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Abstract

The analytic moduli of equisingular plane branches has the semimodule of differen-
tial values as the most relevant system of discrete invariants. Focusing in the case of
cusps, the minimal system of generators of this semimodule is reached by the dif-
ferential values attached to the differential 1-forms of the so-called standard bases.
We can complete a standard basis to an extended one by adding a last differential
1-form that has the considered cusp as invariant branch and the “correct” divisorial
order. The elements of such extended standard bases have the “cuspidal” divisor as a
“totally dicritical divisor” and hence they define packages of plane branches that are
equisingular to the initial one. These are the analytic semiroots. In this paper we prove
that the extended standard bases are well structured from this geometrical and foliated
viewpoint, in the sense that the semimodules of differential values of the branches in
the dicritical packages are described just by a truncation of the list of generators of
the initial semimodule at the corresponding differential value. In particular they have
all the same semimodule of differential values.
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1 Introduction

The analytic classification of plane branches starts with Zariski (2006), who pointed the
importance of the differential values in this problem. The semimodule of differential
values was extensively described by Delorme (1978), although the complete analytic
classification is due to Hefez and Hernandes (2011).

Geometrically, the “most interesting” differential values are viewed as the contact
ve(w) of a given branch C with the foliations defined by differential 1-forms @ without
common factors in the coefficients. From the moduli view-point, the semimodule of
differential values A is interpreted as the “discrete structure” supporting the contin-
uous part of the moduli. More precisely, the semimodule A has a well defined basis
{Aj }§'=—1§ S0, it is reasonable to fix our attention in the differential forms that produce
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precisely the elements of the basis as differential values: these are the elements of the
standard bases (for more details, see Hefez and Hernandes 2001, 2007).

In this paper we focus in the case of cusps, that is, branches with a single Puiseux
pair (n, m). Our objective is to describe the cusps close to a cusp C, in terms of a given
standard basis H and the dicritical foliated behaviour of the elements of 7 in the final
divisor E of the reduction of singularities of C. Let us precise this.

We consider a cusp C with Puiseux pair (n, m). In view of Zariski Equisingularity
Theory, we know that the semigroup I' = nZx=o + mZxo of C is an equivalent data
of the equisingularity class of C. The differential values define a semimodule A€ over
I, that will have a strictly increasing basis

)"—1:na)\0=m5)"15'-'7)"j”

to be the minimal one such that A¢ = U§‘=71()‘ j + I'). By definition, an extended
standard basis is a list of 1-forms

(,()_1,(,()0,(1)1,...,6!)‘(4_1,

such that vo(w;) = A; fori = —1,0, 1, ..., s and C is an invariant branch of wy1,
that is ve (ws41) = 00, with some restrictions on the weighted order of wgy1.

Associated to the final divisor E given by C, we have a divisorial order vg(w)
defined for functions and 1-forms. In adapted coordinates it is the weighted monomial
order that assigns the weight an + bm to the monomial x¢y”. Both the differential
values and the divisorial orders act “like” valuations and we have that vg (w) < vo(w).
For the case of a function we have that if vg(df) < nm, then there is no resonance
in the sense that vg(df) = ve(df). Thus, the “new differential values” in A€ will
correspond to resonant 1-forms w such that vg(w) < ve(w).

The structure of the semimodule A€ is well known (see Delorme 1978; Alberich-
Carramifiana et al. 2022; Almirén and Moyano-Fernandez 2021); anyway, we provide
complete proofs using another approach in the appendices of the paper. The key
elements are the axes u;, and the critical orders t;, defined by

uipr =min(A; 1 N + 1), tig1 =t +uip1 — A,

starting at ug = n and r_| = n, fo = m, where Aicf1 = U";lfl (Aj +T). The axes are
defined fori = 0, 1, ..., s + 1 and the critical orders fori = —1,0,...,s + 1. We
know that the semimodule is increasing in the sense that A; > u; fori =1,2,...,s

and the elements of any extended standard basis are characterized by the following
properties

(1) ve(w) = and ve(w;) ¢ AC |, fori =—1,0,...,s.

(2) vE(ws41) = ts41 and ve(wsy1) = oo,

Of course, the above properties assure that ve(w;) = A;.

From the geometrical viewpoint, for eachi = 1,2, ..., s + 1, the elements w; of
an extended standard basis are what we call basic and resonant. This property implies
that the transform @; of the 1-form w; by the morphism 7 of reduction of singularities
of C has two remarkable properties:
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(a) The greatest common divisor of the coefficients of @; defines a normal crossings
divisor at the points of E contained in the exceptional divisor of the morphism 7.

(b) The divisor E is dicritical (not invariant) for the foliation given by @; = 0. More-
over, this foliation is nonsingular and it has normal crossings with the exceptional
divisor of 7 at the points of E.

As aconsequence of this, given an extended standard basis, we find a dicritical package

{Cj;} of cusps foreachi = 1, 2, ..., s + | parameterized by the points P € E that are
not corners of the exceptional divisor (that is, elements of C*). Each Cj,, corresponds
to the invariant curve of @; = 0 through the point P. In particular, if Py is the

infinitely near point of C at E, we have that C;;’l = C. In a terminology inspired in
Equisingularity Theory and Reduction of Singularities (see for instance Abhyankar
and Moh 1973a,b; Wall 2004; Seidenberg 1968 for the case of foliations), we could
say that {C;,O} are the specific analytic semiroots and that {ij} are the general analytic
semiroots of C associated to the given extended standard basis.

The property of E to be dicritical for the 1-forms w; has been suggested to us by
M. E. Hernandes. We have a work in progress with him in this direction (Corral et al.
2023).

The main objective of this paper is to describe the semimodule and extended stan-
dard bases of the analytic semiroots. The statement is the following one:

Theorem 1.1 Let A€ = U‘}z,] (Ai + ') be the semimodule of differential values and
consider an extended standard basis

w_1 =dx,wg =dy, w1, ..., Ws+1

of the cusp C. Take an index i € {1,2,...,s + 1} and an analytic semiroot Cj; of C
associated to the given extended standard basis. Then the semimodule of differential
values of C}p is precisely Aic_1 and

w_1 =dx,wy =dy, w1, ...,w;

is a extended standard basis for Ci,.

The proof of this result uses as a main tool Delorme’s decomposition of the elements
of a standard basis. In the appendices, we provide proofs, using a different approach to
the one of Delorme, of the structure results for the semimodule of differential values
and of Delorme’s decomposition.

Let us remark that it is possible to have curves of the dicritical package of the
elements w;, when j > 2, of an extended standard basis that are not analytically
equivalent, although they have the same semimodule of differential values. This occurs
for instance if we compute a standard basis for the curve

t> @7, 17 4130 4133 4130,

as shown in Example 8.13. A natural question arises about “how many”’ analytic classes
may be obtained in this way.
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2 Cusps and Cuspidal Divisors

We are interested in the analytic moduli of branches with only one Puiseux pair, the
analytic cusps. The last divisor of the minimal reduction of singularities of an analytic
cusp is what we call a cuspidal divisor. As we shall see below, the study of the analytic
moduli may be done through a fixed cuspidal divisor.

2.1 Cuspidal Sequences of Blowing-ups

Our ambient space is a two-dimensional germ of nonsingular complex analytic space
(Mo, Pp). We are going to consider a specific type of finite sequences of blowing-ups
centered at points, that we call cuspidal sequences of blowing-ups and we introduce
below.

First of all, let us establish some notations concerning a nonempty finite sequence
of blowing-ups centered at points

S={m: My, Ki) > (My—1, Kk1); k=1,2,..., N},

starting at (Mo, Py) = (Mo, Ko). Foranyk = 1,2, ..., N, the center of m; is denoted
by Px_1, note that Py_; € Ki_1. We denote the intermediary morphisms as oy :
(Mg, Kx) — (Mo, Po) and p : (My, Ky) — (My, Ki), where

Ok =T OM2 0+ 0Tk, Pk = TMk4+] O k420 " OTN.

We denote the exceptional divisor of m; as E ]l: =7 ! (Pr—1). By induction, for any

1 < j < k wedenote by E ']‘ C Mj the strict transform of E;f*] by . In this way we
have that

Ky =0, "(Po) = ENUESU---UEL.

For any P € Kj, we define e(P) = #{j; P € E’;}. Note that e(P) € {1,2}. If
e(P) = 1, we say that P is a free point and if e(P) = 2 we say that it is a corner
point. Note that all the points in E 11 = K are free points. The last divisor E 1’\\,' will be
denoted E = E%.WewillalsodenoteM =My,K=Kyandw =0y : (M,K) —
(Mo, Po).

Definition 2.1 Following usual Hironaka’s terminology, we say that the sequence S
is a bamboo if P € E{; forany k = 1,2,..., N — 1. We say that S is a cuspidal
sequence if it is a bamboo and e(Pr—_1) < e(Py), forany 2 < k < N — 1. The last
divisor E of a cuspidal sequence is called a cuspidal divisor.

Remark 2.2 In the frame of Algebraic Geometry, the cuspidal divisor E corresponds
to a valuation vg of the field of rational functions and it determines completely the
cuspidal sequence, once the starting ambient space is fixed. We will work with this
valuation, but we present it in a direct way.

@ Springer



27 Page6o0f49 F.Canoetal.

Given a cuspidal sequence S with N > 2, there is well defined index of free-
ness f with 1 < f < N — 1 such that Py, P, ..., Py are free points and
Pry1, Pryo, ..., Py_1 are corner points. If N = 1 we put f = 0. A nonsingu-
lar branch (Y, Py) C (Mo, Po) has maximal contact with S if and only if Py is an
infinitely near point of (Y, Py) foreachk =1,2,..., Py.

Remark 2.3 For any cuspidal sequence S there is at least one nonsingular branch
(Y, Pp) having maximal contact with S. Moreover, if (¥, Py) has maximal contact
with S and (Y, Pp) is another nonsingular branch, we have that (Y’, Py) has maximal
contact with S if and only if ip,(Y,Y’") > f + 1, where ip (Y, Y’) stands for the
intersection multiplicity.

