4 (17454, Serva, Heidelberg, Germany) and 0.3% dispase 
II (04942078001, Roche, Basel, Switzerland) in phosphate-
buffered saline (PBS) for 4–8 h. Then, the cell suspension 
was filtered using a 70-μm cell strainer (352350, BD Bio-
science, Switzerland) and expanded up to passage 3 in a 2D 
monolayer culture containing DMEM/F12 media with 10% 
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FCS (F7524, Sigma-Aldrich, USA) and 1% anti–anti, with 
medium changes twice a week.

Cell stimulation with IL‑1β or TNF‑α

For cytokine stimulation experiments, IVD cells (n = 5) 
were seeded into 6-well plates at a density of 33,000 cells/
cm2. After 24 h, cells were rendered serum free (DMEM/
F12 + 1% anti–anti) for 2 h. To determine the best cytokine 
stimulatory response, cells were incubated with 0.1, 1, 
5 or 10  ng/mL recombinant IL-1β (211-11, Peprotech/

LuBioScience, Switzerland) or 0.1, 1, 10 or 100 ng/mL 
recombinant TNF-α (315-01A, Peprotech/ LuBioScience, 
Switzerland) in serum-free medium for 18 h. All concentra-
tions were controlled for cytotoxicity (data not shown). In 
addition, a time course experiment with stimulation times 
of 2, 6 and 18 h for 5 ng/ml IL-1β or 10 ng/ml TNF-α was 
conducted.

Cell stimulation with H2O2

For H2O2 stimulation experiments, IVD cells (n = 5) were 
seeded at a density of only 11,500 cells/cm2 into T25 flasks 
or 6-well plates and allowed to settle and adapt to culturing 
conditions for further 48 h prior to the oxidant treatment. 
Thereafter, cells were rendered serum free for 2 h and con-
sequently exposed for an additional 2 h to H2O2 (H1009, 
Sigma-Aldrich, Switzerland) at concentrations of 25, 50 and 
100 μM to ascertain the strongest physiological ROS effect 
on the cells. After the treatment, the oxidative medium was 
immediately replaced by fresh DMEM/F12 supplemented 
with 10% FCS and 1% anti–anti and cells allowed to recover 
from oxidative stress for 24 h [44]. All concentrations were 
controlled for cytotoxicity (data not shown).

HYAL gene expression in IVD tissue and treated IVD 
cells

To isolate RNA from IVD biopsies with normal/mild (n = 8) 
and moderate/severe (n = 16) degeneration, shock-frozen tis-
sues were pulverized in liquid nitrogen using a custom-made 
device, immersed in Trizol (15596-018, Invitrogen, USA), 
exposed to phase separation with chloroform and subse-
quently subjected to column-based purification (12183025, 
PureLink RNA Mini Kit, ThermoFisher, Switzerland) as 
previously described [45]. To isolate RNA from cultured 
cells (n = 5/treatment), the PureLink RNA Mini Kit or the 
Trizol/choloroform method was used.

RNA from tissues or cells was reverse transcribed 
to cDNA using the Reverse Transcription Reagents 
(4374966, ThermoFisher, Switzerland), and real-time 

Table 1   Donor information

Donors used for tissue analyses
DH, herniation; DDD, degenerative disc disease; T, trauma; R, radic-
ulopathy; F, fracture; uk, unknown

Nos. Degeneration grade Age Sex Pathology Level

1 Normal 41.4 M T L1/2
2 Normal 25.3 M T L2/3
3 Normal 45.3 M T Th11/12
4 Normal 58 M T L4/5
5 Normal 24.5 M T L5/S1
6 Normal 46.6 M T TH 11/12
7 Normal 44.3 F F Th12/L1
8 Normal 36.4 F F Th5/6
9 Normal 39.4 M F Th6/7
10 Normal 41.4 M F Th12/L1
11 Normal 30.0 M F Th12/L1
12 Mild 41.3 F DH L4/5
13 Mild 63.7 M DDD L4/5
14 Moderate 26.2 M DH L5/S1
15 Moderate 58.1 M DH L3/4
16 Moderate 70.2 F DH L4/5
17 Moderate 52.7 F DDD L3/4
18 Moderate 61.7 M DDD L4/5
19 Moderate 68.0 F DDD L4/5
20 Moderate 71.1 F DDD L4/5
21 Moderate 62.4 F DDD L5/S1
22 Moderate 25.6 M R L5/S1
23 Severe 66.1 F DDD L4/5
24 Severe 48.4 M DDD L5/S1
25 Severe 74.8 F DDD L3/4
26 Severe 55.9 F DDD L3/4
27 Severe 77.4 F DDD L4/5
28 Severe 74.8 F DDD L3/4
29 Severe 56 F DDD L2/3
30 Severe 58.2 F DDD L4/5
31 Severe 54.1 M R L3/4
32 Severe 52.0 M R L3/4
33 Severe 62.8 M R L4/5
34 Severe 68.3 F DH L4/5

