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Abstract
We study the singularities of commuting vector fields of a real submanifold of a Kähler
manifold Z .
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1 Introduction

Let (Z , ω) be a connected Kähler manifold with a holomorphic action of a complex
reductive group UC, where UC is the complexification of a compact connected Lie
group U with Lie algebra u. We also assume ω is U -invariant and that there is a U -
equivariant momentum map μ : Z → u∗. By definition, for any ξ ∈ u and z ∈ Z ,

dμξ = iξZ ω, where μξ (z) := μ(z)(ξ) and ξZ denotes the fundamental vector field
induced on Z by the action of U , i.e.,

ξZ (z) := d

dt

∣
∣
∣
∣
t=0

exp(tξ)z

(see, for example, Kirwan 1984 for more details on the momentum map). Since U
is compact we may identify u ∼= u∗ by means of a Ad(U )-invariant scalar product
〈·, ·〉 on u. Hence, we consider a momentum map as a u-valued map, i.e., μ : Z → u.
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Recently, themomentummap has been generalized to the following settings (Heinzner
and Schwarz 2007; Heinzner et al. 2008).

We say that a subgroup G of UC is compatible if G is closed and the Cartan
decomposition UC = U exp(iu) induces a Cartan decomposition of G. This means
that the map K ×p → G, (k, β) �→ kexp(β) is a diffeomorphism where K := G∩U
and p := g ∩ iu; g is the Lie algebra of G. In particular K is a maximal compact
subgroup of G with Lie algebra k and g = k ⊕ p.

Using 〈·, ·〉, we define an Ad(U )-invariant scalar product on iu requiring multipli-
cation by i to be an isometry between u and iu. The G-gradient map μp : Z −→ p
associated with μ is the orthogonal projection of iμ onto p. If β ∈ p then

μ
β
p(z) := 〈μp(z), β〉 = 〈iμ(z), β〉 = 〈μ(z),−iβ〉 = μ−iβ(z),

for any β ∈ p and z ∈ Z . In this paper, a G-invariant compact connected locally
closed real submanifold X of Z is fixed and the restriction of μp to X is also denoted

by μp. Then μp : X −→ p is a K -equivariant map such that gradμβ
p = βX , where

the gradient is computed with respect to the induced Riemannian metric on X denoted
by (·, ·). By the linearization Theorem (Heinzner et al. 2008; Sjamaar 1998), μβ

p is a
Morse–Bott function (Biliotti et al. 2013; Heinzner et al. 2008) and the limit

ϕ
β∞(x) := lim

t→+∞ exp(tβ)x,

exists and belongs to Xβ := {z ∈ X : βX (z) = 0} for any x ∈ X . The linearization
theorem (Heinzner et al. 2008; Sjamaar 1998) also proves that any connected compo-
nent of Xβ is an embedded submanifold, see for instance (Biliotti et al. 2013; Heinzner
et al. 2008).

Let C1, . . . ,Ck be the connected components of Xβ. Let Wi := {x ∈ X :
limt �→+∞ exp(tβ)x ∈ Ci }. Then μ

β
p(Ci ) = ci and applying again the linearization

theorem (Heinzner et al. 2008; Sjamaar 1998), the submanifoldCi is a connected com-
ponent of (μ

β
p)−1(ci ). One of the most important Theorem of Morse theory proves

thatWi is an embedded submanifold, which is called unstable manifold of the critical
submanifold Ci , and ϕ

β∞ : Wi −→ Ci is smooth (Bott 1954).
Let T be a torus ofU . This means that T is a connected compact Abelian subgroup

ofU (Adams 1969). By a Theorem of Koszul, (Duistermaat and Kolk 2000), the con-
nected components of ZT := {x ∈ Z : T ·x = x} are embedded Kähler submanifolds
of Z . Let t be the Lie algebra of T . It is well-known that the set

{

β ∈ t : exp(Rβ) = T
}

,

is dense in t, see for instance (Adams 1969). Hence,

ZT = ZTC = {p ∈ Z : βZ (p) = 0} , (1)
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for some β ∈ t. This means ZT is the set of the singularities of the vector field βZ ,

i,e., the zero of the vector field βZ . Moreover, ZT is the image of the gradient flow
ϕ

β∞ defined by μβ.