We define intermediate cuspidal sequences of a cuspidal sequence S as follows.
Given an index 0 < j < N — 1, the intermediate jth-cuspidal sequence SY) of S is
the sequence of length N — j, starting at (M, P;) such that the blowing ups

7 My K > My i1, K7D, k=12, N —j

are obtained by restriction from 74 j, where we put K(()/ ) = {P;j}and K ,El ) Kiyj
is the image inverse of P;j by mj i omjip0---0omjiy.

Remark 2.4 Note that the (k, i)-divisor of S corresponds to the (k+ j, i + j) divisor
of S. In particular the last divisors of SU) and S are both equal to E.

The Puiseux pair (n, m) of S is defined by an inductive process that corresponds
to Euclides’ algorithm as follows. If N = 1, we put (n,m) = (1,1). If N > 1, we
consider the intermediate cuspidal sequence S starting at (M, Py) that is supposed
to have Puiseux pair (n1, m1). Then

() If f =2, we have that fj = f — 1 and we put (n, m) = (n1, mj + ny).
Q) If f =1,weput (n,m) = (my,ny +mq).

We see that 1 < n < m and n, m are without common factor. Note also that f > 2
if and only if m > 2n. Moreover, if f = 1and N > 2, we havethat2 <n <m < 2n.

Proposition 2.5 Consider 1 < n < m without common factor and a nonsingular
branch (Y, Py) C (Mo, Py). There is a unique cuspidal sequence S starting at
(My, Po) having maximal contact with (Y, Py) and such that (n, m) is the Puiseux
pair of S.

Proof If n = m = 1, the only possibility is that N = 1 and then S consists in the
blowing-up of Py. Let us proceed by induction on n + m and assume that n +m > 2.
We necessarily have that N > 2, the first blowing-up m; is centered in Py and P; is
the infinitely near point of ¥ in E 11

Assume first that 2n < m. We apply induction to (Y7, P) with respect to the pair
n',m’ where n’ = n, m’ = m —n and we obtain a cuspidal sequence S’ over (M1, P;)
of length N’ with the required properties. We construct S of length N = N’ + 1 by
taking my centered at the point P,é_z, fork=2,3,...,N +1.
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In the case thatn < m < 2n we consider the branch (Y, P;) = (E 1 P1), we apply
induction to (Y], Py) with respect to the pairn’, m’ where n’ = m —n, m’ = n and we
obtain a cuspidal sequence S’ over (M, P;) of length N’. We construct S os length
N = N’ + 1 as before.

The uniqueness of S follows by an inductive invoking of the uniqueness after one
blowing-up. O

We denote by S;,"m the sequence obtained in Proposition 2.5. Recall that Y’ has
maximal contact with S;’,’m ifand only if ip,(Y, Y') > f + 1, and hence in this case
we have that Sp™ = Sy Note also that given a cuspidal sequence S there is a
nonsingular branch (Y, Py) and a Puiseux pair (n, m) in such a way that S = S,™".

2.2 Coordinates Adapted to a Cuspidal Sequence of Blowing-ups

Consider a cuspidal sequence S over (My, Pp). A system (x, y) of local coordinates
at Py is adapted to S if and only if y = 0 has maximal contact with S. In particular,
we have that S = 8;”:”6, where (n, m) is the Puiseux pair of S.

The blowing-ups of S have a monomial expression in terms of adapted coordinates
as we see below. Assume that S = S;f’znz), with N > 2. Letus describe alocal coordinate
system (x1, y1) at Py and a pair (ny, m1):

e If f > 2, we know that 2n < m and we put
n=n, my=m-—n, X=Xx1, y=X1Y].
e If f =1, we have that 2n > m > n > 2 and we put
n=m-—n, my=n, y=x1y, X=)Y|.

The reader can verify that (xy, y1) is a coordinate system adapted to S and that
(n1, my) is its Puiseux pair. In this way, we have local coordinates x;, y; at each Pj,
for0<j<N-1.

Once we have an adapted coordinate system (x, y), we denote (Hp, Pp) the normal
crossings germ given by xy = 0. Define H; = oj*l (Hp), then the germ of H; at P; is
givenby x;y; = 0,forany 0 < j < N—1. Wecanalso consider H = 7 Y (Hy) c M;
it is a normal crossings divisor of (M, K) containing K.

2.3 Cuspidal Analytic Module

Consider a cuspidal sequence S with Puiseux pair (n, m) with 2 < n. Let E be the
last divisor of S. We say that an analytic branch (C, Py) C (Mo, Po) is an E-cusp,
or a S-cusp if the strict transform of (C, Pp) under the sequence of blowing-ups 7w
is nonsingular and cuts transversely E at a free point. Let us denote by Cusps(E) =
Cusps(S) the family of E-cusps.

Each element of Cusps(S) is equisingular to the irreducible cusp y" — x™ = 0,
where (n, m) is the Puiseux pair of S. Moreover, we have the following result
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Proposition 2.6 Consider a cuspidal sequence S with Puiseux pair (n, m) and last
divisor E. Let (C, Py) be a branch of (Mo, Py) equisingular to the irreducible cusp
y" — x™ = 0. There is an E-cusp analytically equivalent to (C, Py).

Proof Choose a local coordinate system (x, y) adapted to S.

If n = 1, the branch (C, Pp) is nonsingular. Then, there is an automorphism ¢ :
(Mo, Py) — (My, Pp) such that ¢(C) = (y = 0). We are done since in this case
y = 0is an E-cusp.

Assume that 2 < n < m. In view of the classical arguments of Hironaka (see
for instance Aroca et al. 2018, p. 105), there is a nonsingular branch (Z, Py) having
maximal contact with (C, P), that is with the property that

ip,(Z,C) =m.

Take an automorphism ¢ : (Mo, Py) — (Mp, Py) such that ¢(Z) = (y = 0). We
have that (¢ (C), Po) is an E-cusp. O

According to the above result, the analytic moduli of the family of branches equi-
singular to the irreducible cusp y" — x™ = 0 is faithfully represented by the analytic
moduli of the family Cusps(S).

Along the rest of this paper, we consider a fixed cuspidal sequence S where (n, m)
is its Puiseux pair and E is the last divisor. Recall also that the composition of
all the blowing-ups of S is denoted by

(M, K)— (Mo, Po).

We also choose a local coordinate system (x, y) adapted to S.

3 Divisorial Order
Consider a holomorphic function 4 in (M, K) defined globally in £ C K, the diviso-
rial order vi (h) of h is obtained as follows. Take a point P € E and choose a reduced
local equation u = 0 of the germ (E, P), then

vep(h) =max{a € Z; u"“h € Oy, p}.
This definition does not depend on the chosen point P € E nor on the local reduced
equation of E. Take a point P;, with j € {0, 1, ..., N —1} and a germ of holomorphic

function i € Op; p;. Then p}?h is a germ of function in (M, K) globally defined in
E. We define the divisorial order vg (h) by vg(h) = vg (pjh).

Proposition 3.1 Consider a germ h € Oy, p, that we write as

h= Zha,ﬂx“yﬂ, hyp € C.
a.p
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Then vg (h) = min{na +mp; hq p # 0}.

Proof Ifn = m = 1 we have a single blowing-up and we recover the usual multiplicity,
that we visualize in E as vg(h). Let us work by induction on n + m and assume that
n+m > 2. Weremark that vg (h) = vg (r{h). Consider the first intermediate sequence
SW of S, with adapted coordinates (x1, y1). Recalling how we obtain intermediate
coordinate systems, we conclude that

nlh—Zh 5)61 yl,lff>2 here ny =n,m; =m —n,

nlh:Zhaﬂxiﬁy?+ﬂ, if f=1; hereny =n—m,m; =n.

We end by applying induction hypothesis. O

3.1 Divisorial Order of a Differential Form
Recall that we denote
Hy=(xy=0)C My, H; —0 (Ho)CM

and that H; is locally given at P; by x;y; = 0for 0 < j < N — 1. We also consider
Hy = H = n7'(Hy) ¢ M. Each Hj is a normal crossings divisor in (M, K ),
containing K ;.

Take a point Q € K, not necessarily equal to P;, in particular we consider also
the case j = N. Select local coordinates (u, v) such that (u = 0) C H; C (uv = 0),
then we have that either H; = (u = 0) or H; = (uv = 0) locally at Q. The
(’)M ,0-module Ql M; Q[log H;] of germs of Hj-logarithmic I-forms is the rank two

free Oy, 0- module generated by

du/u,dv it Hj = (u=0),
dujfu,dv/v if Hi = (uv =0).

Note that Q}M,-,Q C Q}W./_’Q[log H;]. Indeed, a differential 1-form w = adu + bdv
may be written as

du du dv
w= ua— + bdv = ua— + vb—.
v

Now, let us consider a 1-form w € Q}W[log H] defined in the whole divisor E (we
suppose that the reader recognizes the sheaf nature of Q}W[log H]). Select a point
QO € E and a local reduced equation u = 0 of E at Q. We define the divisorial order
Ve (w) by

vE(w) = max{{ € 7Z; utowe Q}W,Q[log Hl}.
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The definition is independent of Q € E and of the reduced local equation of E.

Remark 3.2 Let w € Q}Vl[log E] be globally defined on E as before. Since E is one
of the irreducible components of H, we have that

Qi llog E] ¢ Q4 [log H].

Let us choose a reduced local equation u = 0 of E at a point Q € E as before. A
direct computation shows that

vg(w) = max{l € Z; u”‘w € Q) yllog EN}. (1)

This remark shows that the divisorial order, applied to 1-forms @ € Q}M[log E]is
independent of the choice of the adapted coordinate system that defines Hy. Anyway,
this is only a remark for the case n = 1, since when n > 2 the divisor H at the points
of E is itself independent of the adapted coordinate system.

