Markus Schultheiss
Erich Hartwig
Michael Sarkar
Lothar Kinzl
Lutz Claes
Hans-Joachim Wilke

Biomechanical in vitro comparison of different mono- and bisegmental anterior procedures with regard to the strategy for fracture stabilisation using minimally invasive techniques

Published online: 28 October 2005
© Springer-Verlag 2005

The online version of the original article can be found at http://dx.doi.org/10.1007/ s00586-004-0837-7
M. Schultheiss $(\boxtimes) \cdot$ E. Hartwig
M. Sarkar • L. Kinzl

Department of Trauma,
Hand and Reconstructive Surgery,
University of Ulm, Steinhövelstrasse 9,
89075 Ulm, Germany
E-mail:
markus.schultheiss@medizin.uni-ulm.de
Tel.: + 49-731-50027350
Fax: + 49-731-50027349
L. Claes • H.-J. Wilke

Institute of Orthopedic Research
and Biomechanics, University of Ulm, Ulm, Germany

Eur Spine J (2005) 10.1007/ s00586-004-0837-7

Figure 2 was inadvertently omitted and Fig. 5 appeared twice (as Fig. 4 und Fig. 5). The correctly numbered figures are given here with their legends.

Fig. 1 Spine tester

Fig. 2a-c Test sequence. a Using anterior two-point stabilisation with improved screw holding strength, the study investigated whether two-point stabilisation, which is easier to implant endoscopically, provides sufficient biomechanical stability in both mono- and bisegmental fixation. HMA System (Aesculap, Tuttlingen, Germany). b The increase in stability with anterior four-point stabilisation compared to two-point stabilisation was investigated in a model of bisegmental stabilisation. US System/Ventrofix (Stratec, Oberdorf, Switzerland). c Finally, mono- and bisegmental stabilisation during instrumentation with four-point stabilisation that can be implanted completely endoscopically was compared biomechanically (3-5, 10, 20-25). MACS TL System (Aesculap, Tuttlingen, Germany)

Fig. 3 Median and ROM (degree) and NZ (degree) of the monoor bisegmental T11-T12/L1 segment stabilised with the HMA System (two-point stabilisation) in flexion/extension, rotation, and lateral bending

Fig. 4 Median and ROM (degree) and NZ (degree) of the bisegmental T11-T12/L1 segment stabilised with the US system (two-point stabilisation) or Ventrofix (four-point stabilisation) in flexion/extension, rotation, and lateral bending

Fig. 5 Median and ROM (degree) and NZ (degree) of the monoor bisegmental T11-T12/L1 segment stabilised with the MACS TL System (four-point stabilisation) in flexion/extension, rotation, and lateral bending