In this paper,we investigate the fixed point set of the action of anAbelian compatible
subgroup of UC acting on a real submanifold of Z .

Let a ⊂ p be an Abelian subalgebra and A = exp(a).Notice that A is automatically
closed inG and hence compatible, since {e}×a is closed in K×p.Then the A-gradient
map on X is given by μa = πa ◦ μp, where πa : p −→ a denotes the orthogonal
projection of p onto a. Since A is Abelian, then by Lemma 2.2 below for any p ∈ X
the stabilizer Ap = {a ∈ A : ap = p} = exp(ap), where ap is the Lie algebra of
Ap. Therefore X A = {p ∈ X : A · p = p} = {p ∈ X : βX (p) = 0, ∀β ∈ a}.
Hence, if α1, . . . , αn is a basis of a then X A is the set of the common singularities of
the commuting vector fields (α1)X , . . . , (αn)X . Our first main result is the following

Theorem 1.1 The set
{

β ∈ a : Xβ = X A
}

is dense in a.

Hence X A is the set of the singularities of a vector field βX for some β ∈ a and so
the critical points of the Morse–Bott function μ

β
p.

We point out that X A contains a lot of information of the geometry of both the A
gradient map and the G gradient map. Indeed, for any x ∈ X , μa(A · x) is an open
convex subset of μa(x) + ax and μa(A · x) = conv(μa(X A ∩ A · x)), see Atiyah
(1982), Biliotti andGhigi (2018) andHeinzner and Schützdeller (2010), where conv(·)
denotes the convex hull of (·). In particular μa(X A) is a finite set and conv(μa(X)) =
conv(μa(X A)) and so a polytope.Moreover, if a ⊂ p is amaximalAbelian subalgebra,
then conv(μp(X)) is given by K conv(μa(X)) (Biliotti et al. 2016).

The second main result proves the existence of β ∈ a such that the limit map
associated with the gradient flow of μ

β
p defines a map from X onto X A. Hence, the set

X A is the image of the gradient flow of the Morse–Bott function μ
β
p for some β ∈ a.

Let α1, . . . , αn ∈ a be a basis of a. Then ϕ
αn∞ ◦ · · · ◦ ϕ

α1∞ defines a map from the
manifold X onto Xα1 ∩ · · · ∩ Xαn = X A.

Theorem 1.2 Let α1, . . . , αn ∈ a be a basis of a. There exists δ > 0 such that for any
0 < ε2, . . . , εn < δ we have ϕ

α1+ε2α2+···+εnαn∞ = ϕ
αn∞ ◦ · · · ◦ ϕ

α1∞ .

2 Proof of theMain Results

Suppose X ⊂ Z is G-invariant compact connected real submanifold of Z with the
gradient map μp : X → p. If x ∈ X then Gx = {g ∈ G : gx = x} denotes the
stabilizer of G at x . If Gx acts on a manifold S, then G ×Gx S denotes the associated
bundle with principal bundle G → G/Gx defined as the quotient of G × S by the
Gx -action h(g, s) = (gh−1, hs). We recall the Slice Theorem, see Heinzner et al.
(2008) for details.

Theorem 2.1 (Slice Theorem (Heinzner et al. 2008, Thm. 3.1; Sjamaar 1998) If x ∈ X
and μp(x) = 0, there are a Gx-invariant decomposition Tx X = g · x ⊕ W , open
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Gx-invariant neighborhood S of 0 ∈ W , a G-stable open neighborhood 
 of x ∈ X
and a G-equivariant diffeomorphism � : G ×Gx S → 
 where �([e, 0]) = x .

