ORIGINAL ARTICLE

Effects of repeated restraint and blood sampling with needle injection on blood cardiac troponins in rats, dogs, and cynomolgus monkeys

Keisuke Nagata¹ · Kazutoshi Sawada² · Hirofumi Minomo² · Daisuke Sasaki¹ · Katsuyuki Kazusa¹ · Kazuhiko Takamatsu¹

Received: 3 April 2017 / Accepted: 16 August 2017 / Published online: 24 August 2017 © The Author(s) 2017. This article is an open access publication

Abstract While cardiac troponins (cTnT and cTnI) have been used as blood biomarkers of myocardial injury such as myocardial infarction in both humans and animals, their high diagnostic sensitivity inevitably leads to decreased diagnostic specificity. For example, it is difficult to judge whether a slight increase of cardiac troponins in toxicological studies is a treatment-related response or not. Drawing an accurate conclusion requires reliable background data and definitive criteria based on that data. However, no organized efforts in setting such criteria has been reported. Here, we measured blood cTnI and cTnT concentrations in Sprague-Dawley rats, beagle dogs, and cynomolgus monkeys from repeated blood samplings using needle cylinders under restraint up until 24 h after a single oral dose of 0.5 w/v% methyl cellulose solution as a vehicle. We revealed the extent of individual differences in baseline levels and operational effects. Our results can be useful in making criteria for judgment of treatment-related changes in cardiac troponins.

Keywords Cardiac troponin \cdot cTnT \cdot cTnI \cdot Myocardial injury \cdot Biomarker

Kazuhiko Takamatsu kazuhiko.takamatsu@astellas.com

Introduction

Cardiac troponins (cTnT and cTnI) are used as clinical blood biomarkers for myocardial injuries such as myocardial infarction (Mahajan and Jarolim 2011) since they have high diagnostic sensitivity and tissue specificity. Since their structure and function are highly conserved across species (O'Brien et al. 2006), cardiac troponins are also used as translational biomarkers in experimental studies in animals (Berridge et al. 2009; Hausner et al. 2013; Herman et al. 2001; Newby et al. 2011; Pierson et al. 2013; Undhad et al. 2012). However, despite the usability of troponins in cardiac injuries, their high diagnostic sensitivity still poses a challenge since increased diagnostic sensitivity inevitably results in decreased diagnostic specificity (i.e., an increased number of false positives) (Mahajan and Jarolim 2011). In particular, when they are applied in toxicological studies, it is often difficult to distinguish treatment-related changes from operational changes. Therefore, obtaining data about blood cardiac troponin levels in intact animals is extremely important.

Schultze et al. previously reported blood cTnI measurements in intact Sprague-Dawley rats and cynomolgus monkeys. Their experiments consisted of careful measurements made over multiple time points under resting conditions after saline administration by oral gavage (Schultze et al. 2009, 2015). Although these studies provided much-needed data for future cTnI research, serial blood samplings were conducted using an automated cannulation method, which is different from the standard procedures of most toxicity studies (i.e., repeated needle injections under restraint).

Here, we aimed to obtain background data in a setting similar to that of typical pharmaceutical toxicological studies conducted in animals. We measured blood cTnI and cTnT concentrations in Sprague-Dawley rats, beagle dogs, and cynomolgus monkeys, from repeated blood samplings

¹ Drug Safety Research Laboratories, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan

² Drug Safety Research Laboratories, Shin Nippon Biomedical Laboratories, Ltd., 2438 Miyanoura, Kagoshima 891-1394, Japan

using needle cylinders under restraint up until 24 h after a single oral dose of 0.5 w/v% methyl cellulose solution as vehicle. In addition, for dogs and cynomolgus monkeys, we also measured creatine kinase (CK) and lactate dehydrogenase (LDH) to monitor the extent of struggle during the restraint.

Material and methods

Animals experiments

Rats Seven-week-old male and female Sprague-Dawley rats (Crl:CD (SD)) supplied from Charles River Japan Inc. (Tokyo, Japan) were used. Animals were kept in bracket-type stainless steel wire-meshed cages (two or three animals per cage during the study period) at a temperature of 23 ± 3 °C and relative humidity of $55 \pm 15\%$ with illumination of 12 h per day from 7 a.m. to 7 p.m. Animals could freely access CRF-1 pellet diet (Oriental Yeast Co., Ltd. (Tokyo, Japan)) and drinking water. Animals were guarantined and acclimated for 2 weeks. Five male and female animals were treated with a single oral dose of 0.5 w/v% methyl cellulose solution (5 mL/kg) using flexible stomach tubes and syringes. Around 0.25 mL/animal of blood was collected via tail vein while conscious and restrained at 0.5, 1, 2, 4, and 8 h after the treatment. In addition, around 2 mL/animal of blood was collected via the abdominal aorta under anesthesia with isoflurane 24 h after the treatment. Blood samples collected in sodium heparin tubes were immediately placed on ice, centrifuged by 10,000 rpm at 4 °C for 2 min to obtain plasma, and stored at - 80 °C until measurement.