Definition 3.3 For any w € Q}W,’P/_, the divisorial order vg (w) is defined by vg (w) =
VE(pjw).

Proposition 3.4 Consider a differential 1-form w = adx + bdy € Qlllflo,Po’ that we

can write as
w =xa(dx/x)+ yb(dy/y) € Q}V[O’PO[log Hp].

Then, we have that vg (w) = min{vg (xa), v (yb)}.

Proof Write w = f(dx/x) + g(dy/y). We proceed by induction on N. If N = 1 we
have that £ = (x’ = 0) where x = x’, y = x’y’ and

o = (f +)dx'/x") 4+ g(dy'/y").

Then vg(w) = min{ve(f + g), ve(g)} = min{vg(f), vg(g)} and we are done. If
N > 2, we have that

VE() = vE(T ) = vE (o} (1] 0) = vE (1] 0).
By induction hypothesis, we have
vE (i w) = min{ve (f + ¢), ve(g)} = min{ve (f), ve(g)}
and we are done as before. O

Corollary 3.5 If f € Oup,, p, and o = df, then ve(w) = ve(f).

Proof 1t is enough to write df = x(df/dx)(dx/x) + y(@f/dy)(dy/y), recalling
Euler’s identity g P = x P, + y Py for degree g homogeneous polynomials. O
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3.2 Weighted Initial Parts

Consider a nonzero germ i € Oy, p,, that we write as h = Za, p hapx® yP. Suppose
that ¢ < vg(h). We define the weighted initial part Inz mex y(h) by

I =" hapx®yP.
na+mp=q

Note that Inz,m;x,y(h) = 0 if and only if ¢ < vg(h). Anyway, we can write

h=In? (h) +h, veh) >q.

n,m;x,y

This definition extends to logarithmic differential 1-forms w € Q2 }Vlo, p,llog(xy = 0)]
as follows. Take g < vg(w). Write w = f(dx/x) + g(dy/y). We define

I @ =M o (Hdx/x)+Ind () dy/y).

— 1n?
As before, we have w =1In, ..

(w) + @, with vg (@) > q.

Remark 3.6 The definition of initial part we have presented should be made in terms
of graduated rings and modules to be free of coordinates. Anyway, this “coordinate-
based” definition is enough for our purposes.

Proposition 3.7 Assume that N > 1, take w € Qll\’lo Po [log(xy = 0)] and q € Z>o
withq < vg(w). I[f W = In? (w), then ni“(W) = In?

*
nm;x,y n1,Mm1ix1, Y1 (T ®).

Proof Left to the reader. O

4 Total Cuspidal Dicriticalness

This section is devoted to characterize the 1-forms w € Q}VIO’ p, Whose transform *w
defines a foliation that is transversal to £ and has normal crossings with K at each
point of E. These 1-forms are the so-called pre-basic and resonant 1-forms. We detect
these properties in terms of resonances of the initial part. The initial part is visible in
the Newton polygon as the contribution of the 1-form to a single vertex (a, b), under
the condition that the Newton polygon is contained in the particular region R"" (a, b).

4.1 Reduced Divisorial Order and Basic Forms

Let us consider a nonnull differential 1-form w € Q}WO P Let V,, = xy” be the

monomial defined by the property that w = V,,n, where n € Q}V[O’ pllog(xy = 0)]is
a logarithmic form that cannot be divided by any nonconstant monomial. We define
the reduced divisorial order rdog (w) to be rdog (w) = ve(n).
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Definition 4.1 We say that w € Q}MO’ p, 1S @ basic I-form if and only if its reduced
divisorial order satisfies that rdog (w) < nm.

Proposition 4.2 Assume that N > 2 and take w € Q}VI Py If wis a basic 1-form, then
w{w is also a basic 1-form.

Proof Put p = rdog(w) = vg(n) < nm. Recall that vp(n) = vg(w{n). Since
monomials are well behaved under 71, it is enough to show that there are ¢, d > 0
such that 7{'n = xlcyfn’, with vg (') < nym;. Write

dx dy
n—zx Yo rap, e —Ma,s—+§a,s—, (Hap Lap) € C.
a.p

Recall that p = min{na + mp; neg # 0}. Putr = min{a + B; neg # 0}. We have
two cases: f = 1 and f > 2, where f is the index of freeness.

Assume first that f > 2 and hence 2n < m. In this situation, we have that x = x1,
Yy =Xx1y1,n1 =n,m; =m—n > nand

dx)
ary =xin. 0=y xi P, naﬁ—(ﬂaﬂ+§aﬁ)_+§aﬁ_-
ap

Note that 77&,5 # 0 if and only if 7 7# 0. Hence

ve(n') = min{ny (@ + B —r) +m1B; nep # 0}
=min{n(ax + B —r) + (m —n)B; nug # 0}
= min{na + mB —nr; neg # 0} = p —nr.

We have to verify that p —nr < nym, wherenym; = n(m —n) = nm —n? Ifr > n,
we are done, since by hypothesis we have that p < nm. Assume that r < n. There are
a, B with n;, Y # 0 such that @ + 8 = r. Then

p—nrSn&—i-m,é—nr=n(&+/§)+(m—n);§—nr

= (m—n)p < (m—nn,

since;éfr < n.
Assume that f = 1 and thus n < m < 2n. We have x = y1, y = x1y1, n1 =
m—n<n,m =n and

dx d
+ 1 Y1
() = yin'’, le YW g = Cop= = (Hap + Lap) o
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As before, we have that TI(Z;; # 0if and only if g # 0. Hence

ve(n”) = min{n1 B +my(a + B —r); nep # 0}
=min{(m —n)B +n(e+ B —r); nup # 0}
=min{mpB +na —nr; nup #0} = p —nr.

We verify that p — nr < nym exactly as before. O

4.2 Resonant Basic Forms

beto < Q}WO'PO be a basic 1-form with p = rdog(w). This means that there is
ne Q}WOVPO[lOg(xy = O)] and a, b > 0 such that v = xaybn

w=x%"y, ne Q}V,O’Po[log(xy =0)],
where p = vg () < nm. The initial part of w may be written

+na+mb b
Inl[;’m;x’y (w) =x*Y’W, W= Inr":’m;x’y(n).

Note that there is exactly one pair (c, d) € ZZ>0 such that cn +-dm = p. Then we have
that -

dx d
W = x¢y? {u—+§—y}.
X y

We say that w is resonant if and only if nju +m¢ = 0.
We have the following result that follows directly from the computations in the
proof of Proposition 4.2.

Corollary 4.3 Assume that N > 2. A basic differential 1-form o € Q}VIO p, I8 resonant
if and only if w{ w is resonant.

4.3 Pre-Basic Forms

Let us introduce a slightly more general class of 1-forms that we call pre-basic forms.
Given a 1-form

dx dy
= anﬂx"‘yﬁwaﬂ, Wap = {lhw; + gaﬂ?}’

a.p

@

the cloud of points Cl(w; x, y) is Cl(w; x, y) = {(«, B); wep # 0} and the Newton
Polygon N (w; x, y) is the positive convex hull of Cl(w; x, y) in ]R2>0.

Consider a pair (n, m) with 1 < n < m such that n, m have no common factor.
There are unique b, d € Zx¢ such that dn —bm = 1 with the property that0 < b < n
and 0 < d < m. We call (b, d) the co-pair of (n, m).
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Remark 4.4 Suppose that 1 < n < m are without common factor and take b, d such
that dn —bm = 1.1If 0 < b < n, we have that 0 < d < m and then (b, d) is the
co-pair of (n, m). In the same way, if 0 < d < m, we have that 0 < b < n and then
(b, d) is the co-pair of (n, m).

Definition 4.5 Given a pair 1 < n < m without common factor, we define the region
R™™ by R"™™ = H""™ N H"™, where

H"™" = {(a, B) € R*; (n — b)a + (m — d) > 0},
H™ = {(a, B) € R*; ba +dp > 0},

and (b, d) is the co-pair of (n, m).
Remark 4.6 1f n = m = 1, the co-pair of (1, 1) is (b, d) = (0, 1). Then

M={@ By a =0}, Hi'={@B); =0}
Thus, we have that R!! is the quadrant R""! = RZZO.

Remark 4.7 The slopes —(n — b)/(m — d) and —b/d satisfy that
—(n—>b)/(m—d) < —n/m < —b/d.
Indeed, we have —n/m < —b/d <& —dn < —mb = —dn + 1. On the other hand
—(n—=>b)/(m—d) < —n/m < mn—>b)>nim—d) < bm <dn=>bm+ 1.

We conclude that R™™ is a positively convex region of R? such that (0, 0) is its
only vertex and we have that

R™™ N {(a, B) € R?; na+mp =0} = {(0,0)}.
Given a point (a, b) € Rzzo, we define R (a, b) by R"™"(a, b) = R"™ + (a, b).

Definition 4.8 We say that w € QM P is pre-basic if and only if there is a point
(a, b) € Cl(w; x, y) such that Cl(w; x, y) C R""(a,b).

Remark 4.9 Note that w is pre-basic if and only if (a,b) € N(w;x,y) and
N(w; x,y) C R""(a,b).

If w is pre-basic, we have that
Cl(w; x, y) N {(a, B) € R%; na +mpB = ve()} = {(a, b))}

Thus, the initial part W of o has the form
dx d
W=X”yb{ b—+Cab7y} 3)
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As for basic forms, we say that w is resonant if and only if npgp + mézp = 0.

Lemma 4.10 Assume that 1 < n < m, where n, m are without common factor and
let (b, d) be the co-pair of (n, m). Let us put (n1,m) = (n,m — n), if m > 2n and
(ny,m1) = (m —n,n), if m < 2n. Then, the co-pair (b1, dy) of (n1, my) is given by
(b1,d1) = (b,d—D), ifm >2,and by (b1,d)) = (m—n—d+b,n—D>b), ifm < 2n.
Moreover, we have that ¥ (R™"™) = R™"™ where WV is the linear automorphism of
R? given by W(a, B) = (a + B, B), if m > 2n, and W (a, B) = (B, + B), if m < 2n.

