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Abstract
In the last 3 years of the pandemic situation, SARS-CoV-2 caused a significant number of deaths. Infection rates for symp-
tomatic and asymptomatic patients are higher than that for death. Eventually, researchers explored that the major deaths are 
attributed to several comorbidity factors. The confounding factors and gender-associated infection/death rate are observed 
globally. This suggests that SARS-CoV-2 selects the human system recognizing the internal comorbid environment. This 
article explored the influences of hypertension, diabetes, cardiovascular, and renovascular disorders in COVID-19 severity 
and mortality. Brief mechanistic layouts have been presented here, indicating some of the comorbidity as the critical deter-
minant in the COVID-19 pathogenesis and related mortality.
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Introduction

Coronavirus disease (COVID-19) is a worldwide pandemic 
that is brought on by the SARS-CoV-2 coronavirus, which first 
appeared in Wuhan, China, then spread incredibly swiftly to 
more than 180 other nations. SARS-CoV-2 is rapidly spread-
ing all over the world, it is projected that patient characteristics, 
including age, sex, and comorbidity, might be more vulner-
able to either an increased risk of infection or an increased 
death. According to certain reports, COVID-19 was higher 
in males than females (Huang et al. 2019; Chen et al. 2019), 
while patients who were somewhat older than 50 years had a 
higher rate of COVID-19 confirmed cases, according to some 

studies (Yang et al. 2020; Zhang et al. 2020a). Comorbidities 
are defined in medicine as the simultaneous presence of mul-
tiple underlying illnesses in one individual. Each condition is 
considered comorbidity, and sometimes comorbidities could 
be present in the form of mental or physical conditions. The 
best examples of comorbidities are when a person is suffering 
from diabetes and asthma, or when the person is suffering from 
hypertension and clinical depression. Comorbidities are gener-
ally non-communicable and contribute to nearly two-thirds of 
the annual deaths around the world. The prevalence of comor-
bidities in patients with COVID-19 was also highly variable 
in many reports (Li et al. 2020). A recent study showed that 
among COVID-19 patients, fever (88.8%) was the most preva-
lent symptom, followed by fatigue (33%) and dry cough (68%) 
(Paudel 2020). Another symptom included productive shortness 
of breath, or SOB (17%), cough (28.5%), sore throat (11.4%), 
muscle pain (14%), and headache (10%) (Paudel 2020). The 
least common symptoms were nausea and vomiting (4.1%), 
diarrhea (4.4%), abdominal pain (0.16%), rhinorrhea (3.2%), 
and chest pain (0.11%) (Paudel 2020). The progression of the 
disease COVID-19 is linked to a number of comorbidities. 
Patients with COVID-19 who have diabetes, hypertension, HIV, 
chronic obstructive pulmonary disease (COPD), cardiovascular 
diseases (CVD), malignancies, and other comorbidities may 
develop a condition that is life-threatening. Comorbidity is 
linked to severe medical conditions, higher medical expenses, 

 * Smarajit Maiti 
 maitism@rediffmail.com

1 Department of Biochemistry and Biotechnology, Cell 
and Molecular Therapeutics Laboratory, Oriental Institute 
of Science and Technology, Midnapore, India

2 Department of Zoology, Vidyasagar University, 
Midnapore 721102, India

3 Department of Biotechnology, North Orissa University, 
Sriram Chandra Vihar, Takatpur, Baripada, India

4 Agricure Biotech Research Society, Epidemiology 
and Human Health Division, Midnapore 721101, India

5 Mahatma Gandhi University, East Midnapore, WB, India

/ Published online: 17 January 2023

Comparative Clinical Pathology (2023) 32:179–189

http://crossmark.crossref.org/dialog/?doi=10.1007/s00580-023-03434-9&domain=pdf
http://orcid.org/0000-0002-1354-1303