Dogs Ten- to 13-month-old male and female beagle dogs that had been supplied from Hongo Farm, Kitayama Labes Co., Ltd. (Yamaguchi, Japan) were used. Animals were kept in stainless cages (one animal per cage) under the temperature of 23 ± 3 °C and relative humidity of $50 \pm 20\%$ with illumination of 12 h per day from 7 a.m. to 7 p.m. Animals were supplied with around 300 g/day of NVE-10 pellet diet (Nihon Pet Food (Tokyo, Japan)) and could freely access to and drinking water. Animals were acclimated to the test condition for 2 weeks, during which the animals were treated with drinking water (30 mL/animal) in the same manner as methyl cellulose solution. After that, 30 male and 30 female animals were treated with a single oral dose of 0.5 w/v% methyl cellulose solution (5 mL/kg) using disposable catheter and syringe. Around 7.8 (only at - D6) or 2.3 mL/animal per timepoint (0.3 mL for cTnT and 2 mL for the other items) of blood was collected via external jugular vein from conscious animals 6 days before the treatment (- D6) and just before (Pre) and 0.5, 1, 2, 4, 8, and 24 h after the treatment (D0). For the cTnT measurement, blood samples collected in sodium heparin tubes were immediately placed on ice until measurement. For the measurements of the other parameters, collected blood samples were placed at room temperature for 20–60 min, centrifuged (room temperature, 3000 rpm for 10 min) to obtain serum, and either measured within the same day or stored at -70 °C until measurement.

Cynomolgus monkeys Three- to seven-year-old male and female cynomolgus monkeys that had been supplied from Angkor Primates Center Inc. (Kampong Thom, Cambodia) or Tian Hu Cambodia Animal Breeding Research Center Ltd. (Kampong Thom, Cambodia) were used. Animals were kept in stainless cages (one animal per cage) at a temperature of 26 ± 3 °C and relative humidity of $50 \pm 20\%$ with illumination of 12 h per day from 7 a.m. to 7 p.m. Animals were supplied with around 108 g/animal/day of HF Primate J 12G pellet diet (Purina Mills, LLC. (MO, USA)) and could freely access to drinking water. Animals were acclimated to the test conditions for 2 weeks, during which the animals were treated with drinking water (10 mL/animal) in the same manner as methyl cellulose solution. After that, 10 male and 10 female animals were treated with a single oral dose of 0.5 w/v%methyl cellulose solution (5 mL/kg) using disposable catheters and syringes. Around 4.5 (only at - D13) or 2.3 mL/animal per time point (0.3 mL for cTnT and 2 mL for the other items) of blood was collected via femoral vein under unanesthetized condition and restraint in a restraint device 13 days before the treatment (-D13) and just before (Pre) and 0.5, 1, 2, 4, 8, and 24 h after the treatment (D0). For the cTnT measurement, blood samples collected in sodium heparin tubes were immediately placed on ice until measurement. For the parameters of the other items, collected blood samples were placed at room temperature for 20-60 min, centrifuged (room temperature, 3000 rpm for 10 min) to obtain serum, and either measured within the same day or stored at -80 °C until measurement.

Dosing formulation

The requisite amount of methyl cellulose (Metlose® SM-400, Shin-Etsu Chemical Co., Ltd., Tokyo, Japan) was dissolved in water for injection (Otsuka Pharmaceutical Factory, Inc., Tokushima, Japan.) to make a concentration of 0.5 w/v%.

Clinical testing methods

cTnI and cTnT levels were measured in rats, dogs and cynomolgus monkeys. CK and LDH levels were also measured in dogs and monkeys to monitor the effect by strenuous movement. The measurement methods are as follows.

cTnI: For rats, plasma samples were measured with Cardiac Injury Panel 3 (rat) Assay Kit and SECTOR®

Imager 6000 (Meso Scale Discovery, MD, USA). For dogs and cynomolgus monkeys, serum samples were measured with Multiskan Ascent (Thermo Fischer Scientific, MA, USA).

cTnT: For rats, plasma samples were measured with Cardiac Injury Panel 3 (rat) Assay Kit and SECTOR® Imager 6000 (Meso Scale Discovery, MD, USA). For dogs and cynomolgus monkeys, blood samples were measured with Cobas h 232 (Roche Diagnostics GmbH, Mannheim, Germany).

CK and LDH: Serum samples were measured with JCA-BM6070 (Nihon Denshi, Tokyo, Japan) in both dogs and cynomolgus monkeys.

Note that all the testing methods were validated for their intra-assay precision, inter-assay precision, and frozen stability.

Results

None of the study animals exhibited an abnormal general condition.

Rats

Plasma cTnI levels were below the lower limit of quantification (BLOQ) at almost all time points except for in one male (RM05) and two females (RF01 and RF02) 2 h after dosing, and one male (RM05) 4 h after dosing (Table 1). The detected levels were from 0.015 to 0.028 ng/mL. All time points for plasma cTnT levels were BLOQ (Table 1).

Dogs

Serum cTnI levels were detected in almost all animals except for in 2 males (DM22 and DM27) (Table 2). Although the levels detected varied among individuals, a tendency for levels to be constant throughout the examination period was noted in animals that showed higher levels (DM12). For blood cTnT levels, one male (DM26) and five females (DF03, DF13, DF22, DF28, and DF29) showed detectable but lower levels throughout the examination period (Table 2). The other animals showed BLOQ at all points.

No animals showed abnormal LDH values throughout the examination period (Table 2). One male (DM13 and DM23) and two females (DF15 and DF16) showed higher CK values 8 h after dosing than those at pre-dosing (Table 2). No corresponding change to higher CK values were noted in cTnI or cTnT in these animals.