Proof Let us show the first statement. If m > 2n, we have that
diny—bimy =(d —bn—b(m—n) =1.

Moreover, since 0 < by = b < n; = n we conclude that (b1, dy) is the co-pair of
(n1, my), in view of Remark 4.4. If m < 2n, we have

diny—bim=m—-—bym—n)—(m—n—d+bn=1.

We know that 0 < b < n, hence 0 < di = n — b < m; = n; by Remark 4.4, we
deduce that (b1, dy) is the co-pair of (ny, my).
Let us show the second statement. Consider (o, 8) € R? and put (a1, B1) =

V(a, ).

Case m > 2n. In order to prove that W (R™™) = R"!"™! it is enough to see that
(@.B) € H™™ & (@1, p1) € H""" and (o, B) € HY™ & (1. p1) € H™.
We verify these properties as follows:

(a1, B1) € H'"™ & (ny —by)ay + (my —dppy =0
sm=-ba+B)+m—n—-d+bp=>0
sm—bat+m—-dp>0s (a,B)c H"".

(a1, B1) € HY"™ & by +d1p1 =0
Sbla+pB)+d—-b)Bp=>0
Sba+df >0 (@p) e H"

Case m < 2n. In this case, we have that

(o, B) € H™ & (a1, p1) € HIV™ (4)
(. B) € H*" & (a1, p1) € H{"™. (5)
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and this also implies that W (R™") = R"™1 We verify the properties in Egs. (4) and
(5) as follows:

(a1, B1) € H'"" & (ny — bp)ay + (mp —d)p1 = 0
Sm—-—n—m—-n—d+b)p+n—n+b)a+p)=>0
S dB+ba>0% (o, p) € HY™.

(a1, B1) € HY"™ & biag +d1p1 =0
Sm—n—d+b)p+m—-—>b(a+p)=>0
& m—dp+mn—ba>0s (a,p)e HW.

The proof is ended. O

Proposition 4.11 Assume that N > 2. For any o € Q}VIO Py WE have

(1) w is pre-basic if and only if w{w is pre-basic.
(2) w is pre-basic and resonant if and only if w{w is pre-basic and resonant.

Proof We consider two cases as in the statement of Lemma 4.10, the case m > 2n and
m < 2n and we define the linear automorphism W accordingly to these cases, as well
as the Puiseux pair (n1, m). A monomial by monomial computation shows that

Cl(r{w; x1, y1) = ¥(Cl(w; x, ¥)). 6)
In view of Lemma 4.10, we have that
V(R""™(a, b)) = R""" (¥ (a, b)). 7

Statement (1) is now a direct consequence of Egs. (6) and (7). Property (2) is left to
the reader. O

Proposition 4.12 Take a differential 1-form w € QIIVIO,PO' We have

(1) If N = 1, then w is pre-basic if and only if it is basic.
(2) If w is basic then it is pre-basic.
(3) If w is basic and resonant then it is pre-basic and resonant.

Proof If N = 1, we have n = m = 1 and R"!(a, b) = Rio + (a, b). Then being
basic is the same property of being pre-basic: the Newton Polygon has a single vertex.

Assume now that w is basic. In view of the stability result in Proposition 4.2, we
have that @ is basic, where @ is the pull-back of w in the last center Py_; of the
cuspidal sequence. By the previous argument we have that @ is pre-basic. Now we
apply Proposition 4.11 to conclude that w is pre-basic.

The resonance for pre-basic 1-forms that are basic ones is the same property as for
basic 1-forms. O
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4.4 Totally E-dicritical Forms

Considera l-formw € Q}W defined around the divisor E. Recall that we have a normal
crossings divisor H such that H D E, coming from our choice of adapted coordinates,
although if n > 2 the divisor H around F is intrinsically defined and it coincides with
K. We say that w is totally E-dicritical with respect to H if for any point P € E there
are local coordinates u, v such that E = (1 = 0), H C (uv = 0) and w has the form

o = u“vldv,

where b = 0 when H = (u = 0). Note that o defines a non-singular foliation around
E, this foliation has normal crossings with H and E is transversal to the leaves.

Proposition 4.13 For any w € Q}WO py the following properties are equivalent:

(1) 7*w is totally E-dicritical with respect to H.
(2) The 1-form w is pre-basic and resonant.

Proof In view of the stability of the property “pre-basic and resonant” under the
blowing-ups of S given in Proposition 4.11, it is enough to consider the case when
N = 1. In this case we have a single blowing-up, Hy = (xy = 0) and the property
for m*w of being totally E-dicritical with respect to H is equivalent to say that

dx d dx d
o= h(x, iy’ [T -y Do xyP Hop— + Cap = |, ab=1,
* Y a+p>1 X Y

where h(0, 0) # 0. That is, the 1-form w is pre-basic and resonant. O

Remark 4.14 If n > 2 the axes x’y’ = 0 around Py_; coincide with the germ of
Ky_1 = 01;11 (Py) at Py—_1. In this situation, the property of being basic and resonant
does not depend on the chosen adapted coordinate system.

Definition 4.15 Given a resonant pre-basic 1-form w, we say that a branch (C, 0) in
(Mo, Pp) is a w-cusp if and only if it is invariant by @ and the strict transform of
(C, Py) by 7 cuts E at a free point.

Let us note that each free point of E defines a w-cusp and conversely, in view of
the fact that 7 *w is totally E-dicritical with respect to H.

One of the results in this paper is that any element of Cusps(S) is a w-cusp for
certain resonant basic w and hence can be included in the corresponding “dicritical
package”.

5 Differential Values of a Cusp

Let us consider a branch (C, Py) C (My, Py) belonging to Cusps(E). It has a Puiseux
expansion of the form

(x,y) = ¢@t) = (¢", at™ + 1" E@1)), o #0.
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defined by the fact that for any germ 4 € Oy, p, we have that (C, Py) C (h = 0) if
and only if & o ¢ = 0. We recall that the intersection multiplicity of (C, Pp) with a
germ h is given by

ipy(C, h) = order,(h o ¢).
We also denote ve(h) =ip,(C, h). The semigroup T" of C is defined by
ru {OO} = {vc(h)a h e OM(),P()}-
As stated in Zariski’s Equisingularity Theory, this semigroup depends only on the
equisingularity class (or topological class) of C. In our case, we know that all the
elements in Cusps(E) are equisingular to the cusp y” — x = 0. Hence I does not

depend on the particular choice of C € Cusps(E). More precisely, we know that I" is
the subsemigroup of Z>( generated by n, m. That is

I' ={an+bm; a,b € Z>o}.
An important feature of T is the existence of its conductor cr = (n — 1) (m — 1), which
is the smallest element cr € I' such that any non-negative integer greater or equal to

cr is contained in I". In a more algebraic way, the conductor ideal (#°T') is contained
in the image of the morphism

¢" :Clx,y} > Clt}, fr> fog.
On the other hand, as it was pointed by Zariski, the differential values of C may
strongly depend on the analytic class of C. In fact, they are the main discrete invariants

in the analytic classification of branches (see Hefez and Hernandes 2011).
Given a differential 1-form w € Qlll/lo, P with w = gdx + hdy. If we write ¢ (¢) =

(x(1), y(1)), we have that ¢*(w) = (g(p(1))x"(t) + h(¢(2))y'(t))dt. We put a(r) =
1(g(p(1)x'(t) + h(¢(1))y' (1)), hence

N dt
¢ (@) =an)—

and we define the differential value vc (w) by ve(w) = order; (a(z)).
We know that (C, Py) is an invariant branch of o if and only if ¢*(w) = 0 and
hence v¢(w) = oo. The semimodule A° of the differential values is defined by

A€ = fve(w); we Q}Vlo,Po’ ve(w) # 00} C Zxo.
It is a I"'-semimodule in the sense that
peTl.ge A= p+gqen’.
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Remark 5.1 Note that ve(w) > 1forany w € Q}uo, p,- Anyway, we have the important

property thatI" C {0}U AC IfACU{0) =T, we say that C is quasi-homogeneous and
it is analytically equivalent to the cusp y" —x™ = 0. Otherwise, if 1| is the minimum
of A€ \ I', we know that A; — n is the Zariski invariant, the first nontrivial analytic
invariant. This invariant was introduced by Zariski (1966).

Remark 5.2 Let us note that vg(w) € T, for any w € Q}Vlo,Po'
5.1 Divisorial Order and Differential Values

In view of the definition of the differential values, for any w € Q }Vlo, p, We have that
vE(w) < ve(w). A useful consequence of this fact is the following one:

Lemma 5.3 A basic I-form w € Q}wo p, IS resonant if and only if ve(w) > VE(w).

Proof Write w = W + @, where W is the initial form of w. Denote d = vg(w) <
nm. Recall that vg(®) > vg(W) = d, we conclude that vo(w) > d if and only if
ve(W) > d. Since w is a basic 1-form, we can write

W:x“yb{ud—x+§d—y}, an +bm =d.

X y

We have
* n\a g .m m+1 b dt
GW = (") +1"TE@) (nu+ff1§+l¢(t))7-

The fact that ve(W) > d is equivalent to say that nu + m¢ = 0 and hence it is
equivalent to say that w is resonant. O

Corollary 5.4 If vc(w) ¢ T, then w is a resonant basic 1-form.

Proof Since ve(w) ¢ T, this differential value is bounded by the conductor ¢ =
(n — 1)(m — 1), hence we have that

VE(w) <ve(w) < (n—1)(m —1) < nm.