1 3

and more difficult clinical management. SARS-CoV-2 enters into  
cells using ACE2 receptors that are present on the surface of 
the host cell. Certain comorbidities are associated with a strong 
ACE2 receptor expression and higher release of proprotein  
convertase that enhances the viral entry into the host cells. The 
comorbidities lead the COVID-19 patient into a violent infec-
tious circle of life and are substantially associated with significant  
morbidity and mortality. COVID-19 infection is more likely in 
people with underlying serious medical disorders like high blood  
pressure, hyperglycemia, lung, kidney, and liver illness, smoking,  
cancer patients receiving chemotherapy, transplant recipients, 
and individuals taking steroids persistently (CDC. Coronavirus 
(COVID-19): symptoms of Coronavirus 2020). Cardiovascular 
and cerebrovascular conditions (11%), hypertension (15%), and 
diabetes (9%), among other conditions, were the most preva-
lent comorbidities found in these patients (Paudel 2020; Zhou 
et al. 2020). The less common comorbidities were coexisting 
infection with HIV and hepatitis B (1.5%), malignancy (1.5%), 
respiratory illnesses (1.4%), renal disorders (0.8%), and immu-
nodeficiencies (0.01%) (Paudel 2020). Comorbidities may be 
a risk factor for COVID-19 infection given the high percent-
age of COVID-19 patients and other disorders among admitted 
ICU cases (Wang et al. 2020). Comorbidity may also relate to 
reduced immune function. For instance, in diabetic patients, 
natural immune function may be significantly diminished, 
which may restrict the body to produce respective antibodies 
against any infection (Berbudi et al. 2020). Also, polypharmacy 
and comorbidity are interrelated and dependable on each other. 
In order to better direct clinical therapy, there has not yet been a 
systematic review that thoroughly examines whether the pres-
ence of common comorbidities increases COVID-19 patients’ 
risk, to guide clinical practice better. Therefore, this research 
was designed to review the association of different comorbidi-
ties with the risk of mortality by estimating aggregated risk in 
patients with COVID-19.

ACE2

A lot of researchers are interested in a particular protein 
that allows SARS CoV-2 to infect human cells. This spe-
cific protein is called “angiotensin-converting enzyme 2 or 
ACE2 receptor”. ACE2 receptor serves cellular entry point 
for COVID-19 to hook into and infect a wide range of human 
cells. ACE2 is a protein widely expressed at the surface of 
many cells and also acts as a cellular doorway for the SARS-
CoV2 virus, which causes COVID-19. The 805 amino acids 
in ACE2 are organized into a single extracellular catalytic 
domain. ACE2 is a type I zinc trans-membrane metallo-
carboxypeptidase with variable homology to ACE and an 
enzyme that cut larger protein angiotensinogen into small 
proteins that then go on to regulate functions in the other 
cells. ACE2 can offset the renin-angiotensin system’s (RAS) 
detrimental effects in a variety of illnesses (Donoghue et al. 