Table 1 Measurements in rats

cTnI mea	asurements	in male rat	ts			
	cTnI (ng	g/mL)				
	0D					
No.	0.5 h	1 h	2 h	4 h	8 h	24 h
RM01	-	-	-	-	-	-
RM02	-	-	-	-	-	-
RM03	-	-	-	-	-	_
RM04	-	-	-	-	-	-
RM05	-	-	0.028	0.015	-	-
Mean	0.000	0.000	0.006	0.003	0.000	0.000
SD	0.000	0.000	0.011	0.006	0.000	0.000
cTnT me	asurements	s in male ra	its			
	cTnT (n	g/mL)				
	0D					
No.	0.5 h	1 h	2 h	4 h	8 h	24 h
RM01	-	-	-	-	-	_
RM02	-	-	-	-	-	_
RM03	-	-	-	-	-	-
RM04	-	-	-	-	-	-
RM05	-	-	-	-	-	_
Mean	0.000	0.000	0.000	0.000	0.000	0.000
SD	0.000	0.000	0.000	0.000	0.000	0.000
cTnI mea	asurements	in female 1	rats			
	cTnI (ng	g/mL)				
	0D					
No.	0.5 h	1 h	2 h	4 h	8 h	24 h
RF01	-	-	0.021	-	-	_
RF02	-	-	0.016	-	-	-
RF03	_	-	-	-	-	_
RF04	_	-	-	-	-	_
RF05	_	-	-	-	-	_
Mean	0.000	0.000	0.007	0.000	0.000	0.000
SD	0.000	0.000	0.009	0.000	0.000	0.000
cTnT me	asurements	s in female	rats			
	cTnT (n	g/mL)				
	0D					
No.	0.5 h	1 h	2 h	4 h	8 h	24 h
RF01	-	-	_	-	_	_
RF02	-	-	_	-	_	_
RF03	-	-	_	-	_	_
RF04	-	-	—	-	_	-
RF05	-	_	—	—	_	-
Mean	0.000	0.000	0.000	0.000	0.000	0.000
SD	0.000	0.000	0.000	0.000	0.000	0.000

cTnI: Values below the lower limit of quantification (BLOQ) (0.010 ng/mL) were shown as "--" and regarded as 0 ng/mL in calculation

cTnT: Values below the lower limit of quantification (BLOQ) (0.392 to 0.412 ng/mL) were shown as "--" and regarded as 0 ng/mL in calculation

Table 2	Measuremen	ts in do	ogs						Table 2	(continued)							
cTnI me	easurements in n	nale be	agles						DM11	-	-	-	-	-	-	_	-
	cTnI (ng/mL)		C						DM12	—	-	-	-	-	_	-	-
	- 6D	0D							DM13 DM14	_	_	_	_	_	_	_	_
No	_	Pre	05h	1 h	2 h	4 h	8 h	24 h	DM15	_	_	_	_	_	_	_	_
DM01	_	_	0.19	_	_	0.18	_	_	DM16	_	-	-	-	-	-	-	-
DM02	_	_	0.19	_	_	_	_	_	DM17	_	_	-	-	_	_	-	_
DM02	_	_	_	_	0.17	_	0.18	_	DM18 DM19	_	_	_	_	_	_	_	_
DM04	0.16	_	_	0.18	0.17	_	0.10	_	DM19 DM20	_	_	_	_	_	_	_	_
DM04	0.10			0.16			0.40		DM21	_	_	_	—	—	_	_	_
DM05	_	_	0.28	_	_	0.20	0.40	0.25	DM22	_	-	-	-	-	-	-	-
DM00			0.58	0.26	0.24	0.20	0.51	0.25	DM23	_	_	_	_	_	_	_	_
	-	0.71	0.19	0.20	0.24	0.10	1 17	0.20	DM24	_	_	_	_	_	_	_	_
DM08	0.73	0.71	0.55	0.78	0.41	0.85	1.1/	0.58	DM26	-	+	101	+	+	+	+	+
DM09	0.20	_	-	_	0.17	-	0.25	0.18	DM27	_	-	-	-	-	-	-	-
DMI0	0.35	0.33	_	0.32	0.38	0.43	0.23	_	DM28	_	-	-	-	-	-	-	-
DMII	_	0.51	0.29	0.53	0.44	0.20	_	0.50	DM29 DM30	_	_	_	_	_	_	_	_
DM12	3.69	3.04	3.16	3.80	3.83	3.79	3.88	3.63	CK mea	surements in ma	ale bea	gles					