Corollary 2.1.1 If x ∈ X and μp(x) = β, there are a (Gβ)x -invariant decomposition
Tx X = gβ ·x ⊕W , open (Gβ)x -invariant neighborhood S of 0 ⊂ W , aGβ -stable open
neighborhood
 of x ∈ X and a Gβ -equivariant diffeomorphism� : Gβ ×(Gβ)x S →

 where �([e, 0]) = x .

This follows applying the previous theorem to the action of Gβ on X . Indeed, it
is well known that Gβ = K β exp(pβ) is compatible (Biliotti et al. 2013, Lemma
2.7, p.584) and the orthogonal projection of iμ onto pβ is the Gβ -gradient map μpβ

associated with μ (Heinzner et al. 2008). The group Gβ is also compatible with the
Cartan decomposition of (UC)β = (UC)iβ = (U iβ)C and iβ is fixed by the U iβ -
action on uiβ. A momentum map of the (UC)iβ -action on Z is given by μ̂uiβ (z) =
πuiβ ◦ μ + iβ, where πuiβ is the orthogonal projection of u onto uiβ, i.e., U iβ -shifted
momentum map by an element of the center of uiβ. Then, the associated Gβ -gradient
map with μ̂uiβ (z) is given by μ̂pβ := μpβ − β and so μ̂pβ (x) = 0. Now, the result
follows by Theorem 2.1. In particular, if G is commutative, then we have a Slice
Theorem for G at every point of X , see Heinzner et al. (2008, p.169) and Sjamaar
(1998) for more details.

If β ∈ p, then βX is a vector field on X , i.e. a section of the bundle T X . For x ∈ X ,

the differential is a map Tx X → TβX (x)(T X). If βX (x) = 0, there is a canonical
splitting TβX (x)(T X) = Tx X ⊕ Tx X . Accordingly, the differential of βX , regarded
as a section of T X , splits into a horizontal and a vertical part. The horizontal part is
the identity map. We denote the vertical part by dβX (x). The linear map dβX (x) ∈
End(Tx X) is indeed the so-called intrinsic differential of βX , regarded as a section in
the tangent bundle T X , at the vanishing point x . Let {ϕt = exp(tβ)} be the flow of
βX . There is a corresponding flow on T X . Since ϕt (x) = x, the flow on T X preserves
Tx X and there it is given by dϕt (x) ∈ Gl(Tx X). Thus we get a linear R-action on
Tx X given by R × Tx X −→ Tx X , (t, v) �→ dϕt (x)(v). The flow of the vector field
βX defines an action of R on X , i.e., R × X −→ X , (t, x) �→ exp(tβ)x .

Corollary 2.1.2 If β ∈ p and x ∈ X is a critical point of μ
β
p, then there are open R-

invariant neighborhoods S ⊂ Tx X and 
 ⊂ X and an R-equivariant diffeomorphism
� : S → 
, such that 0 ∈ S, x ∈ 
, �(0) = x . (Here t ∈ R acts as dϕt (x) on S
and as ϕt on 
.)

Proof Since exp : p −→ G is a diffeomorphism onto the image, the subgroup H :=
exp(Rβ) is closed and so it is compatible. Hence, it is enough to apply the previous
corollary to the H -action on X and the value at x of the corresponding gradient map.��
Lemma 2.2 Let a ⊂ p be an Abelian subalgebra and let A = exp(a) which is closed
and compatible. If x ∈ X , then Ax is compatible, i.e., Ax = exp(ax ).

Proof If a ∈ Ax , then a = exp(β) for a β ∈ a. Let f (t) = 〈μa(exp(tβ)x), β〉.
Then f (1) = 〈μa(exp(β)x), β〉 = 〈μa(ax), β〉 = 〈μa(x), β〉 = f (0) and f ′(t) =‖
βX (exp(tβ)x) ‖2≥ 0. This implies βX (x) = 0 and so β ∈ ax , proving Ax = exp(ax ).