2000). ACE2 is present in many cell types and tissue, such 
as the blood vessels, lungs, kidneys, heart, gastrointestinal 
tract, testes, and liver. It is present in all tissues’ endothe-
lial cells from small and large arteries and veins, as well as 
in epithelium in the lungs, nose, and mouth, which create 
protective barriers. In the lungs, ACE2 is highly rich with 
type 2 pneumocytes, an important cell type present in cham-
bers within the alveoli, where oxygen is absorbed and waste 
carbon dioxide is released. ACE2 serves as a co-receptor 
for nutrient absorption, particularly for amino acid resorp-
tion from meals, on the surface of intestinal epithelial cells 
in the kidney (Hashimoto et al. 2012). In the nasopharynx 
and nasal and oral mucosa, we discovered ACE2 expres-
sion in the basal layer of the non‐keratinizing squamous 
epithelium. The basal cell layer of the epidermis and the 
basal cell layer of the hair follicles in the skin both con-
tained ACE2. Although ACE2 has similarities with ACE, 
its function is different from ACE; ACE2 releases a single 
amino acid (monocarboxypeptidase), whereas ACE cleaves 
a C-terminal dipeptide from its substrate (dipeptidylpepti-
dase) (Donoghue et al. 2000; Tipnis et al. 2000). Angioten-
sin I (Ang I) is converted by ACE into strong vasoconstrictor 
Ang II and ACE2 then uses its carboxypeptidase activity 
to cleave Ang II and hydrolyzes it into heptapeptide called 
Ang (1–7) (Turner et al. 2004). ACE2 also cleaves Ang I to 
the inactive peptide Ang (1–9), which is then converted into 
vasodilator peptide Ang (1–7) by ACE, competing with Ang 
I and decreasing Ang II (Arendse et al. 2019). Additionally, 
ACE2 directly breaks down Ang II to generate Ang 1–7 
with much higher efficiency than converting Ang I to Ang 
1–9. Ang 1–7 then binds to the MasR receptor, which was 
initially thought to be an orphan receptor due to the suppres-
sion of Ang 1–7 effects caused by the application of a MasR 
antagonist (Alenina et al. 2008). ACE2 also hydrolyzes a 
number of other peptides, including apelin‐13, bradykinin, 
neurotensin‐ (1–11), β‐casomorphin‐(1–7), dynorphin A‐ 
(1–13), and ghrelin (Vickers et al. 2002). In addition to 
serving as an amino transporter, ACE2 acts as a functional 
receptor for severe acute respiratory syndrome coronaviruses 
(SARS-CoV). The physiological purpose of ACE2 is to act 
as a counterbalance to ACE. ACE cleaves the angiotensin I 
hormone into the vasoconstricting angiotensin II. ACE2, in 
turn, cleaves the carboxyl-terminal amino acid phenylala-
nine from angiotensin II and converts it into the vasodilator 
angiotensin (1–7). Other peptides that ACE2 can break down 
include neurotensin, [des-Arg9]-bradykinin, apelin, dynor-
phin A, and ghrelin (Turner 2015). Multiple mechanisms 
control ACE2, including transcriptional, posttranscriptional 
(miRNA and epigenetic), and posttranslational through its 
shedding from the cell surface. The stronger binding of 
SARS CoV-2 with ACE2 than SARS-CoV may help to 
explain why SARS CoV2 infection has a more widespread 
effect than SARS CoV (Shang et al. 2020; Yan et al. 2020). 
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A higher level of soluble ACE2 expression in the blood may 
result from increased ACE2 expression on the cell surface, 
which may actually bind to most SARS-CoV-2 and pre-
vent it from interacting with the membrane-bound receptor 
(Fig. 1). Tissue ACE2 downregulation and RAS imbalance 
might contribute to the advancement of multi-organ damage 
attributed to SARS-CoV-2 infections (Wang et al. 2020). A 
decreased level of ACE2 secondary to SARS-CoV-2 infec-
tion followed by an increase in Ang II can exacerbate car-
diovascular disease symptoms or promote further disease 
complications (Oudit et al. 2009; Aksoy et al. 2020).

Obesity, hypertension, and diabetes are among the most 
prevalent comorbidities that are frequently linked to cata-
strophic outcomes brought on by due to SARS-CoV-2 infec-
tions (Obukhov et al. 2020; Richardson et al. 2020). The level 
of ACE2 expression in the liver and kidney has been shown 
to increase when patients take ARB and ACEi medications, 
but these patients do not appear to have an increased risk of 
developing SARS-CoV-2 infection or suffering from severe 
disease. Instead, it appears that reduced ACE2 activity may be 

a key role in increased disease severity rather than the initial 
high levels of ACE2 expression leading to worsened prognosis.

ACE2 in renin angiotensin system

The complex hormonal axis known as RAAS, which plays 
a role in blood pressure control, sodium reabsorption, fibro-
sis, and inflammation, is made up of renin, aldosterone, and 
angiotensin (Ghazi and Drawz 2017). RAAS imbalance or 
modification can cause numerous disorders, including heart 
failure, hypotension, atherosclerosis, and diabetes, respec-
tively (Tikellis and Thomas 2012). The renin-angiotensin 
system (RAS) is a peptidergic system that maintains the 
homeostatic control of the cardiovascular and renal systems 
and controls extracellular fluid volume. Inhibition of the 
RAS plays a central role in alleviating the increased mortal-
ity and morbidity of patients with heart failure (HF) (Givertz 
2001; Zaman et al. 2002). Angiotensin II (Ang) is produced 
by a series of enzyme activities within the RAS. Renin, an 