DM13	0.81	0.44	0.44	0.81	0.71	1.04	0.87	0.67		CK (IU/L)		-					
DM14	0.36	0.37	0.31	-	0.58	0.37	0.78	0.42	NT	- 6D	0D	0.51	1.1	0.1	4.1	0.1	241
DM15	_	0.35	-	-	-	0.27	0.25	0.40	NO. DM01	_ 134	Pre 104	0.5 h 229	1 h 97	2 h 119	4 h 121	8 h 122	24 h 111
DM16	_	-	0.45	0.41	-	—	0.50	0.33	DM01 DM02	100	104	161	94	108	139	132	88
DM17	_	0.32	-	0.38	0.39	-	-	0.32	DM03	106	107	116	107	133	110	114	101
DM18	0.52	0.37	0.40	-	0.71	0.26	0.36	-	DM04	102	97	82	74	159	108	186	106
DM19	0.51	0.63	0.57	0.47	0.39	0.90	0.73	0.57	DM05 DM06	95 107	96 96	152 300	97	127	128	140 07	101
DM20	0.57	0.44	0.57	0.44	0.35	-	0.95	0.38	DM00 DM07	107	107	105	97	112	113	115	101
DM21	-	0.22	-	0.19	-	_	-	-	DM08	104	125	198	148	105	109	184	178
DM22	-	-	-	-	-	-	-	-	DM09	90	91	90	87	92	111	98	91
DM23	-	-	-	-	-	0.21	-	-	DM10	97 124	110	122	127	136	150	146	135
DM24	_	_	-	_	-	_	0.57	-	DM11 DM12	134	104	90	145	182 78	105	130	86
DM25	_	0.18	_	_	_	0.29	0.17	0.38	DM13	145	102	106	108	129	198	330	113
DM26	_	_	_	_	_	_	0.18	_	DM14	108	111	164	108	110	109	105	101
DM27	_	_	_	_	_	_	_	_	DM15	112	95 451	100	102	104	103	110	73
DM28	0.31	0.31	0.20	_	0.35	0.25	0.35	_	DM16 DM17	85 103	431 93	467	406 125	332 102	276	150	75 83
DM29	_	0.19	_	_	_	_	_	_	DM18	106	77	94	101	91	97	104	80
DM30	_	_	0.31	_	_	_	0.39	_	DM19	104	110	145	149	164	176	273	114
Mean	0.27	0.28	0.27	0.29	0.30	0.31	0.42	0.30	DM20	83	83	92	107	92 197	98	112	83
SD	0.68	0.56	0.57	0.70	0.69	0.70	0.72	0.66	DM21 DM22	128 87	203	1/8	139	208	219	217	122 94
cTnT m	easurements in	male be	eagles	01/0	0.05	0.70	0.72	0.00	DM22	99	123	133	132	123	144	344	90
ernr m	cTnT (ng/L)		cugies						DM24	152	99	103	116	90	107	109	84
	= 6D	0D							DM25	96	102	89	93	96	104	86	80
No	0D	Dro	05h	1 h	2 h	4 h	8 h	24 h	DM26 DM27	80 133	76 141	141	80 152	82 160	99 171	102	//
DM01	_	-	0.5 11	-	2 11	4 11	0 11	24 11	DM27 DM28	126	127	117	132	136	168	182	100
DM02									DM29	83	78	84	87	92	111	127	73
DM02	—	_	_	_	_	_	_	_	DM30	107	125	125	104	112	134	129	249
DM03	_	_	_	_	_	-	-	_	Mean SD	142	121	147	125	129 52	136	157	104
DM04	—	_	-	-	_	-	-	-	LDH m	easurements in r	nale be	agles	30	55	44	07	35
DM05	-	-	-	-	-	-	-	-	11	LDH (IU/L)		0					
DM06	-	-	-	-	_	-	-	_		- 6D	0D						
DM07	-	-	-	-	-	-	-	_	No.	-	Pre 54	0.5H	1H 24	2H	4H 45	8H	24H
DM08	_	-	-	-	-	-	-	-	DM01	5∠ 57	54 43	47 56	54 40	07 63	40 55	33 55	99 50
DM09	-	_	-	-	-	-	-	-	DM02	52	71	70	64	161	93	89	75
DM10	-	-	-	-	-	-	-	_	DM04	47	130	66	52	93	76	75	196