��
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Let α, β ∈ p be such that [α, β] = 0 and let a be the vector space in p generated by α

andβ.By the above Lemma, it follows that X A = Xβ ∩Xβ,where A = exp(a),which
is closed and compatible due to the fact that the exponential map is a diffeomorphism
restricted on p.

Lemma 2.3 Let β, α ∈ p be such that [β, α] = 0. If X is compact, then there exists
δ > 0 such that for any ε ∈ (0, δ), Xβ+εα = Xβ ∩ Xα.

Proof Let ε > 0 and let A = exp(a), where a = span(α, β). Let X A denote the fixed
point set of A, i.e., X A = {z ∈ X : A · x = x}. By Lemma 2.2, X A = Xβ ∩ Xα.

Corollary 2.1.2 applies for A and H = exp(R(α + εβ)). Therefore Xβ ∩ Xα and
Xα+εβ are compact submanifolds satisfying Xβ ∩ Xα ⊆ Xα+εβ .

LetC be a connected component of Xα∩Xβ.C is a compact connected submanifold
of X and so it is arcwise connected. If x ∈ C then C ⊆ C ′, where C ′ is the connected
component of Xα+εβ containing x .On the other hand, if L is a connected component of
Xα+εβ then L is A-stable and so there exists a A-gradient map (Heinzner et al. 2008).
Since L is compact the norm square A-gradient map has a maximum. By Heinzner
et al. (2008, Corollary 6.12) L has a fixed point of A. This implies that L contains
a connected component of Xα ∩ Xβ. Summing up, we have proved that the number
of the connected components of Xα ∩ Xβ is greater than or equal to the number of
connected components of Xα+εβ and any connected component of Xα+εβ contains at
least a connected component of Xα ∩ Xβ.

Let C1, . . . ,Cm be the connected components of Xα ∩ Xβ. Let C ′
i denote the

connected component of Xα+εβ containing Ci , for i = 1, . . . ,m. We point out that
C ′
k would coincide with C ′

j for k �= i . We shall prove that there exists δ > 0 such
that for any ε < δ the connected components C ′

1, . . . ,C
′
m are pairwise disjoints and

Ci = C ′
i for i = 1, . . . ,m.

Let xi ∈ Ci . Since xi is fixed by A, Corollary 2.1.2 implies there exists A-invariant
open subsets 
 of xi ∈ X and S of 0 ∈ Txi X and a A-equivariant diffeomorphism
ϕ : S → 
 such that ϕ(0) = xi , dϕ0 = idTxi X . Since theR-action on S is linear and ϕ

isR-equivariant, wemay assume that S = 
 = R
n bymeans of ϕ, α, β are symmetric

matrices of order n satisfying [α, β] = 0. Moreover, Txi X
α+εβ = Ker (α + εβ) and

Txi X
α ∩ Txi X

β = Ker α ∩ Ker β.

Thematrices α and β are simultaneously diagonalizable. Let {e1, . . . , en} be a basis
of R

n such that αek = akek and βek = bkek for k = 1, . . . , n. Let J = {1 ≤ k ≤
n : akbk �= 0}. Pick δi = min{ |ak ||bk | : k ∈ J }. Now, (α + εβ)ek = 0 if and only if
ak + εbk = 0. If ak �= 0, then bk �= 0 and vice-versa. If ε < δi then (α + εβ)ek = 0,
if and only if ak = bk = 0. Therefore, Ker (α + εβ) = Ker α ∩ Ker β. This implies
Txi Ci = Txi C

′
i . Although δi depends on xi , since Ci ⊆ C ′

i and both are compact
submanifolds it follows that Ci = C ′

i . Pick δ = min(δ1, . . . , δk). Then for any ε < δ

we have Ci = C ′
i for i = 1, . . . ,m. In particular C ′

1, . . . ,C
′
m are pairwise disjoints.