Then w is a basic 1-form. Moreover, since vg(w) € I' and ve(w) ¢ I, we have that
Vi (w) < ve(w) and we conclude that w is a resonant basic 1-form. O

5.2 Reachability Between Resonant Basic Forms

Let w, o' be two 1-forms w, o’ € Q}VIO p,- We say that o’ is reachable from w if and
only if there are nonnegative integer numbers a, b and a constant . € C such that

ve(0 — pux®yPw) > ve (o).
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Note that the constant p and the pair (a, b) are necessarily unique.
We are interested in the case when w and o’ are basic and resonant. In this situation,
the initial parts are respectively given by

d d ro d d
W = px€y? {m—x—n—y}, W = w'x€y¢ {m—x—n—y}
dy y x y

Note that a, a’, b, b’ > 1 since w, @' are holomorphic 1-forms. We have that ' is
reachable from w if and only if ¢’ > ¢ and d’ > d; in this case we have that

/
VE (w' _ Ky —cyd _da)) > vp(w) =cn+dm.
m

Note also that the minimum divisorial value of a basic and resonant 1-form is n + m
and its initial part is necessarily of the type

d d
Uxy {m—x — n—y} = u(mydx — nxdy).
X y

If w is basic and resonant with vg (w) = n + m, then any basic and resonant 1-form
is reachable from w.

6 Cuspidal Semimodules

In this section we develop certain features of semimodules over the semigroup I'
generated by the Puiseux pair (n, m). We consider, unless it is specified, only the
singular case n > 2; in this case the conductor is cr = (n — 1)(m — 1) and we have
the interesting property that any p € I with p < nm is written as p = an + bm in a
unique way, with a, b > 0.

We proceed in a self contained way in order to help the reader, several results are
true for more general semigroups, but we focus on the cuspidal semigroup I" to shorten
the arguments.

6.1 The Basis of a Semimodule

A nonempty subset A C Zsq is a I'-semimodule if A + T C A. We say that A
is normalized if O € A, this is equivalent to say that I' C A. As for the case of
semigroups, the conductor cy is defined by

cp =min{p € Z>o; {q € Z;q = p} C A}.

Note that if A_; is the minimum of A, then we have that cp < cr + A_1.

Definition 6.1 Let A be a I'-semimodule. A nonempty finite increasing sequence of
nonnegative integer numbers B = (A_1, Ao, ..., Ay)isabasisfor Aifforany0 < j <
swehavethatA; ¢ I'(B;j_),whereI'(B;_1) = (A_1+)U(Xo+T)U- - U ;1 +T).
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If A = I'(B), we have a chain of semimodules
A+ =A_1 CAgC--- CAy=A, (8)

where A; = I'(B;). We call decomposition sequence of A to this chain of semi-
modules. Let us note that

Aj=min(A\Aj_1), 0<j<s. 9

This definitions are justified by next Proposition 6.2
Proposition 6.2 Given a semimodule A, there is a unique basis B such that A = T (B).

Proof We start with A_; = min A. Note that '(A_;) C A.If T(A_1) = A we stop
and we put s = —1. If ['(A_1) # A, we put Ag = min(A \ I'(A_1)). Note that
I'(A_1, A0) C A. We continue in this way and, since A; # Ax mod n for j # k,
after finitely many steps we obtain that A = I'(A_1, Ag, ..., As). Let us show the
uniqueness of B = (A_1, Ag, ..., As). Assume that A = I'(B’), for another I"-basis
B'= (|, Ay, ..., A,). Note that A_; = min A = A" . Assume that A; = )Jj for
any 0 < j < k — 1. In view of Eq. (9) we have that A; = A} = min (A\I'(Bx_1)) =
min (A\I'(B}_,)). This ends the proof. ]

We say that B = (A_1, Ag, - . . , As) is the basis of A = ' (3) and that s is the length
of A.

Consider asemimodule A = I'(53), anelement A € Zx is said to be A-independent
if and only if . ¢ A and A > Ag, where X is the last element in the basis B. In this
case we obtain a basis B()), just by adding A to B as being the last element. The new
semimodule is denoted A (1), thus we have A(A) = AU X +T) =T'(BO)).

Given a semimodule A = I"(A_1, Ao, ..., A;), we define the axes u; = u;(A) by

uo=Ar_1; ui=min(Aj_aNhi_1+I)), 1<i<s+1. (10)

Note that u; (A ;) = u;(A),forO0<i <j+1=<s+1

Definition 6.3 A semimodule A = I'(A_1, Ag, ..., Ag) is increasing if and only if
Ai >u;foranyi =0,1,...,s.

Remark 6.4 If A is an increasing semimodule, each element A; of the decomposition
sequence is also an increasing semimodule. Moreover, if 1 is a A-independent value
with A" > usy 1, then A(L') is also an increasing I"-semimodule.

Given a semimodule A = I"'(A_q, Ao, ..., Ay), the semimodule A=A-— A_1is
called the normalization of A. Next features allow to deduce properties of A from
properties of its normalization:

(1) The basis of A is (0, A0 — A_1, ..., As — A_1).
) A =A; —r_y,fori =—1,0,...,s.

3) ui(A) =ui(A) —A_y, i=0,1,...,5s+1.
4) cx =cn — 1. _

(5) A isincreasing if and only if A is increasing.
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6.2 Axes and Conductor

We precise the expressions of the axes and we bound them by the conductors.

Lemma 6.5 Consider a semimodule A of length s and two indices 0 < k < i < s.
Then we have that u; 11 < cp, + n.

Proof We can assume thati = s, k = s — 1. Note that A; < ¢, ,, since A; ¢ As_1.
Then, there is a unique o € Z~ such that 0 < Ay — ca, , + an < n. We have that
As +an € Ay +T and A; +an > cp, ;. We obtain

As +an € Ay N (A + ).

We deduce that us| < Ay +an <cp, | +n. o

Corollary 6.6 Consider a semimodule A of the form A = I'(n,m, Ay, ..., As). Then
ujy1 < nm, forany 0 <i <s.

Proof By Lemma 6.5, we have that u; | < ca, + n, but in this situation, we have that
Ao U {0} =T and thus

cpg=cr =m—1D(m—1).

Henceuii1 <cpg+n=mn—-1)m—1)+n < nm. O

Lemma 6.7 Consider A = I'(A_1, Ao, - .., Ag). There is a unique index k with —1 <
k <s — 1 such that us+ € A + I and there are unique expressions

Usy1 = As +na+mb, a,beZsg (1
Usy1 = Ak +nc+md, c,d € Zsp. (12)

In these expressions, we have ac = bd = ab = cd = 0 and (a, b) # (0,0) # (c, d).

Proof The existence of the expressions (11) and (12) is given by the definition of 1
asugy] = min(Ag_1N(Ag+1I")). By the minimality of us | and the fact thatusy # A
and us41 # Mk, we deduce the properties ac = bd = 0 and (a, b) # (0,0) # (c, d).
Moreover, if ab # 0 we should have that ¢ = d = 0 which is not possible; in the
same way we see that cd = 0.

Let us show the uniqueness of the index k. Assume that there are two indices
—1 <k <k <s—1withusy | = At +cn+dm = Ay + c’n + d’'m. Take the case
when a # 0, then we have that ¢ = ¢/ = 0 and we can write

A=t +m(d—d)er+T,

this is a contradiction. Same argument if b # 0.
If we normalize A, we have that 5] — Ay = il54] — As. By Lemma 6.5 we have

Ugy1 — s < Ugy1 <cx, ,tn=<cr+tn=@n—1m—1)+n <nm.
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Hence, we have that u;; — Ay (and with the same argument us1| — Ag) are strictly
smaller than nm. Thus, the expression of these elements of " as a linear combination
of n, m with non-negative coefficients is unique. O

6.3 The Limits

Consider a semimodule A = I'(A_1, Ag, ..., Ay) with s > 0. The first and second
limits €1 and € of A are defined by

¢y =min{p; np+ iy € Ag_1}. (13)
£, = min{q; mq + Ay € Ay—1}. (14)

Remark 6.8 We have that £;¢> # 0 and
Ugy1 = min{lin + Ay, €om + Ag}. (15)
Indeed, by Lemma 6.7, we have either ugy1 = an + Ag or ugy1 = bm + Ay if

us4+1 = an+Aig, by minimality we have thata = £, inthe same way, ifu;1 = bm+Xg
we have that b = £,. Moreover, there is a unique index k with —1 < k < s such that

(1) Husyy =£€1n+ Ag, then usy = Ay + bm.
2) Ifugy1 = €ym + Ag, then ugy) = Ap + an.

Lemma 6.9 Ifan + bm + A € Ag_y, then either a > £1 or b > (5.

Proof Let us write an 4+ bm + Ay = cn +dm + A; for acertain j < s —1.If ac # 0,
we find

(@a—Dn+bm+iy=(—Dn+dm+Ai; € Ay_1.

Repeating the argument and working in a similar way with the coefficients b, d, we
find an element

an + bm + A =En—|—c?m+)»j
such thata > a and b > b, with the property that a¢é = 0 and bd = 0. Moreover, we
have that (¢, d) # (0, 0), since otherwise A; < As;_1. Suppose that ¢ # 0, thena = 0
and

bm + Ay =5n+c§m+)»j € Ay_1.

By the minimality property of £,, we have that b > > and then b > ¢5. In a similar
way, we show that if d # 0 we have thata > ¢;. O

Let us note that the limits of the normalization A are the same ones as for A.
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Example 6.10 Consider the semigroup I' = (5, 11) and the I'-semimodule A =
'@, 11,17,23,29). Let us compute the axes and the limits for this semimodule.
Note that s = 3. We have ug = A_; =n =5, and Ao = m = 11. In order to compute
the limits of Ag we have to find the minimal non-negative integers

. zi such that 11+ 5¢] =5+ 11b, hence £} = b = 1;
e ¢y suchthat 11+ 11¢} = 5 + 5a and we obtain £} = 4 and a = 10.

Hence, Ao + nﬁ% = 16and Ao + mﬁé = 55 and u; = min{16, 55} = 16. Now, let us
compute the limits of A| where A1 = 17. We search 6% and Z% minimal such that

o 17+563 =11+ 11b, hence £3 = b = 1 and | + n€} = 22;
e 17+ 1143 = 5 + 5a and we have that £3 = 3 and a = 9, then A + m¢3 = 50.