Table 2	(continued)								Table 2	(continued)							
DM05	39	42	70	36	92	60	49	46	cTnT n	neasurements in	female	beagles					
DM06	61	47	66	50	55	74	51	72		cTnT (ng/L)		0					
DM07	67	92	90	57	105	98	86	97		- 6D	0D						
DM08	51	44	57	42	53	47	85	94	No.	-	Pre	0.5 h	1 h	2 h	4 h	8 h	24 h
DM09	58	55	51	91	82	132	72	110	DF01	_	_	_	_	_	_	_	_
DM10	71	53	62	66	62	93	55	139	DF02	_	_	_	_	_	_	_	_
DM11	77	61	87	45	137	103	85	102	DF03	_	_	_	_	_	_	_	+
DM12	127	56	58	120	39	81	85	38	DF04	_	_	_	_	_	_	_	_
DM13	142	83	44	47	55	134	148	92	DF05	_	_	_	_	_	_	_	_
DM14	46	43	72	40	37	43	47	55	DF06	-	_	_	_	_	_	_	_
DM15	88	48	55	47	48	80	79	50	DF07	-	_	-	-	_	_	_	_
DM16	62	40	68	59	49	40	84	31	DF08	_	_	_	_	_	_	_	_
DM17	61	54	67	122	44	61	97	53	DF09	-	_	-	-	_	_	_	_
DM18	45	32	72	90	61	73	55	45	DF10	_	_	-	-	_	-	-	-
DM19	68	55	82	67	65	67	130	42	DF11	_	_	-	-	_	-	-	-
DM20	54	42	56	90	52	71	80	47	DF12	_	_	_	-	—	_	_	_
DM21	79	117	127	74	77	77	60	47	DF13	_	+	+	+	+	+	_	+
DM22	30	69	74	66	42	50	43	49	DF14	-	_	-	-	_	-	-	-
DM23	60	86	95	89	45	72	120	29	DF15	-	_	-	-	_	-	-	-
DM24	100	62	65	93	30	52	34	31	DF16	-	_	-	-	_	-	-	-
DM25	47	78	38	42	40	49	40	51	DF17	-	_	-	-	_	-	-	-
DM26	57	63	64	41	46	67	61	42	DF18	-	-	-	-	-	-	-	-
DM27	56	75	47	51	57	110	50	47	DF19	-	-	-	-	-	-	-	-
DM28	64	93	39	76	56	60	42	46	DF20	-	-	-	-	-	-	-	-
DM29	43	41	36	38	38	71	45	42	DF21	-	-	-	-	-	-	-	-
DM30	52	105	87	38	36	56	42	56	DF22	-	+	+	+	+	+	+	+
Mean	64	64	66	62	63	73	70	66	DF23	-	_	-	-	-	-	-	-
SD	24	24	19	24	29	24	27	36	DF24	-	_	-	-	-	-	-	-
cTnI m	easurements in f	emale l	beagles						DF25	-	_	-	-	-	-	-	-
	cTnI (ng/mL)								DF26	-	_	-	-	-	-	-	-
	- 6D	0D							DF27	-	-	-	-	-	-	-	-
No.	_	Pre	0.5 h	1 h	2 h	4 h	8 h	24 h	DF28	-	+	-	-	-	-	-	-
DF01	0.34	0.75	0.38	0.61	0.75	0.65	0.56	0.50	DF29	-	+	+	-	-	-	-	+
DF02	-	0.37	0.30	0.33	0.23	0.42	_	0.38	DF30	-	—	—	-	—	—	_	—
DF03	-	—	-		0.29	-	0.33	_		CK (IU/L)							
DF04	—	-	-	0.18	-	_	-	-		- 6D	0D					~ .	
DF05	-	_	_	_	_	0.22	_	-	No.	_	Pre	0.5 h	1 h	2 h	4 h	8 h	24 h
DF06	0.51	0.24	0.19	0.23	0.32	0.57	0.38	0.38	DF01	159	130	226	136	142	157	205	144
DF07	_	_	0.27	-	_	-	0.16	-	DF02	131	129	140	140	136	156	251	125
DF08	_	_	_	0.17	_	-	0.24	0.26	DF03	104	83	92	86	96	96	97	89
DF09	-	_	- 17	0.20	_	_	0.23	-	DF04	108	101	93	8/	86	96	11/	93
DF10 DF11	0.21	-	0.17	0.25	- 20	0.55	- 20	- 11	DF05	96	/8	121	/4	89	84	118	83
DF11 DE12	- 29	0.04	0.41	0.55	0.58	0.33	0.29	0.44	DF00 DE07	90	143	105	102	99 105	138	118	120
DF12 DF12	0.38	0.23	0.71	0.50	0.54	0.40	0.32	0.28	DF07	122	129	105	100	105	111	113	150
DF13 DF14	0.22	0.41	0.62	0.03	0.43	0.50	0.32	0.45	DE00	105	140 84	121 91	78	93 87	02	112	101
DF14	-	0.42	0.02	0.23	- 0.01	0.54	0.79	0.50	DE10	90	04 80	00	70 151	02 05	95 110	104	08
DF15 DF16	0.27	0.44	0.29	0.47	0.42	0.08	0.40	0.42	DF10 DF11	90 152	160	90 164	151	95 158	1/18	136	90 155
DF17		033	-	0.31	U. T 2	0 1 0		0.34	DF12	119	122	123	106	102	108	106	116
DF18	0.55	0.35	0.78	0.26	0.81	0.19	0.65	-	DF13	68	72	66	62	72	63	65	86
DF19	0.35	0.29	0.70	0.25	_	0.42		_	DF14	122	112	127	97	113	129	150	115
DF20	0.33	0.29	0.22	0.43	0.52	0.12	0.59	_	DF15	112	137	119	115	122	143	346	160
DF21	_	0.32	_	0.28	_	_	_	_	DF16	177	151	243	145	155	153	316	130
DF22	_	_	0.42	_	0.29	0.20	0.22	_	DF17	132	141	143	139	129	177	157	113
DF23	0.32	0.40	0.33	0.65	0.50	0.82	0.39	0.47	DF18	141	128	125	125	143	126	144	124
DF24	_	_	_	_	0.22	_	_	_	DF19	114	127	96	94	94	105	146	119
DF25	_	0.16	_	_	_	0.22	0.18	0.21	DF20	291	153	99	102	108	119	100	88
DF26	_	_	_	_	_	_	0.32	_	DF21	83	87	89	87	113	79	79	82
DF27	_	_	_	0.21	_	_	_	_	DF22	85	113	80	83	110	98	84	79
DF28	0.97	0.79	0.88	0.92	0.66	0.84	1.00	0.66	DF23	89	79	86	78	88	103	112	80
DF29	_	0.23	_	_	_	0.25	_	_	DF24	122	129	146	121	123	133	132	115
DF30	0.31	0.19	0.38	0.21	0.25	_	0.22	_	DF25	148	98	115	90	119	117	85	109
Mean	0.17	0.23	0.24	0.26	0.25	0.28	0.28	0.18	DF26	82	83	77	68	86	91	110	76
SD	0.24	0.23	0.26	0.23	0.27	0.28	0.27	0.21	DF27	86	86	87	91	84	101	95	85