Table 2   Primer information

Target genes and assay identification (ID) numbers of corresponding 
TaqMan primers (TaqMan Gene Expression Assays; Thermo Fisher 
Scientific)

Target gene Assay identification number

HYAL 1 Hs00201046_m1
HYAL 2 Hs01117343_g1
HYAL 3 Hs00185910_m1
GAPDH Hs02786624_g1
TBP Hs00427620_m1
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PCR analysis was performed by TaqMan Gene Expression 
assays (ThermoFisher, Switzerland), using primers/probes 
for HYAL-1, HYAL-2 and HYAL-3 (Table 2). Addition-
ally, HO-1 mRNA expression was measured to verify 
induction of oxidative stress in H2O2 treated cells. TBP 
was used as the housekeeping gene for all experiments 
except for H2O2 treatments, in which GAPDH was more 
stably expressed than TBP. Gene expression in the tis-
sue was normalized to the housekeeping gene and shown 
as 2−dCt values. Gene expression of stimulated cells was 
normalized to the housekeeping gene and to the untreated 
control and shown as 2−ddCt.

HYAL protein expression

To isolate protein from IVD biopsies with normal/mild 
(n = 5) and moderate/severe (n = 5) degeneration, samples 
were pulverized as described above and then immersed in 
PBS supplemented with 100x protease inhibitors (78425, 
Pierce, USA) with three freeze-thaw cycles at − 72 °C on 
dry ice, as recommended by the ELISA’s manufacturer.

Total protein concentration was determined by Bradford 
assay as described by the manufacturer (500-0006, Bio-
Rad, Switzerland). Protein expression of HYAL-1 (tissue/
cells), HYAL-2 (tissue/cells) and HYAL-3 (tissue) was 
detected on total protein samples (20–40 μg for tissue, 
10–20 μg for cells, 100 μl for supernatants) by ELISA 
(MBS703230, My BioSource, USA; E1126 h, Lubio Sci-
ence, Switzerland). Results are expressed as ng HYAL 
per mg of total protein in the IVD tissue or as the ng per 
ml in cultured cells, based on the sum of cell lysates and 
supernatants.

Total HYAL activity

Total HYAL activity in IVD biopsies with normal/mild 
(n = 5) and moderate/severe (n = 5) degeneration was 
analyzed with a commercial HYAL activity kit (Ra003-
01-HAK, Amsbio, UK), according to the manufacturers 
instruction. Briefly, defrosted and washed tissue biopsies 
were immersed in base buffer defined by the manufacturer 
(10–50 mg tissue/ml) and then homogenized by Polytron 
mixer. The homogenized sample were centrifuged, the 
supernatant collected and total protein assessed by Bradford 
assay. The specific HYAL activity was determined on 50 μl 
supernatant and expressed as ng HA removed per minute and 
mg total protein applied.

Statistical analysis

Comparisons between treatment groups and control group 
were conducted using unpaired t test if data were normally 
distributed, or Mann–Whitney test if data were not normally 
distributed. Comparison between different groups was ana-
lyzed using one-way ANOVA for normally distributed data, 
with the Tukey’s multiple comparisons test. All analyses 
were done using the Graph Pad Prism statistical program, 
with a significance level of p  < 0.05.

Results

The expression of hyaluronidases in normal 
and degenerated discs

Gene expression of HYAL-1, HYAL-2 and HYAL-3 in 
human disc tissue was analyzed in relation to the degen-
eration grade (grades 1 and 2 = normal/mild, grade 
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Fig. 2   Gene expression of HYALs in IVD tissue. Disc tissues were 
collected from patients undergoing elective spinal surgeries. a Gene 
expression of HYAL-1 was upregulated in moderate/severe disc 
degeneration group, when compared with the normal/mild group. b 
Gene expression of HYAL-2 was not changed; however, some degen-

erated samples showed high gene expression. c Gene expression of 
HYAL-3 was unchanged. Results were calculated by 2−ΔCt method 
relative to TBP and analyzed by Mann–Whitney U test due to non-
normality of data (n = 8 in normal/mild group, n = 16 in moderate/
severe group)
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3–5 = moderate/severe, as defined by Pfirrmann et al. [41] 
(Fig. 2). The expression of HYAL-1 significantly increased 
in moderate/severe disc samples when compared to the nor-
mal/mild group (p = 0.0098). The expression of HYAL-2 
was not significantly affected by degeneration (p = 0.4167), 
although selected donors showed exceptionally high expres-
sion levels. Gene expression of HYAL-3 was not signifi-
cantly different between the grades (p = 0.834). Protein 
expression of HYAL-1 and HYAL-2 in human disc tissue 
was analyzed as well (Fig. 3a, b). HYAL-2 protein signifi-
cantly increased in moderate/severe disc samples, when 
compared to the normal/mild samples (p = 0.0412), while 
HYAL-1 protein was unchanged (p = 0.769). Overall HYAL 
activity tended to increase in the moderate/severe group 
(p = 0.1886) (Fig. 3c).