We get that up = 22. In a similar way, taking into account that A, = 23 and A3 = 29,
we get that u3 = 28 and u4 = 34. Since u; < A;,fori =0, 1, 2, 3, we obtain that the
semimodule A is increasing.

7 Standard Bases

From now on, we fix a cusp C in Cusps(E£) and we consider the semimodule A of
differential values of C:

A= AC = {ue@); © € Qi p)\ (o0}, (16)

We recall that " \ {0} C A.
Lemma7.1 If (A1, Ao, A1, ..., As) is the basis ofAC, then A_1 = n and Ay = m.

Proof Let (x,y) = (", t™&(t)) be a Puiseux parametrization of C, where £(0) # 0.
Recall that ve(adx + bdy) is the order in ¢ of the expression

nt"a(t", ("E(1) + ("EWDE", "E@) {m + 18/ (1) /E(D)). 7

We see that this order is > n and that v¢o(dx) = n. Hence n = A_j. Moreover, the
terms in Eq. (17) of degree < m come only from the first part nt"a(t", t"&(t)) of the

sum, so, they are values in I". Since m = vc(dy), we conclude that Ag = m. O
Definition 7.2 Write AC = ['(n,m, Ay, ..., As). A standard basis for C is a list of
1-forms G = (w_1, wg, w1, ..., wy) such that vo(w;) = A;, fori = —1,0,1,...,s.

Remark 7.3 There is at least one standard basis, by definition of the semimodule of
differential values. The standard bases are not in general unique. For instance, we have
that

ve(hdx) =n, ve(hdy) =m, h(0) #O0.

On the other hand, fori = 1,2, ..., s, we have that vo(w;) = A; ¢ I, then, in view
of Corollary 5.4, the 1-form w; is basic resonant.
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Remark 7.4 Let G = (w_1, wo, w1, ..., wy) be a standard basis for C. Then w_1, wy
have the form

w_1 = hdx + gdy, h(0) #0; wo= fdx+ ¥dy, ¥(0) #0, ve(fdx) > m.

Thus, we can write any differential 1-form w in a unique way as w = aw—_1 + bwy.
Anyway, we are mainly interested in the study of the 1-forms w;, for 1 <i < s. From
the standard basis G we can obtain a new one “adapted to the coordinates” given by

Gg=(x,dy,wi,...,ws.

Just for simplifying the presentation of the computations, we will consider only this
kind of standard bases.

7.1 The Zariski Invariant

In this subsection, we deal with properties of divisorial orders and differential values
around the element A, where

AC =T, m, A, ..., Ay).

This is the first step for a general result. Anyway, let us recall that A1 —n is the classical
Zariski invariant. Let us cite the work of Gémez-Martinez (2021) that essentially
contains several of the results in this section.

Proposition 7.5 We have the following properties:

(1) If s =0, then oo = sup{vc(w); w € Q}\/IO,PO’ ve(w) =n + m}.

2) If s = 1, then &1 = sup{vc(w); w € QZIVIO,PO’ ve(w) =n +m}.

Proof Assume that s = 0 and hence A¢ = T \ {0}. Let us consider the 1-form

n = mydx — nxdy. We have that ve(n) > n +m = vg(n). Moreover, since s = 0
we have that vz () € I'; then there is a monomial function f such that

ve(df) =ve(df) =ve() >n+m.
In particular, there is a constant u # 0 such that ve(n — udf) > ve(n). Write
771 = n — udf; we have that vE(nl) =vg(n) = n+m and vc(nl) > ve(n). We
repeat the argument with 5! and in this way we obtain 1-forms n* with vg (n%) = n+m
and ve(n*) > n +m + 1 + k. This proves the first statement.
Assume now that s > 1. Let us first show that

A < sup{vc(w); w € QIIVIO,PW ve(w) =n + m}.

Ifve(n) ¢ T, we have that ve(n7) > Aq since A1 is the minimum of the differential
values not in I', then we are done. Assume that vz (1) € I' and hence

ve(n) =an+bm > n+ m.
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Taking the function f = xy”, up to multiply df by a constant ¢; we obtain that
ve(m) > ve(n) =an+bm, n=n—cdf.

Note that vg(n1) = n + m, since vg(df) = an + bm > n + m. We restart with 1
instead of 1, noting that ve () < ve(n1). Repeating finitely many times this procedure,
we obtain a new 1-form 7 = n — d f such that vg () = n + m and either v (7j) >
cr = (n—1)(m — 1) or ve(7) ¢ T, in both cases we have that ve(77) > A; and we
are done.

It remains to show that A1 > sup{vc(w); w € 9111/10,P0’ ve(w) = n + m}. Let us
consider w; such that v¢c(w;) = A and let us show that it is not possible to have @
such that vg (w) = n + m and ve (@) > ve(wy). In this situation, both w; and @ are
basic resonant. We know that w; is reachable from @ and thus there is a constant u
and a, b > 0 such that

1 1 b~
ve(w)) > vE(w1), o] =01 — pux*y’o.

We have that v¢ (a)}) = ve(w1) = A1. We restart with the pair w%, ®; in this way, we
obtain an infinite sequence of 1-forms wy, a)} , a)%, ... with strictly increasing divisorial
orders. Up to a finite number of steps, we find an index k such that vg (a)ll‘) > A1 =
Ve (w]]‘). This contradicts with the fact ve (w’]‘) > vE(a)'f). O

Corollary 7.6 Any I-form w € Q}Vlo,Po such that vg(w) = n + m and ve(w) ¢ T
satisfies that ve(w) = Aq.

Proof In view of the previous result, we have that ve(w) < A;. Since ve(w) ¢ T, we
also have that vg(w) > Aj. O

Corollary 7.7 Any I-form w € Q}Vlo,Po such that ve(w) = 1 satisfies that vg(w) =
n—+m.

Proof Take w; such that ve(w;) = A and vg(w1) = n + m. Assume that
ve(w) >n+m

in order to obtain a contradiction. Since A1 ¢ I', both w and w; are basic resonant and
o is reachable from ;. Then there is a function f with ve(f) > 0 such that

ve(w — fw1) > ve(w).

Put o' = w — fwi, since ve(fwy) > A1, we have that vc(a)l) = A1. We restart
with the pair !, w. After finitely many repetitions we find o with Ve (@*) = 1; and
VE (a)k) > A1, contradiction. |

The following two lemmas are necessary steps in order to prove an inductive version
of Proposition 7.5 valid for all indices i = 1,2, ..., s:
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Lemma 7.8 Assume that s > 1 and take w such that vc(w1) = \i. Consider an
integer number k = na+mb+ Ay € A +T. The following statements are equivalent:
(1) k¢T.

2) ve(w) < vE(x“yba)l), forany w € Qll\/’o,Po such that v¢ (w) = k.

Proof Note that k = ve(x?yPw1) > (a + Dn+ (b + Dm = v (x%yPw)).

Assume that k € T, then k = na’ + mb' > ve(x?y’w). Taking o = d(x? y?),
we have vo(w) = ve (@) = k > vE(x?yPw)).

Now assume that k ¢ I'. Let us reason by contradiction assuming that there is w
with ve(w) = k with vg(w) > vE(x?yPw). We have that w is basic resonant, since
ve(w) ¢ T. Then w is reachable from w;. Then there is a’, b > 0 and a constant u
such that vg (x“,yb/an) = vg(w) and

ve(@ —ex® Y o) > vg(@) > ve(xyPor).

Since na’ + mb' > na + mb, we have that ve (x4 y? @1) > k and hence ve (') = k,

’ ! . . . .
where ! = w — cx? y? w1. Repeating the procedure with the pair !, w;, we obtain
a sequence

a),a)l,wz,...

with strictly increasing divisorial order and such that ve(w/) = k for any j. This is a
contradiction. O

Lemma 7.9 Take w| withve(wy) = Ay. Letw € Qlliflo,Po be a 1-form such that v¢ (w) =

X ¢ I'. There are unique a, b > 0 such that vi (w) = vg (x“yba)l). Moreover, we have
that A > na + mb + Aq.

Proof Note that w is basic resonant and thus the existence and uniqueness of a, b is
assured. Moreover, if A < na + mb 4+ A, we can find a constant x such that

vE (0 — uxtyPw)) > ve(x“yPwr)

and ve (0 — ux®yPw)) = 1. Put ' = w — ux®yPw;, we have that ve (') = 1 ¢ T.
As betfore, we have that

ve(@h) = vE(x“‘ybla)l), ain +bym > an + bm

and thus A < ajn + bym + A1. We repeat the process with the pair ol w1, where
o' =w— ,ux“yba)l in order to have a sequence w, b, @?, ... with strictly increasing

divisorial orders and such that ve (w’/) = A for any j. This is a contradiction. O

7.2 Critical Divisorial Orders

Recall that we are considering a cusp C in Cusps(E), whose semimodule of differential
values is

AC =T, m,h, ..., hy).
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The critical divisorial orders t;, fori = —1,0, ..., s + 1 are defined as follows:

e Weput7r_; =nandty =m.
e Forl <i<s+1l,weputt; =ti_1+u; —ri—1.

Letusnotethatty =m+ (n +m) —m =n + m.

Lemma 7.10 Consider the semimodule A = T'(n,m, Ay, ..., Ay) and take an index
1 <i <s.IfA¢ > uy, forany 0 < £ <i, we have that

Aj—de>tj—t, —1<k<j=<Ii. (18)
Proof We have that A; — A;_y > t; —t;_1 if and only if
ti=tji1+tuj—Arj_1>tj+u;—»Arj,

which is true, since u; — A; < 0. Noting that

j-1 j—1
hj— g = Z()WZ-H —Ag) > Z(l‘z+1 —tg) =tj — 1,
=k =k
The proof is ended. O
Lemma 7.11 If the semimodule A = T'(n, m, A1, ..., Ag) is increasing, we have that

t; <nm, foranyi = —1,0,1,...,5s + L.