Comp Clin Pathol (2017) 26:1347-1354

Table 2	(continued)								Table 3	Meas	urement	s in cync	omolgus	monke	ys		
DF28	263	92	127	78	80	91	81	327	cTnI m	easureme	nte in m	ale cyno	molaus	monkey	10		
DF29	117	165	139	136	135	128	139	103	¢1111 III		/ 1	are cyno	moigus	monikey	3		
DF30	103	92	149	213	123	245	108	87		cInI (r	ig/mL)						
Mean	124	115	118	108	109	120	135	116		- 13D	0D						
SD	48	28	40	32	23	35	64	46	No.	-	Pre	0.5 h	1 h	2 h	4 h	8 h	24 h
LDH m	easurements in	female	beagles						CM01	_	_	_	_	_	_	_	_
	LDH (IU/L)	0D							CM02	_	_	_	_	_	_	0.20	_
No	= 0D	D	05h	1 h	2 h	4 h	8 h	24 h	CM03	_	_	_	_	_	_	_	_
DF01	66	45	67	42	2 II 44	53	80	61	CIVIO3		0.16	0.20	0.20			0.17	0.22
DF02	47	44	43	45	37	59	59	56	CM04	_	0.16	0.26	0.20	_	_	0.17	0.22
DF03	60	55	61	55	56	90	62	65	CM05	-	-	-	-	-	-	-	-
DF04	49	51	57	46	42	60	82	67	CM06	_	—	-	—	-	-	—	-
DF05	42	57	36	50	73	71	102	45	CM07	-	-	-	-	-	-	-	-
DF06	45	47	48	43	41	57	47	54	CM08	-	-	-	-	_	0.17	_	0.16
DF07	60	107	44	38	36	62	56	69	CM09	_	_	_	_	_	_	_	_
DF08 DE00	4/	145	38 52	40	35 16	59 55	54 76	/5	CM10	_	_	_	_	_	_	_	_
DF09 DF10	50 52	55 57	32 43	44 57	40 48	95	78	55	Maria	0.00	0.02	0.02	0.02	0.00	0.02	0.04	0.04
DF11	76	68	65	64	81	56	60	79	Mean	0.00	0.02	0.03	0.02	0.00	0.02	0.04	0.04
DF12	49	43	49	43	43	77	54	59	SD	0.00	0.05	0.08	0.06	0.00	0.05	0.07	0.08
DF13	42	47	52	37	66	42	46	96	cTnT m	easurem	ents in n	nale cyno	omolgus	monke	ys		
DF14	47	58	84	34	58	78	58	81		cTnT (ng/L)						
DF15	66	108	43	38	57	97	97	88		- 13D	0D						
DF16	94	61	58	49	69	65	100	148	No	_	Pre	05h	1 h	2 h	4 h	8 h	24 h
DF17	70	64	50	54	45	150	85	64	CM01	_	_	_	_		_	_	
DF18 DF10	91	81	65 50	/1	129	6	87	82	CIMOT								
DF19 DF20	95	12	30 48	47	47 65	02	00	132 60	CM02	-	_	_	_	_	_	_	_
DF21	47	53	40 57	60	154	57	54	69	CM03	_	—	_	_	—	_	—	-
DF22	41	125	39	43	82	68	37	44	CM04	-	-	-	_	-	-	-	-
DF23	49	43	72	48	43	63	44	45	CM05	-	-	-	-	-	-	_	-
DF24	54	87	113	57	50	72	49	71	CM06	_	_	_	_	_	_	_	_
DF25	54	47	100	43	123	122	34	83	CM07	+	_	+	+	+	+	+	_
DF26	39	53	42	33	60	52	44	42	CM09			·			·		
DF27	51	51	43	63	38	76	42	45	CIVIOS	+				+			
DF28 DF20	/5	81	53	46 59	41 51	50 54	33 50	61	CM09	-	_	_	_	_	_	_	_
DF29 DF30	03 41	40	127	20 95	52	54 70	30 41	09 46	CM10	_	—	_	_	_	_	—	-
Mean	59	69	59	50	60	72	64	69	CK mea	asuremen	its in ma	le cynon	nolgus n	nonkeys			
SD	18	31	21	12	28	22	23	24		CK (II	J/L)						
										- 13D	0D						
cTnI: Va	alues below the l	ower lir	nit of qu	antifica	tion (B	LOQ) ((0.156 n	ıg/mL)	No	_	Pre	05h	1 h	2 h	4 h	8 h	24 h
were sh	own as "-" and	regarde	ed as 0 n	g/mL i	n calcu	lation			CM01	970	378	581	1283	2506	5238	4153	705
cTnT: V	/alues below the	e lower	limit of	quanti	ficatior	n (BLO	Q) (50	ng/L)	CMOT	970	320	707	1205	1017	2620	9706	007
were sh	own as "–". Val	lues bet	ween 50) and 1	00 ng/I	were	shown	as "+"	CM02	141	263	/0/	1144	1817	3639	8/06	807
									CM03	188	216	553	824	951	1823	1779	1004
									CM04	399	421	364	512	373	868	959	333
									CM05	629	174	1261	715	612	1342	845	310
									CM06	140	366	545	1460	268	634	2620	424
Cynor	nolgus monk	xev							CM07	356	302	928	1723	2589	4341	6119	1831
- 5	9	- 0							CM09	216	202	205	566	610	1161	2405	870
One f	emale (CE01) show	ved a	highe	r love	lofe	orum	cTnI	CIVI08	210	283	383	300	018	1101	2495	870
of all	mainta (Tabl	2	These	mala		1013		and	CM09	458	379	554	1289	1111	1232	2785	577
	points (Tabl	e <u>)</u> .	(CEO)	males		102, (_IVIU4	, and	CM10	179	164	221	524	251	699	520	507
CM08) and one fe	emale	(CF09) sho	wed s	sporac	lically	low	Mean	368	290	610	1004	1119	2098	3098	746
levels	of cTnI thro	ough t	he exa	imina	tion p	eriod	(Tabl	le 3).	SD	252	82	284	410	860	1586	2458	426
Only	two males (O	CM07	and C	CM08) show	wed lo	ow bu	ıt de-	LDH m	easurem	ents in m	ale cvno	omolgus	monkey	ys		
tectab	le blood cTn	T valu	ies (Ta	ble 3). Altł	iough	the h	igher		LDH	[[]/[])				, ·		
levels	of CK or Ll	DH w	ere de	tected	l spor	adical	ly, no	o cor-		_ 12D	00						
respor	dences were	noted	d in th	e cha	nges	in cTı	nI or	cTnT	No	- 15D	Duc	051	1 ե	ንኬ	16	QL	241

Pre

No.

-

0.5 h 1 h

2 h

4 h

24 h

8 h

levels (Table 3).