Fig. 1  Brief representations of the major organ and tissue targets of COVID-19-associated damages
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aspartyl proteinase secreted by the kidney into the blood-
stream, produces Ang I in the first phase by cleaving hepatic 
peptide angiotensinogen in the blood. Ang I is then hydro-
lyzed by angiotensin-converting enzyme (ACE) in the sec-
ond stage, resulting in the octapeptide Ang II (Fig. 1). This 
biologically active peptide acts on both Ang II type 1 and 
type 2 receptors  (AT1R and  AT2R) (Bader and Ganten 2008 
Jun). Ang II promotes inflammation, vasoconstriction, oxi-
dative stress, and salt and water reabsorption via the activa-
tion of  AT1R. RAS blockers increase angiotensin II, which is 
a substrate for ACE2. By regulating vasoconstriction, ACE2 
is a component of RAS, which maintains blood pressure, 
fluid and electrolyte balance, and reabsorption of sodium in 
the kidney (Song et al. 2019). The interaction between ACE2 
and angiotensin II could induce a conformational change in 
the RBD domain of ACE2 (Towler et al. 2004). The human 
body contains two functional forms of ACE2: the tissue-
bound or membranous form and the soluble or circulating 
form (Vaduganathan et al. 2020; Batlle et al. 2020). The 
extracellular domain of membranous ACE2 has a recep-
tor for attachment with spike (S) protein of SARS-CoV-2, 
allowing for viral entry (Fig. 1). Since the soluble form of 
ACE2 lacks the transmembrane anchor and it can freely cir-
culate in the blood. According to Monteil et al. (Monteil 
et al. 2020), the SARS-CoV-2-ACE2 complex first binds to 
the host cells’ cellular membrane through the spike protein 
of the virus before entering the cells themselves. The virus 
would release into host cells upon membrane fusion. The 
ACE2 on the cellular membrane of the host cells showed a 
decline, and RAS showed an imbalance, which triggered the 
inflammatory reactions. Following the initial entry of SARS-
CoV-2 into the cells through ACE2, the virus further con-
trols ACE2 expression, reducing the protective properties of 
the enzyme Ang II is transformed into Ang (1–7) and Ang-I 
into inactive Ang by ACE2 (1–9). The unopposed action of 
Ang-II through its AT1 receptor is caused downregulation 
of ACE2. As a result, local RAS activation is caused by 
increased Ang II activity, which in turn causes organ dam-
age seen with COVID-19 (Vaduganathan et al. 2020). By 
preventing its manufacture and receptor, respectively, ACEi 
and ARB work to counteract the Ang effects. Additionally, 
ACE-I/ARB may increase the amount of the soluble form 
of ACE2 and prevent the virus from entering the host cell. 
ARBs and ACE-Is both have differing effects on Ang-II, 
with the latter blocking its receptor while the former pre-
vents its production (reduction in Ang-II levels) (no effect on 
levels of Ang-II). ACE-I/ARB will protect against this organ 
damage by (1) possible upregulation of ACE2 activity, (2) 
reduced levels of Ang-II (by ACE-Is), and (3) inhibiting the 
ATI receptor of Ang-II. ACE-I/ARB will guard against this 
organ harm (by ARBs). Increased levels of ACE2, with the 
theoretical chance that elevated the levels of ACE2 gener-
ated by ACEi/ARB, could facilitate SARS-CoV-2 invasion 

and amplify the amount of organ damage brought on by this 
unique coronavirus.

Effect of ACE2 on salt balance

It is believed that angiotensin-converting enzyme 2 (ACE2) 
balances off ACE by the breakdown of Ang II and producing 
Ang (1–7). Although the kidney contains substantial lev-
els of these enzymes, accounts of how they are controlled 
vary. In order to better understand how renin–angioten-
sin–aldosterone-aldosterone system (RAAS) pharmacologi-
cal changes (ACE inhibition) in activity and physiological 
(low-sodium diet) changes (ACE inhibition) affect renal 
ACE and ACE2 expression, renal ACE and ACE2 expres-
sion were both examined. Those high in salt, glucose, and 
fat have the potential to quickly modify the activity and 
expression of ACE2. In mice, a high salt diet raised ACE2 
activity in the urine, but a low salt diet lowered it (Wysocki 
et al. 2013). In fact, a high-salt diet was observed to raise the 
ratio of ACE/ACE2 in the glomeruli, which led to renal dys-
function by causing oxidative stress (Bernardi et al. 2012). 
Additionally, ACE2 was linked to the pathophysiology of 
hypertension, which was closely related to a high-salt diet. 
Consuming excessive amounts of salt made hypertension 
more common in people with the ACE2 rs2285666 TT and 
rs714205 GG genes (He et al. 2017). According to studies 
(Crackower et al. 2002; Raizada and Ferreira 2007; Tikel-
lis et al. 2011), the ratio ACE/ACE2 determines the tissue 
levels of Ang II, and deficiency in ACE2 leads to an increase 
in Ang II levels (Crackower et al. 2002).