Proof If i € {—1, 0} we have that | = n, fo = m and we are done. Assume that
1 <i <'s, we have that

i i
ti—n=t—t_1 = Z(lz —1Ip—1) < Z(M —de—1) =Ai —A-1 =X —n.
=0 =0

Then t; < A; < cr < nm. Consider the case i = s + 1. We have that
Iyl =1t +Usp1 — Ay = Ugp1 + (ts — Ag) < Usg+] < cr +n <nm.

See Lemma 6.5. |

Remark7.12 As a consequence of Lemma 7.11 we have that any 1-form w such that
vE(w) = t; 18 a basic 1-form; moreover, if t; = vg(w) < ve(w), then it is basic and
resonant.

The critical divisorial orders are the divisorial orders of the elements of a standard
basis, in view of the following

Theorem 7.13 For each 1 < i < s we have the following statements

(1) A; = sup{ve(w) : ve(w) = 1;}.
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) Ifve(w) = A, then ve(w) = t;.

(3) For each 1-form w with ve(w) ¢ A1, there is a unique pair a, b > 0 such that
ve(w) = vg (x“yba),-). Moreover, we have that ve (w) > A; + na + mb.

(4) We have that A; > u;.

(5) Letk = Aj +na+ mb, then k ¢ A;_1 if and only if for all w such that v (w) = k
we have that v (w) < ve(x*yPw;).

In particular, the semimodules A; are increasing, fori = 1,2,...,s.
A proof of this Theorem 7.13 is given in Appendix B.

Remark 7.14 Note that if B = (w—| = dx,wy = dy, w;, w3, ..., wy) is a standard
basis, Theorem 7.13 says that vg (w;) = #; foranyi = —1,0,1,...,s and that w41
is reachable from w;, for any 1 < j < s — 1. That is, the initial parts of the 1-forms
wj are given by

b dx dy
W = pix“iyP {mT —’l?}, ui # 0,

where (a1, b1) = (1, 1) and

l=a1<ary<---<a,, 1=b1<by=<---=<by.

Moreover, we have that na; + mb; = t;,fori =1,2,...,s.
Remark 7.15 Notethat B = (w—| = dx, wg = dy, w1, w2, ..., wy) is a standard basis
if and only if vg(w;) = t; and ve(w;) ¢ Aj_1, foranyi = 1,2, ...,s. Moreover,

Theorem 7.13 justifies an algorithm of construction of a standard basis as follows:

Assume we have obtained wj, for j = —1,0,1, ..., s’. We can produce the axis
ug 41 and the critical divisorial order ty = ty + ugyy — Ay. There is an
expression ty1 = an + bm. We consider the 1-form

dx dy
0 b
W =xy {m7 —n7} .
vac(a)g,H) ¢ Ay, we know that Lyy| = Vc(wng) and s > s' + L. If
vc(a)g,ﬂ) € Ay, thereis j < s’ and ¢, d > 0 such that

d 0
ve(x“yw)) = ve(wg, ).
0 d 0 1
We take a constant u such that ve (ws’+l —pxyw;) > ve (a)s,_H). Putw, | =
w?,H — /Lxcyda)j. We have that vi (a)sl,_H) = ty41. We repeat the procedure
with a)sl, 41 After finitely many steps we get that either v (wf, +) & Ay or

Ve (a)f,H) > cr. In the first case, we put Ay 41 = v¢ (wfurl), in the second case
we know that s = s’.
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Example 7.16 Consider the semigroup I' = (5, 11) and the I'-semimodule A =
'@, 11,17,23,29) as in Example 6.10. The computation of the critical divisorial
orders t;,i = —1,0, 1, 2, 3, gives

t1=95 tn=11, 1L =16, t©n =21, t3 =26, t4=3l.
Since the semimodule A is increasing, by Alberich-Carramifiana et al. (2022) there
exists a curve whose semimodule is A. In particular, the curve C given by the Puiseux
parametrization ¢ () = @, " 4+ 112 4 £13) has semigroup I' and semimodule of

differential values A. An extended standard basis is given by {w_1, wo, 1, w2, W3, w4}
where

w—_1 =dx, wy=dy, wi;=>5xdy— 1lydx,
wr = llxw; — Sydy, w3 =xwy+ ywi

and w4 = xw3 — 33ywy — 1199x%dx — 2035x*ydx — 407x*w; — 1595x3wy + - - -.
The reader can check that vg (w;) = t; as stated in Theorem 7.13.
8 Extended Standard Basis and Analytic Semiroots

As in previous sections, we consider a cusp C in Cusps(E), whose semimodule of
differential values is

A=Tm,m,ry,..., ).

Let us recall that the axis ug41 = min(As_1 N (Ag + I')) is well defined and we have
also a well defined critical divisorial order

Is41 =I5 + Us1 — As-

Let us also remark that ty < nm, for 0 < £ < s + 1, in view of Lemma 7.11.

Definition 8.1 We say that a differential 1-form w is dicritically adjusted to C if and
only if vg(w) = ty41 and vo (w) = 00. An extended standard basis for C is a list

w_1 =dx,wp =dy, w1, ...,ws; 0511

where w_1, wg, @1, ..., wy is a standard basis and w1 is dicritically adjusted to C.

Lemma 8.2 Assume that veg(n) = tg41 and ve(n) > ugy1. Then, there is a I-form 1
such that vg () = tyy1 and ve () > ve(n).

Proof Take a standard basis dx, dy, oy, ..., ws for C. There is an index k such that
ve(n) = an+bm + i Consider the 1-form x®y?wy.. Note that ve (x4 yPwy) = ve ().
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If we show that an + bm + t;, > t,, 1, we are done, by taking 77 = n — ux®ybawy for
a convenient constant . We have

an +bm + Ag > ugy1 = an +bm + ty > us41 — A + . (19)
It remains to show that ugy1 — Ax + tx > t541. We have
Ust] — A+ = bsp) & Usp] — A+ I > b HUsy) — Ay & Ay — Ap =I5 — Ik

We are done by Lemma 7.10. O
Proposition 8.3 There is at least one 1-form w dicritically adjusted to C.
Proof Take a standard basis dx, dy, wi, ..., ws for C. There is an index k < s such
that ug41 = an + bm + Ay = cn + dm + Ay. Note that

an+bm +t; < cn+dm + t,

since t; — ty < Ay — Ak. In this way, we have

(1) o1 = veyPwy) < vy o).
(2) ugr1 = ve(xyPay) = ve(x“ylwp).
Taking n = x?y?w; — ux€y?wy, for a convenient constant s, we have that

vE(M) =ts11, ve(n) > usy1.

By a repeated application of Lemma 8.2, we find a 1-form 7 such that

vE() = ts41 < ve(), ve() >cr + 1.

Now, we can integrate 7 as follows. Let ¢ : t — ¢ (t) = (¢1(2), P2(t)) be a reduced
parametrization of the curve C. Then ¢ induces a morphism

" Clx,y}) > C{t}, hr> hod,

whose kernel is generated by a local equation of C and moreover, the conductor ideal
1T C{r} is contained in the image of ¢*. Let us write

¢*n =E()dt, &) € tTC{r}.

By integration, there is a series v (¢) such that ¥/ () = &(¢), with ¥ (¢) € Tt Cr).
In view of the properties of the conductor ideal, there is a function 7 € C{x, y} such
that ho ¢ (t) = ¥ (¢). If we consider w = 1 — dh, we have that vg (w) = vE(7) = tg41
and v¢(w) = oo. O

Proposition 8.4 If w is dicritically adjusted to C, we have that w is basic and resonant
(hence it is E-totally dicritical) and C is an w-cusp.

Proof Recall that £, < nm and ve(w) = 00 > foy]. O
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8.1 Delorme’s Decompositions

Delorme’s decompositions are described in next Theorem 8.5. This result is the main
tool we need to use in our statements on the analytic semiroots. We provide a proof
of it, using a different approach to the one of Delorme, in Appendix C.

Theorem 8.5 (Delorme’s decomposition) Let C be a cusp in Cusps(E), consider an
extended standard basis w_1, wg, w1, ..., ws; ws+1 of C and denote by

A=Tmn,m, A, ..., As)

the semimodule of differential values of C. For any indices 0 < j <i <'s, there is a
decomposition

J
ij
Wi+] = Z S we

(=—1

suchthat, forany —1 < € < jwe have vc(feing) > v;j, wherev;j = ti1—tj+Aj and
there is exactly one index —1 < k < j — 1 such that vc(f,;]a)k) = vc(fjl-] wj) = vjj.

Remark 8.6 Note that v;; = tj+1 — t; + A; = u;+1. We also have that
Vij = wit1 — (i —ui) — o — (Ajgp1 — uj).

In particular we have that v;; < u;11 < cr +n < nm. See Lemma 6.5.

8.2 Analytic Semiroots

Let A =T'(n,m, Ay, ..., As) be the semimodule of differential values of the E-cusp
C and let us consider an extended standard basis

& =(w_1,00,01, ..., ws; Wy 1)

We recall that w1, wa, . .., ws41 are basic anc_l resonant. Fix a free point P € E. For
eachi =1,2,...,s + 1, there is an E-cusp C), passing through P and invariant by
w;. Let us note that if P is the infinitely near point of C in E, we have that Ci,“ =C.

Definition 8.7 The cusps CL,fori =1,2,...,s+ 1 are called the analytic semiroots
of C through P with respect to the extended standard basis &.

Let us denote & = (w_1, wg, w1, ..., wi—1; ;) forany 1 <i < s + 1. The main
objective of this paper is to show the following Theorem

Theorem 8.8 Forany 1 <i < s+ 1 and any free point P € E, we have

(a) Aj_1 is the semimodule of differential values ofC}.
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(b) & is an extended standard basis for C’j;.

Let us consider an index 1 < i < s 4 1 and an analytic semiroot Cj; in order to
prove Theorem 8.8.