Since the number of the connected components of Xα+εβ is less than or equal to the
number of connected components of Xα ∩ Xβ, it follows that for any ε < δ both
Xα ∩ Xβ and Xα+εβ have the same connected components and so Xα ∩ Xβ = Xα+εβ

concluding the proof. ��
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Theorem 2.4 Let a ⊂ p be an Abelian subalgebra and let A = exp(a). Then the set

{

α ∈ a : X A = Xα
}

is dense.

Proof Let α1, . . . , αn be a basis of a. Then

X A = Xα1 ∩ · · · ∩ Xαn .

By the above Lemma, there exists δ > 0 such that for any ε2, . . . , εn < δ, we have

X A = Xα1+ε2α2+···+εnαn (2)

Let α ∈ a different form 0. It is well known that there exists α2, . . . αn ∈ a such that
α, α2, . . . , αn is a basis of a. By (2), for any neighborhoodU of α, there exists β ∈ U
such that X A = Xβ, concluding the proof. ��

The following lemma is proved in Biliotti and Windare (2023), see also Bruasse
and Teleman (2005, pag. 1036).

Lemma 2.5 Let x ∈ X and β, α ∈ p be such that [β, α] = 0. Set y :=
limt→∞ exp(tβ)x and z := limt→∞ exp(tα)y. Let δ be as in Lemma 2.3. Then for
0 < ε < δ,

lim
t→∞ exp(t(β + εα))x = z.

As a consequence of the above lemma, we get the following result.

Theorem 2.6 Let α1, . . . , αn be a basis of a. Let x ∈ X . Set x1 := limt→∞ exp(tα1)x
and xi = limt→∞ exp(tαi )xi−1 for i = 2, . . . , n. Then there exists δ > 0 such that
for 0 < ε2, . . . , εn < δ, we have

lim
t→∞ exp(t(α1 + ε2α2 + · · · + εnαn))x = xn,

for any x ∈ X . In particular, ϕ
α1+ε2α2+···+εnαn∞ = ϕ

αn∞ ◦ · · · ◦ ϕ
α1∞ .

Proof By Theorem 2.4, there exists δ > 0 such that for any 0 < ε2, . . . , εn < δ, we
have

X A = Xα1+ε2α2+···+εαn .

Let A = exp(a). Let z ∈ X A. By Corollary 2.1.2, there exists A-invariant open
subsets 
 ⊂ X and S ⊂ Tz X and a A-equivariant diffeomorphism ϕ : S → 
 such
that 0 ∈ S, z ∈ 
, ϕ(0) = z, dϕ0 = idTz X . Let x ∈ X . Set x1 := limt→∞ exp(tα1)x
and xi = limt→∞ exp(tα)xi−1 for i = 2, . . . , n. If xn ∈ 
, keeping in mind that
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 is A-invariant, it follows that x1, . . . , xn ∈ 
. If one reads carefully the proof of
Lemma 2.3, then δ > 0 works whenever that y ∈ 
. The same argument applies in
this case. Hence there exists δ such that for any 0 < ε2, . . . , εn < δ, we have

lim
t �→ exp(t(α1 + ε2α2 + · · · + εαn))x = xn

whenever x1, and so x1, . . . , xn, belongs to 
. By compactness of X A there exist
open subsets 
1, . . . , 
k satisfying the above property and such that

X A ⊆ 
1 ∪ · · · ∪ 
k .

Let δ1, . . . .δk as before. Pick δ = min(δ1, . . . , δk). Let x ∈ X . Set x1 :=
limt→∞ exp(tα1)x and xi = limt→∞ exp(tαi )xi−1 for i = 2, . . . , n. Since x1 ∈ 
 j

for some j = 1, . . . , k, it follows that for any 0 < ε2, . . . , εn < δ we have

lim
t �→+∞ exp(t(α1 + ε2α2 + · · · + εnαn))x = xn .

This holds for any x ∈ X , concluding the proof. ��
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