ACE2 appears to counteract the effects of Ang II and pro-
duce beneficial Ang 1–7. In both experimental and human 
renal illnesses, Ang II levels are elevated in injured tubules, 
making it a potential mediator of renal damage. There is 
strong evidence that renin is the rate-limiting step for the 
activation of Ang II via its control of Ang I formation 
(Hollenberg 2010). For instance, variations in salt intake 
alter Ang II activity largely via changes in renin release 
and plasma renin activity. Little is known regarding ACE2 
activity changes brought on by physiological disturbances 
such as dietary salt intake. Since Ang II is controlled by 
the enzyme ACE2, changes in ACE2 would be anticipated 
anytime ACE or Ang II levels fluctuate. To maintain the Ang 
II level at a steady state, the production driven by ACE and 
the degradation caused by ACE2 need to be coordinated in 
many comorbid conditions (Fig. 1). When Ang II formation 
increases as a result of Ang I formation, an increase in ACE 
would also be expected. Because Ang II would otherwise 
increase without a checkpoint in this situation, ACE2 would 
eventually rise to encourage its degradation. It is likely that 
the rise in ACE2 levels is delayed or does not coincide with 
the rise in ACE activity, maintaining transiently high Ang 
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II levels similar to those seen in participants after a low-salt 
diet. On the other hand, one would anticipate a decrease 
in ACE, followed by a fall in ACE2, if Ang II production 
reduces, as in a high-salt diet.

Effect of ACE2 on hypertension

The protein ACE2 is widely known for its role in hyperten-
sion. In three strains of genetically hypertensive rats, the 
ACE2 gene maps to a quantitative trait locus on the X chro-
mosome, suggesting that ACE2 may be the gene that causes 
hypertension. It is theorized that an imbalance between the 
tissue’s ACE and ACE2 proteins causes enhanced ACE2 
expression to guard against increased blood pressure and 
ACE2 deficiency to exacerbate hypertension. Through 
negatively regulating the renin-angiotensin system, which 
includes the pressor-hypertrophic route of ANG II and the 
depressor-antiproliferative effects of Ang-(1–7) (Li et al. 
2019; Ferrario et al. 2005), ACE2 adjusts blood pressure 
and maintains blood pressure homeostasis. Angiotensin-
converting enzyme inhibitors (ACEi) or angiotensin receptor 
blockers (ARBs) are two commonly administered common 
antihypertensive medicines that target RAS. Hypertension 
may be the primary co-morbidity and a potential risk factor 
for more severe clinical outcomes of COVID-19 (Grasselli 
et al. 2020). Additionally, ACEi and ARBs are used to treat 
hypertension which upregulates the amount of ACE2 level 
(Li et al. 2017). It was once believed that aberrant blood 
pressure management would come from the disruption of 
the delicate balance between ACE and ACE2 (Brunner 
2001). The effects of the renin–angiotensin system on car-
diac remodeling, vasoconstriction, vasopressin synthesis 
and release, and sympathetic outflow plays a significant role 
in the regulation of blood pressure and volume homeosta-
sis (Allen et al. 2000). The primary physiologically active 
effector peptide of the RAS, Ang II, works primarily by 
interacting with the angiotensin II type-1 receptor (AT1R), 
helping to control blood pressure (Ferrario 1998). Ang II is 
transformed by ACE2 into Ang (1–7), which works at the 
Mas receptor to lower blood pressure and lessen fibrosis and 
inflammation (South et al. 2019). Although the peripheral 
infusion of circulating Ang II can boost neuronal activity 
and it is also associated with autonomic and cardiovascu-
lar control, which can result in sympathetic hyperactivity 
and neurogenic hypertension (Ferguson and Bains 1997; 
Davern and Head 2007; McKinley et al. 1998). The main 
effects of Ang-(1–7) are to improve sodium and water excre-
tion, increase nitric oxide generation and vasodilation, and 
decrease sympathetic nervous system tone (Sampaio et al. 
2007). The main consequences of the ACE/Ang II/Ang II 
type 1 receptor pathway are countered by this, including 
vasoconstriction, sodium and water reabsorption, increased 