The effects of inflammation and oxidative stress 
on the expression of hyaluronidases in disc cells

As shown above, HYAL expression/activity was partially 
upregulated in discs with higher degeneration grade. There-
fore, the influence of main hallmarks of DDD (inflammation 
and oxidative stress) on the expression of HYALs was tested 
next. Gene expression of HYAL-1, HYAL-2 and HYAL-3 
was analyzed in primary human disc cells treated with 
increasing concentrations of pro-inflammatory cytokines 
IL-1β (0.1–10 ng/mL) (Fig. 4a–c) and TNF-α (0.1–100 ng/
mL) (Fig. 4d–f). Pro-inflammatory cytokines did not influ-
ence gene expression of HYAL-1, HYAL-2 and HYAL-
3. Gene expression of HYAL-1, HYAL-2 and HYAL-3 
was also tested in primary human disc cells treated with 
increasing concentrations of oxidative stress inducer H2O2 
(25–100 µM) (Fig. 5a–c). H2O2 at 100 µM dose-depend-
ently upregulated gene expression of HYAL-2 (p = 0.0445 

to control) and HYAL-3 (p < 0.05–25 and 50 µM), while the 
expression of HYAL-1 only tended to increase (p = 0.1276).

Discussion

This study showed for the first time that HYAL-1, HYAL-2 
and HYAL-3, the three major HA-degrading enzymes, are 
expressed in IVD issue and isolated cells. Interestingly, 
HYAL-1 expression was increased with increasing degen-
eration, although this was only observed on the mRNA level, 
but not on the protein level. This may possibly be explained 
by negative feedback loops related to HA metabolism and/
or alternative splicing. It has been shown that under cer-
tain conditions (e.g., hypoxia), the HYAL-1 mRNA can 
undergo alternative splicing (previously identified, e.g., in 
kidney cells and tumors), generating multiple mRNA spe-
cies, only one of which is translated into protein [13, 46, 
47]. While HYAL-2 gene expression was not significantly 
increased with degeneration, several severely degenerated 
samples demonstrated explicitly high HYAL-2 mRNA lev-
els that may have contributed to the significant increase in 
the protein level with progressing degeneration, as shown 
in Fig. 3. However, the hyaluronidase activity of HYAL-2 
remains controversial and has been described as limited, 
especially compared to HYAL-1 [18], possibly explaining 
why its significant protein enhancement with degeneration 
did not coincide with a significant (but merely tendential) 
increase in HYAL activity. The majority of our control sam-
ples came from patients with traumatic IVD injuries or ver-
tebral fractures. Although our tissue donors are usually oper-
ated soon after the traumatic incident, we cannot exclude 
the possibility that the expression and/or activity of HYALs 
were altered in some control samples. Nevertheless, our data 
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Fig. 3   Protein expression and activity of HYALs in IVD tissue. Disc 
tissues were collected from patients undergoing elective spinal sur-
geries. a Protein expression of HYAL-1 was not significantly differ-
ent between the normal/mild disc degeneration group and the moder-
ate/severe group. b Protein expression of HYAL-2 was upregulated 

in moderate/severe samples. c Total activity of HYALs tended to 
increase in the moderate/severe group. Results were calculated as ng 
of HYAL present (a, b) or removed (c) per mg of total protein and 
analyzed by unpaired t test due to normality of data (n = 5 in each 
group)
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grouped as traumatic IVDs vs. other samples did not show 
any pattern that would indicate an effect of the trauma itself.

It should furthermore be noted that the high data vari-
ability within the two degeneration groups for all targets 
indicates that HYAL expression and activity is not only 
affected by the grade of degeneration, but also by other 

factors that were not controlled for due to the small sam-
ple size. Possible examples include, but are not limited 
to, diabetic conditions [48], P. acnes infection [49] and 
tissue loading patterns [50, 51]. Higher number of sam-
ples will be needed to better identify trends and statisti-
cally significant differences in future studies. Furthermore, 

A B C

D E F

Fig. 4   Gene expression of HYALs in primary IVD cells treated with 
pro-inflammatory cytokines. Primary cell cultures were prepared 
from disc tissues collected during spinal surgeries and treated with 
increasing concentration of IL-1β and TNF-α for 18 h. The effects of 
IL-1β (0.1–10  ng/mL) on gene expression of a HYAL1, b HYAL2 

and c HYAL3. The effects of TNF-α (0.1–100  ng/mL) on gene 
expression of d HYAL1, e HYAL2 and f HYAL3. Results were cal-
culated by 2−ΔΔCt method relative to the untreated control, with TBP 
as housekeeping gene and analyzed by one-way ANOVA with Tukey 
post hoc test due to normality of data (n = 5)