Table 3	(continu	ed)						
CM01	513	457	633	847	707	999	1045	790
CM02	241	447	497	640	740	904	1207	532
CM03	365	495	623	656	899	782	717	579
CM04	618	455	349	733	298	377	341	253
CM05	241	199	298	454	291	441	331	260
CM06	281	355	684	711	407	469	833	327
CM07	298	303	465	581	687	892	990	537
CM08	262	293	403	374	360	513	619	367
CM09	354	343	419	637	508	545	679	372
CM10	236	244	273	544	288	524	345	342
Mean	341	359	464	618	519	645	711	436
SD oTnI mo	122	96 ta in fan	13/	130	212 2 montes	214	296	161
c1n1 me	asuremen	(mI)	nale cyn	omoigus	s monke	ys		
	-13D	(DD)						
No		Pre	05h	1 h	2 h	4 h	8 h	24 h
CF01	0.72	0.95	0.88	0.77	0.84	0.90	0.83	0.82
CF02	_	_	_	_	_	_	_	_
CF03	_	_	_	_	_	_	_	_
CF04	_	_	_	_	_	_	_	_
CF05	_	_	-	_	_	_	-	-
CF06	-	-	-	-	-	-	-	-
CF07	-	-	-	-	-	-	-	-
CF08	-	_	-	-	_	_	-	-
CF09	-	0.19	-	-	-	-	-	-
CF10	-	-	_	_	_	-	_	_
Mean	0.07	0.11	0.09	0.08	0.08	0.09	0.08	0.08
SD	0.22	0.28	0.26	0.23	0.25	0.27	0.25	0.25
c1n1 me	easuremen	$\frac{1}{2}$ $\frac{1}{2}$	male cyi	nomolgu	is monke	eys		
	-13D	g/L) 0D						
No		Dre	05h	1 h	2 h	4 h	8 h	24 h
CE01	_	_	0.5 II _	- I II	2 II _	- II	<u> </u>	2 4 II _
CF02	_	_	_	_	_	_	_	_
CF03	_	_	_	_	_	_	_	_
CF04	_	_	_	_	_	_	_	_
CF05	-	-	-	-	_	-	-	-
CF06	-	-	-	-	-	-	-	-
CF07	-	-	-	-	-	-	-	-
CF08	_	-	-	-	_	-	-	-
CF09	-	-	-	-	-	-	-	-
CF10	-	-	_	-	-	-	-	-
CK mea	surements	s in fema	ale cyno	molgus	monkey	S		
	CK (IU/	L)						
No	- 15D	D	0.5 h	1 h	2 h	4 h	8 h	24 h
CF01	92	220	160	271	943	7 II 2860	1301	2 4 II 286
CF02	125	113	162	691	341	2800 497	837	303
CF03	166	231	225	320	298	545	700	249
CF04	425	1406	2510	2941	4094	7187	4558	1430
CF05	141	213	218	253	293	336	294	257
CF06	317	393	360	569	507	565	964	260
CF07	638	391	1239	1532	1903	1698	2142	550
CF08	290	405	230	439	508	1196	994	381
CF09	255	1512	2180	4080	3935	7108	8755	2369
CF10	190	449	1442	546	572	503	727	316
Mean	264	533	873	1164	1339	2250	2127	640
SD	158	475	859	1250	1412	2555	2494	669
LDH me	easuremen	nts in fer	nale cyr	nomolgu	s monke	eys		
	LDH (IU	J/L)						
N.	- 13D	0D	0.5.1	1.1	2.1	4.1.	0.1	241
INO.	-	Pre	0.5 h	1 h	2 h 201	4 h 705	8 h	24 h
CF01 CF02	386	∠39 258	203 395	505 444	391 440	195 366	362 345	203 326
UI 04	200	200	515	1 1 1	1 TU	200	JTJ	540

Table 3	(contir	nued)						
CF03	553	295	387	420	476	421	405	461
CF04	454	636	792	876	962	1462	1053	816
CF05	231	247	258	268	268	299	271	253
CF06	326	288	313	444	352	378	406	306
CF07	331	359	547	627	670	595	564	377
CF08	306	286	285	312	340	448	406	351
CF09	282	468	563	797	772	1011	1038	623
CF10	186	203	298	251	272	289	282	232
Mean	325	328	410	480	494	606	535	401
SD	109	124	165	206	220	360	273	177

cTnI: Values below the lower limit of quantification (BLOQ) (0.156 ng/mL) were shown as "--" and regarded as 0 ng/mL in calculation

cTnT: Values below the lower limit of quantification (BLOQ) (50 ng/L) were shown as "-". Values between 50 and 100 ng/L were shown as "+"

Discussion

In this study, we revealed the extent of individual differences in baseline levels and operational effects in Sprague Dawley rats, beagle dogs, and cynomolgus monkeys from repeated blood samplings using needle cylinders under restraint up until 24 h after a single oral dose of 0.5 w/v% methyl cellulose solution as a vehicle. For the rats, although some animals showed temporal elevations 2-4 h after dosing, cTnI levels were BLOQ at almost all examination points. In contrast, there were substantially larger individual differences in baseline levels of cTnI in dogs (greater than 20-fold) and cynomolgus monkeys (greater than 5-fold). cTnI values fluctuated around individual baselines without clear correlations in timing or with CK and LDH elevations seen in some animals. This suggests that these fluctuations of cTnI values were not caused by the experimental procedures, neither treatment nor operational, and thus individual variations in baseline levels need to be taken into account when evaluating cTnI levels in blood collected. Based on these results, we propose the criteria shown here:

For rats, we can evaluate cTnI levels from blood sampling 24 h after treatment by simply adopting the BLOQ as a criterion for treatment-related effects (e.g., compound-induced effects after drug administration), without needing to consider individual variations or operational effects. When we evaluate cTnI levels from blood sampling collected periodically within the same day of treatment, however, we need to reject temporal elevations as operational effects, based on historical background data defined at each facility (e.g., 0.02 ng/mL, if based on this study).