sympathetic nervous system tone, and increased oxidative 
stress, which results in inflammation and fibrosis (Masi 
et al. 2019). Most tissues, including the heart, lungs, vascu-
lature, kidney, and intestines, coexpress both routes. Thus, 
the balance between the two main RAAS pathways, ACE2/
Ang-(1–7) and ACE/Ang II, plays a crucial role in cardio-
vascular and renal illness as well as the onset, progression, 
and remission of hypertension in both children and adults 
(Fig. 2). ACE inhibitors and angiotensin receptor blockers 
may upregulate ACE2 expression, so increasing the avail-
ability of target molecules for SARS-CoV-2, according to 
some animal studies. Although it might not be enough to 
offset the harmful effects of Ang II, ACE2 may act as a 
compensatory mechanism to maintain Ang (1–7) levels in 
response to hypertension-induced cardiac hypertrophy in 
this strain. Uncontrolled blood pressure and a high case 
fatality rate are also linked to COVID-19 infection (CFR). 
Young animals, including humans, exhibit low ACE2 levels 
[especially before puberty], and male animals have shown 
higher ACE2 levels, and high ACE2 levels are associated 
with both hypertension and diabetes (Thatcher et al. 2012). 
Hypertensive patients with SARS-CoV-2 infection were 
shown to have 2.27- and 3.48-fold higher risks of sever-
ity and fatality compared to the COVID-19 cases without 
hypertension, respectively. ACE2 has been measured as a 
protective factor against increases in blood pressure (Fig. 2). 
Therefore, it is hypothesized that the binding of SARS-
COV-2 to ACE2 can decrease the physiological function 
of ACE2, which in turn could cause immediate unfavora-
ble effects of hypertension such multi-organ dysfunction 
(Tipnis et al. 2000). Age was a significant risk factor for 
the severity and fatality of COVID-19, according to epide-
miological data of SARS-CoV-2 infection, which revealed 
that severe COVID-19 cases were more likely to be older 
patients with underlying comorbidities (such as diabetes 
mellitus and hypertension) (Zhou et al. 2020; Guan et al. 
2020). According to recent data from the China CDC, indi-
viduals over the age of 80 had the highest case fatality rate 
of any age group at 14.8% (Novel Coronavirus Pneumonia 
Emergency Response Epidemiology Team 2020). In both the 
age 50 years and 50 years groups, hypertension was strongly 
linked to the severity and fatality of SARS CoV-2 infection, 
indicating that it can independently raise the risk of disease 
severity and predict unfavorable outcomes of SARS CoV-2 
infection (Fig. 2). Based on the hypothesis that ACE2 can 
be increased by ACE inhibitors or ARBs, ACE inhibitors 
or ARBs may have negative impacts on COVID-19 patient 
morbidity and mortality. Patients with high blood pressure 
typically receive treatment with ACE2 inhibitors and ARBs. 
These inhibitors boost the expression of the ACE2 receptor 
when administered in high doses, which increases SARS-
CoV-2 infection (Fang et al. 2020).
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Effect of ACE2 on diabetes

A metabolic condition known as diabetes mellitus is char-
acterized by hyperglycemia and insufficient endogenous 
insulin production. It has become a major health concern 
and is predicted to be the fifth most common cause of death 
worldwide (Roglic et al. 2005). Renal disease, myocardial 
infarction, hypertension, and stroke are all more likely to 
develop in people with diabetes (Grundy et al. 1999). For the 
treatment and prevention of diabetic nephropathy, a progres-
sive condition characterized by proteinuria, thickening of the 
glomerular basement membrane, mesangial matrix expan-
sion, and associated with chronic renal failure, ACE2 may 
be a significant target. In kidneys, ACE2 is largely localized 
in tubular and glomerular epithelial cells (Fig. 2). In both 
mice and people with type 2 diabetes, there may be a cor-
relation between decreased ACE2 expression in glomerular 
epithelial cells and increased ACE expression in diabetic 
kidney disease. Additionally, it has been demonstrated that 
ACE2 genetic ablation and pharmacological ACE2 inhibi-
tion both induce albuminuria, mesangial matrix deposition, 
glomerular damage, and fibronectin production. Increased 
albuminuria and glomerular damage are brought on by 
ACE2 downregulation, which may also result in excessive 