A B C

Fig. 5   Gene expression of HYALs in primary disc cells treated with 
reactive oxygen species. Primary cell cultures were prepared from 
disc tissues collected during spinal surgeries and treated with increas-
ing concentration of H2O2 for 2 h. The effects of H2O2 (25–100 µM) 

on gene expression of a HYAL-1, b HYAL-2 and c HYAL-3. Results 
were calculated by 2−ΔΔCt method relative to the untreated con-
trol, with GAPDH as housekeeping gene and analyzed by one-way 
ANOVA with Tukey post hoc test due to normality of data (n = 5)
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future studies would ideally investigate NP and AF cells 
separately, although our own preliminary data on bovine 
NP and AF cells indicate marginal zonal differences in 
HYAL expression.

Increased HYAL expression and/or activity have been 
described in numerous pathologies, such as during asthma 
(within the epithelium) [30], cartilage hypertrophy [52] or 
osteoarthritis and rheumatoid arthritis (within the knee syn-
ovium/synoviocytes) [53, 54]. HYAL deficiency or knock-
down/knockout have also been described to promote certain 
pathologies, leading, e.g., to swelling of the periarticular 
masses [55] as well as to progression of osteoarthritis [56, 
57]. These studies demonstrate that HYALs seem to play a 
crucial role in cartilage homeostasis, which not only shows 
similar composition [58], but also comparable degenera-
tive processes and pathophysiological conditions [59] as 
the IVD. As in other tissues, HA in the IVD is cleaved by 
HYALs at hexosaminidic β (1–4) linkages between glucu-
ronic acid and N-acetylglucosamine. Membrane-anchored 
HYAL-2 cleaves HMW HA to small MW HA, which is then 
internalized into lysozomes and further cleaved by HYAL-1 
to oligosaccharides, which possess biological (e.g., pro-
inflammatory) activity (Fig. 1).

Importantly, pathological degeneration of the IVD and 
cartilage are both characterized by increased level of inflam-
matory mediators [31, 32, 60–62] and reactive oxygen spe-
cies (ROS) [35, 63, 64] within the tissue. Our goal was thus 
to analyze whether HYAL expression is regulated by expo-
sure to pro-inflammatory cytokines or ROS, as would occur 
during DDD. However, we could not observe any signifi-
cant changes in HYAL-1, HYAL-2 or HYAL-3 expression 
upon stimulation with IL-1β or TNF-α, independent of the 
concentration (Fig. 4) or the analysis time point (data not 
shown). In contrast, articular cartilage chondrocytes were 
previously shown to respond to IL-1β and TNF-α, treatment 
with an upregulation of HYAL-1, HYAL-2 and HYAL-3 
gene expression [29] and similar response patterns were 
observed in airway epithelial cells [30].

Although we did not observe an upregulation of HYALs 
upon IL-1β or TNF-α stimulation, IVD cells responded to 
higher concentrations of H2O2 (100 μM) with increased 
expression of HYAL-2 and HYAL-3 (Figs. 1, 5). Feng et al. 
[65] summarized that various disc cells derived from differ-
ent species show mitochondrion-dependent ROS production 
and that ROS can induce p38, ERKs, JNKs, p65 and Akt in 
IVD cells, thus leading to increased expression of matrix 
degrading enzymes and pro-inflammatory cytokines. In this 
study, we used H2O2 for cell stimulation as H2O2 has previ-
ously been identified in human NP tissues, hence represent-
ing a physiological type of ROS [66]. Similar to IVD cells, 
exposure to ROS (by xanthine oxidase) increased HYAL-2 
expression and activity via the p38MAPK signaling pathway 
in human bronchial epithelial cells [40].

Overall, our and other studies demonstrate that ROS is 
not only involved in HA metabolism via direct cleavage of 
HA [11], but also via induction of HYAL expression, which 
in turn will then contribute to HA degradation. This notion 
is supported by the fact that exposure of airway cells to ROS 
leads to sustained HA degradation that lasts for at least 24 h 
[40]. Furthermore, GAG degradation by HYALs is also 
associated with increased expression of various MMPs [67], 
a group of enzymes that is known for its crucial role in ECM 
degradation in various tissues, including the IVD [68, 69].

In conclusion, our data not only show expression of 
HYAL-1, HYAL-2 and HYAL-3 in the IVD, but further-
more points to HYAL-2 as the most relevant HYAL as it 
increased during degeneration and further upregulated by 
ROS, a hallmark of DDD. Further studies will be needed to 
confirm the relevance of HYAL-2 in IVD health and disease 
and to determine its potential as a therapeutic target.
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