For dogs and cynomolgus monkeys, we can adopt the following criteria.

For all animals in a study, calculate the individual maximum untreated level (IULmax), the individual minimum untreated level (IULmin), and individual untreated range (IULrange; IULmax – IULmin), based on measurements

at all-time points for control animals and at time points before treatment for treated animals.

- 2. Define the criterion of level (CoL) as the highest IULmax and the criterion of variation (CoV) as the highest IULrange in the study.
- 3. A measured value (MV) taken during the treatment period is considered to have resulted from treatment if MV > CoL and (MV IULmin) > CoV.

For example, considering Table 3 as data of control animals, CoL and CoV are defined as 0.26 ng/mL (IULmax of CM04 at 0.5 h) and 0.10 ng/mL (the highest IULrange; 0.26– 0.16 ng/mL of CM04), respectively. We regarded BLOQ values as 0.16 ng/mL (based on the LOQ value) in this calculation, to avoid overestimating IULrange. Now, suppose that one animal showed a MV of 0.50 ng/mL at some point after treatment and its IULmin was 0.16 ng/mL. In this case, the MV is considered to have resulted from treatment, since MV (0.50 ng/mL) > CoL (0.26 ng/mL) and MV (0.50 ng/mL) – IULmin (0.16 ng/mL) > CoV (0.10 ng/mL).

These criteria could minimize false positives. However, they may not be applied in cases where a small number of animals show considerably higher baseline levels than the others, since inclusion of such animals would lead to underestimation of the treatment-related changes. In such cases, excluding outliers prior to the start of a study could minimize individual variations in baseline levels.

Regarding cTnT, the values were mostly BLOQ, more frequently than those of cTnI. This might be attributable to differences in the measurement systems used. For rats, all cTnT measurements were BLOQ, and therefore, we do not need to consider individual variation or operational effects. For dogs and cynomolgus monkeys, however, we should use the same approach with cTnI, since some animals showed levels exceeding LOQ.

In conclusion, we proposed criteria to distinguish treatmentrelated effects from individual differences and operational effects in Sprague-Dawley rats, beagle dogs, and cynomolgus monkeys. We admit that our study lacks data from animals after treatment of myocardial infarction-inducing compounds. In the future, such positive control data would be needed and would help us establish more accurate criteria.

Funding This study was not funded by any third parties.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Ethical approval The animal experiments within this study were approved by the Institutional Animal Care and Use Committee of Shin Nippon Biomedical Laboratories and/or Astellas Pharma Inc., and were performed in accordance with the animal welfare guidelines thereof.

Procedures specific to each animal species are described separately in the Material and Methods subsection.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

- Berridge BR et al (2009) A translational approach to detecting druginduced cardiac injury with cardiac troponins: Consensus and recommendations from the Cardiac Troponins Biomarker Working Group of the Health and Environmental Sciences Institute. Am Heart J 158:21–29. https://doi.org/10.1016/j.ahj.2009.04.020
- Hausner EA, Hicks KA, Leighton JK, Szarfman A, Thompson AM, Harlow P (2013) Qualification of cardiac troponins for nonclinical use: a regulatory perspective. Regul Toxicol Pharmacol 67:108–114. https://doi.org/10.1016/j.yrtph.2013.07.006
- Herman EH et al (2001) The use of serum levels of cardiac troponin T to compare the protective activity of dexrazoxane against doxorubicinand mitoxantrone-induced cardiotoxicity. Cancer Chemother Pharmacol 48:297–304
- Mahajan VS, Jarolim P (2011) How to interpret elevated cardiac troponin levels. Circulation 124:2350–2354. https://doi.org/10.1161/ CIRCULATIONAHA.111.023697
- Newby LK et al (2011) Troponin measurements during drug development—considerations for monitoring and management of potential cardiotoxicity: an educational collaboration among the cardiac safety research consortium, the Duke Clinical Research Institute, and the US Food and Drug Administration. Am Heart J 162:64–73. https:// doi.org/10.1016/j.ahj.2011.04.005
- O'Brien PJ et al (2006) Cardiac troponin I is a sensitive, specific biomarker of cardiac injury in laboratory animals. Lab Anim 40: 153–171. https://doi.org/10.1258/002367706776319042
- Pierson JB et al (2013) A public-private consortium advances cardiac safety evaluation: achievements of the HESI Cardiac Safety Technical Committee. J Pharmacol Toxicol Methods 68:7–12. https://doi.org/10.1016/j.vascn.2013.03.008
- Schultze AE et al (2009) Longitudinal studies of cardiac troponin-I concentrations in serum from male Sprague Dawley rats: baseline reference ranges and effects of handling and placebo dosing on biological variability. Toxicol Pathol 37:754–760. https://doi.org/ 10.1177/0192623309343777
- Schultze AE et al (2015) Longitudinal studies of cardiac troponin I concentrations in serum from male cynomolgus monkeys: resting values and effects of oral and intravenous dosing on biologic variability. Vet Clin Pathol/Am Soc Vet Clin Pathol 44:465–471. https:// doi.org/10.1111/vcp.12272
- Undhad VV, Fefar DT, Jivani BM, Gupta H, Ghodasara DJ, Joshi BP, Prajapati KS (2012) Cardiac troponin: an emerging cardiac biomarker in animal health. Vet World 5:508–511. https://doi.org/10.5455/ vetworld.2012.508-511