Ang II buildup, particularly at the glomerular level (Ye 
et al. 2006). Increased protein excretion is caused by Ang 
II’s interference with a glomerular barrier function. Ang II 
inhibitors and AT1 blockers also lower the filtration of mac-
romolecules across the glomerular barrier (Ma and Fogo 
2001). In mice lacking ACE2, there may be changes in glu-
cose tolerance, a reduction in first-phase insulin production, 
and a possible function for ACE2 in the onset of diabetes 
(Niu et al. 2008). Diabetes and COVID-19 interact with one 
another in a reciprocal manner. Diabetes increases a person’s 
susceptibility to COVID-19, and SARS-CoV-2 infection can 
exacerbate dysglycemia, inflammatory responses, and dia-
betic complications such as diabetic ketoacidosis (Pal and 
Bhadada 2020) and hypokalemia, which raise the likelihood 
of developing a life-threatening illness. Diabetes of both 
kinds I and II is linked to higher plasminogen levels, which 
has been theorized to make SARS CoV-2 more virulent 
(Fig. 2). Conversely, obesity common comorbidity of dia-
betes reduces systemic chronic inflammation by impacting 
the both innate and adaptive immune systems as well as the 
level of IL-6 and even TNF-α (Coelho et al. 2013). Diabetes 
and obesity have been linked to cytokine storm induction 
(Papadokostaki et al. 2020; Kaye et al. 2012), as well as 
coagulation system and thrombotic processes impairment, 

Fig. 2  Brief representations of the organ damaging mechanisms of COVID-19 associated anomalies in comorbid situation
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which are also identified in COVID-19 (Magro et al. 2020). 
Due to the glycosylation process, the expression of ACE2 
is downregulated in diabetics, which may be a contributory 
factor for the severity of lung complications in comorbidity 
with SARS-CoV-2 invasion (Pal and Bhansali 2020). Over-
expression of ACE2 is caused by the use of ACEis and ARB. 
When ACE2 is overexpressed, it can break down Ang II and 
produce angiotensin 1–7, which has beneficial effects on 
COVID-19 (anti-fibrotic, anti-oxidant, anti-inflammatory, 
and vasodilatory). DPP4 inhibitors influence the activity of 
fibroblasts and myofibroblasts to have anti-fibrotic effects 
while also having anti-inflammatory effects in the lung. The 
lower rate of lung injury and mortality in COVID-19 may be 
a result of these effects.

Effect of ACE2 on cardiovascular disease

According to the cardiovascular continuum, vascular dis-
ease, tissue damage, pathological remodeling, hypertension, 
target organ dysfunction, organ failure, and mortality are 
all risk factors for cardiovascular disease development. The 
preclinical cardiovascular disease manifests as hypertension, 
dyslipidemia, and diabetes in its early stages. An essential 
part of the pathogenesis of CVD (cardiovascular disease) is 
played by the renin-angiotensin system, and RAS blocking 
is a key component of the therapeutic approach for the man-
agement of CVD. It is now recognized that there is a kind of 
RAS in which ACE2 degrades Ang II, the primary effectors 
of the traditional RAS, and generates Ang (1–7). Through 
vasoconstriction and salt-water retention, Ang II raises blood 
pressure and promotes cardiac remodeling, fibrosis, inflam-
mation, thrombosis, and plaque rupture. Numerous pieces of 
evidence show that ACE2 is essential for maintaining cardi-
ovascular homeostasis. In addition, ACE2 is elevated in fail-
ing human hearts and atherosclerotic arteries, and its altered 
expression of cardiac and vascular disease in experimental 
models of CVD, and ACE2 is increased in failing human 
hearts and atherosclerotic vessels. ACE plays physiologi-
cal functions through Ang II and AT1 receptors. Through 
the development of non-classical Ang (1–7) and Mas recep-
tors, ACE2 acts the opposite functions to the ACE/Ang II/
ATR1 axis (Santos et al. 2013; Burns 2007). The vasodilat-
ing and antiproliferative effects of this peptide are mediated 
via the binding of Ang (1–7) to the Mas receptor (Santos 
et al. 2003). The ACE2-Ang-(1–7) axis has been proven to 
be a unique RAS protective arm. A protective mechanism 
against renal injury may be reflected by increased ACE2 
expression, principally by tipping the scales in favor of vaso-
protective Ang (1–7) from Ang II. According to studies, loss 
of ACE2 can prevent the evolution of heart failure, while an 
increase in ACE2 expression can delay or even reverse the 
phenotype of heart failure. Patients with heart failure also 

have much higher circulating ACE2 activity than healthy 
individuals. The enhanced ACE2 activity in individuals with 
heart failure may be caused by the membrane-bound ACE2 
being shed (Fig. 2).

ACE2 is a versatile enzyme with a variety of biologi-
cal substrates (Fig. 2). It functions as a monocarboxypepti-
dase and cleaves a number of different non-RAAS pep-
tides, including (des-Arg9)-bradykinin, a component of 
the kininogen-kinin system, which is involved in regulating 
cardiovascular homeostasis (Turner et al. 2002). In patients 
with COVID-19 precursors SARS (8%) and MERS (30%), 
CVD was one of the most prevalent co-morbidities. Intes-
tinal epithelium, vascular endothelium, and the heart and 
lung all express ACE2, which provides a mechanism for  
the multi-organ dysfunction that can be seen with SARS-
CoV-2 infection (Tikellis and Thomas 2012; Zhang et al. 
2020b). There is mounting evidence that COVID-19 is associ-
ated with higher cardiovascular disease morbidity and death 
(CVD). The presence of ACE2 receptors on cardiac muscle 
cells may contribute to the high risk of COVID-19 in indi-
viduals with preexisting cardiovascular disease, indicating a 
potential role for the cardiovascular system in SARS-CoV-2 
infection (Fig. 2). There is a significant risk of serious coro-
nary infections in patients with CVD. Additionally, a higher 
prevalence of inflammatory cytokines is associated with 
COVID-19 instances and mediates atherosclerosis, proco-
agulant activation, and hemodynamic instability that result 
in ischemia and thrombosis (Bonow et al. 2020). Addition-
ally, a higher prevalence of inflammatory cytokines is asso-
ciated with COVID-19 instances and mediates atheroscle-
rosis, procoagulant activation, and hemodynamic instability 
that result in ischemia and thrombosis (Bonow et al. 2020).

Conclusions

Compared to female patients with COVID-19, male patients 
had a much higher chance of dying. In contrast to patients who  
were older than 50, patients fewer than 50 had a much higher 
risk of dying. Patients with cancer, diabetes, kidney disease, 
pulmonary illness, cerebrovascular disease, hypertension, and  
other diseases had a significantly increased mortality rate. The 
risk of death linked with COVID-19 may be greatly decreased  
by implementing proper protection and interventions for 
COVID-19 patients in general, and in particular male patients 
with age 50 years who have comorbidities. The COVID-19 
symptoms resemble those of the flu (e.g., fever, cough, or 
fatigue). A year with a high prevalence of respiratory illnesses  
brought on by the flu, respiratory syncytial virus, and other 
respiratory viruses saw COVID-19 outbreaks. There are 
significant effects of COVID-19 on pregnancies and ACE2 
expression in the placenta as well as in maternal and fetal 
circulations. In addition, there are a number of potential 
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therapeutic strategies that can cure pregnancy difficulties 
brought on by COVID-19 infections and inhibit the binding 
of ACE2 and SARS-CoV-2 by employing recombinant ACE2 
or by blocking the viral S-protein RBD (AzinheiraNobrega 
Cruz et al. 2021). Pregnant women were more likely to seek 
hospitalization among reproductive women (15–44 years 
old) who tested positive for COVID-19 than nonpregnant 
women. Compared to pregnant women without the condition 
or even nonpregnant women with COVID-19, admission to 
the ICU was more common in pregnant women diagnosed 
with COVID-19 (Allotey et al. 2020; Ellington et al. 2020). 
Aging, diabetes, and obesity are the three primary risk factors 
for disease severity in pregnant women (AzinheiraNobrega 
Cruz et al. 2021; Ahlberg et al. 2020). The fact that older 
people are at higher risk of contracting COVID-19 infection 
may be related to their deteriorating immune systems, T-cell 
control, and declining CD4 counts (Liu et al. 2020). Knowing  
these indicators will help identify COVID-19 individuals  
who are more at risk and will enable a more focused and 
targeted strategy for preventing those fatalities. Success in 
vaccination efforts may derive from modifications in spike 
protein structure during receptor-mediated host cell entrance 
and further prediction of post-fusion events (Zemlin and 
Wiese 2020; Banerjee et al. 2020).
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