Lemma 8.9 We have that ch,(w/') = Aj, forany j =—1,0,1,...,i — L

Proof For any basic non resonant 1-form w, we have that
ve(@) = (@) = g (©).

This is particularly true for the case of 1-forms of the type w = df, where we know
that vg (w) = ve (f). Hence, for any germ of function f € C{x, y} we have that

min{ve(df), nm} = mi“{"cin @df), nmj}. (20)
The statement of the Lemma is true for £ = —1, 0, since
ve(dx) = vei, (dx)=n, ve(dy)= vei, (dy) = m.

Let us assume that it is true for any £ = —1,0,1,...,j, with0 < j <i — 2. We
apply Theorem 8.5 to obtain a decomposition

Jtl
W= ) feor

{=—1

such that ve (fewe) > vi—1,j 41, where v; 1 j11 < nm (see Remark 8.6) and there is
asingle k < j such that ve(fj+1@j4+1) = ve(frwr) = vi—1,j+1. We deduce that

J
Ve Z Sfewe | = ve(frwr) = vio1,j+1.
—1

On the other hand, by induction hypothesis and noting that v;_1 j+1 < nm, we have
that

min{ve (fewe), nm} = minfvei (fewe), nm}, €= —1,0,1,.... j.

In particular, we have that

J
Vc;)(fka)k) =Vi-1j+1, Ve, Z fewe | = vic1 jy1.
=—1

@ Springer



27 Page 34 of49 F.Canoetal.

Since vei, (w;) = 0o, we have that vei, (fj+1wj+1) = vi—1,j+1. Hence we have
vi-1,j+1 = ve(fj+10j+1) = vei (fj+10)+1)-

Noting that ve(fj+1) = vei, (fj+1), we conclude that ve(wjy1) = Ve, (wj41). The
proof is ended. O

Corollary 8.10 ACr D A1

Proof It is enough to remark that A ; € AC;’ forany j = —1,0,1,...,i — L. |
Proposition 8.11 Aci" =Ai_1.

Proof We already know that ACj}, O A;_1. Assume that ACj}, # A;_1 and take the
number

A = min (AC?' \ Ai_l) .

Note that A > m and hence there is a maximum index 0 < j <i—1suchthat); < A.
We have that

vE(a)j) =t = tj(CjD), 1 = t,(C)

where 1 () denotes the critical divisorial order ; with respect to the curve . Assume
first that j <i — 2.
Let @ be a 1-form in a standard basis for C}, that corresponds to the differential

value A. Note that A is the differential value in the basis of ACr that immediately
follows A ; and the previous ones correspond to the values in the basis of A. We have
that

VE@j+1) = i1 =1+ ujpr — hj =141(Cp) = vE(@).
In view of the property (1) in Theorem 7.13, we have that
A = max{vei (@); V(@) = tj+1(Ch) = tj41)

In view of Lemma 8.9, we know that vei, (wj41) = Ajy1 and ve(wjy1) = tj41. This
implies that A ;1 < A, contradiction.

Let us consider now the case when j =i — 1. We shall prove that it is not possible
to have s(C;,) > i — 1 where s(x) refers to “concept s” with respect to the curve *
(that is, s + 2 is the number of elements of the basis of the semimodule of the curve).
If s(Cp) > i — 1, we have that

)= max{vg (©); vE@) = 1;(Cp) = 1;}.

But we know that vei (w;) = 0o and vg(w;) = 4, this is the desired contradiction. O
P
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Example8.12 Let us compute the analytic semiroots of the curve C given in Exam-
ple 7.16. The Puiseux parametrizations for the E-cusps C, of w;,i = 1, 2, 3, are given
by

5 11
¢ (1) = (7, at')
23 313

¢5(1) = (1, ar'" +a*t"? + BaPtB 4+ a4

¢§Z(t) — t5’ Z ai—lOti

i>11

with a € C*. Hence, the analytic semiroots of C are the curves ch Cf and C% given
by the above parametrizations qb[.l (),i =1,2,3, witha = 1.

Note that in this example, for any i = 1,2, 3, all the E-cusps of the family {C’},
are analytically equivalent. To see this it is enough to consider the new parameter
t = a~'u and the change of variables x; = a’x, y; = a'%y.

Example 8.13 We would like to remark that, in general, the E-cusps of an element w;,
i > 2, of a standard basis are not analytically equivalent as the following example
shows. Consider the curve C given by the Puiseux parametrization ¢ (t) = (¢7, 7+
130 4433 4+ t36) withT = (7, 17) and A = I'(7, 17, 37, 57). A standard basis is given
by w_1 =dx, wy=dy, wi;=7Txdy— 17ydx and

wy = 3757x%ydx — 1547x3dy — 4624y*dx + 1904xydy + 1183y%dy.

The E-cusps of w; are the curves given by the Puiseux parametrization

va®) = (", at"" + 30 + B+

witha € C*.If we consider a new parameter t = a~>/13u and the we make the change

of variables x| = a'4/13x, V) = a?1/13 y, we obtain that the family of E-cusps of wj
are the curves Cg given by the parametrizations

¢a(t) = (0 11T+ 0+ a7 F 4

From the results above, we have that AC = A1 =T(7,17,37) for all a € C*. Since
33 ¢ A1 —7,by Theorem 2.1 in Hefez and Hernandes (2011), two curves Cgl and ng
are not, in general, analytically equivalent for a;, a, € C*.

Example 8.14 Let us consider the 1-form w of example 4.7 in Gémez-Martinez (2021)
given by

o =Ty + 2x9y — 2)69))2 — 9x2y4)dx + (4y3x3 — x4 2x10y — 3)cy4 - xgyz)dy.
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This 1-form is pre-basic and resonant for the pair (4, 9) since vg (@) = 48, the co-pair
of (4,9) is (3,7) and Cl(w; x, y) C R*%(3, 4) where

R*2(3,4) = {(a, B) e R? a + 2B > 11} N {(ar, B) € R? 3 + 7B > 37).

Moreover, the weighted initial part of w is given by Ini%;x’y = x2y3(=9ydx +4xdy).
Consequently w is totally E-dicritical for the last divisor E associated to the cuspidal
sequence 8;":90. Note that w is not a basic 1-form since vg (w) > nm = 36.

The invariant curves of @ which are transversal to the dicritical component E are
the curves C,, a € C*, given by

y4 —ax’ + (a — 1)x7y + x7y2 =0.

Note that these curves do not have the same semimodule of differential values since
the curves C,, with a # 1, have Zariski invariant equal to 10 whereas the curve C; has
Zariski invariant equal to 19.

Acknowledgements We are grateful to Marcelo E. Hernandes for all the conversations and suggestions on
the subject. The work of Oziel Gémez has influenced our work in this paper, as well as the guidance of
Patricio Almirén on the study of semimodules.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

OpenAccess Thisarticleis licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A: Bounds for the Conductor

In this Appendix we present some bounds for the conductor of the semimodules A;
in the decomposition series of

A = F()"—l’)“()))"lv "'1)"5)

that will be enough to prove the results we need relative to the structure of the semi-
module of differential values. We recall that the semigroup I is generated by a Puiseux
pair (n, m), with 2 < n.

Given two integer numbers r < s, we denote [r, 5] the set of the integer numbers £
suchthatr < £ < s.Foranyg > 0 wedenoteby /, theinterval I, = [ng, n(qg+1)—1],
in particular, we have that Ip = {0, 1,2, ...,n — 1}. For any r, s € Iy, we define the
circular interval (r, s) by

(r,s)=1[r,s], ifr<s; (r,s)=1[r,n—1]UJ0,s], ifr >s.
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We denote by p : Z — 7Z/(n) the canonical map and we also use the notation
p(p) = p. Since gcd(n, m) = 1, there is a bijection

E:7/n) —> Ip=1{0,1,2,....n—1}, &' k) = plkm).

For any ¢ > 0 and any subset § C Zx(, we define the g-level set R,(S) C Iy by
Ry(S) =& (p(S N 1,)).

Remark A.1 We have that R;(A) C Ry (A) forall ' > g.

Remark A.2 For any u € Z=o and g > 1, we have
#Ry(u+T) <#R;_(n+T)+ L

Indeed, this is equivalent to show that #o((u + )N 1,) <#p((u+T)N1;—1) + 1.
Assume that py, p2 € p((W+T)NIH\p((u+T)N1;1). We can take representatives
p1, P2 € (W +T) NI, of py and p; of the form py = p + bym, pr = u + bym. If
p1 # p2, we have that |p; — p2| > m > n and this is not possible.

Lemma A.3 Consider i € I, denote r = £(i1) and let q be such that ¢ > v. For any
P € Ry(u +T') we have that (r, p) C Ry(u + T). In particular, the set R;(u +T)
is a circular interval.

Proof The second statement is straightforward, since the union of circular intervals
with a common point is a circular interval. To prove the first statement, we proceed
by induction on the number ¢ of elements in (r, p). If £ < 2, we are done, since
(r,p) C{r, p} C Ry( + A). Assume that £ > 2; in particular we have that r # p.
Consider the point p € Iy givenby p=p—1,if p>land p=n—1,if p =0. We
have that (r, p) = (r, p) U {p} and the length of (r, p) is £ — 1. Then, it is enough to
show that p € R,(u + I'). Take an element p + an + bm € I, N (u + T') such that
o(u + an + bm) = p(pm). Noting that r # p, we have that b > 1. There is ¢’ < ¢
such that u + an + (b — 1)m € I, and hence

w+@+qg—gHm+®-mel,N(u+T).

We have that p(i + (a + g — g")n + (b — 1)m) = p(pm) and thus p € Ry (u +T).

O
Definition A.4 We define the tops g1 and g of A by the property that
As +nly € 1y, Ag+mly €1y,
where ¢ and ¢, are the limits of A. The main top Q , is the maximum of g1, ¢>.
Proposition A.5 Consider a normalized semimodule A = T'(0, Ao, A1, ..., As). Letv

be such that Ay € I, and assume that R, (As—l) is a circular interval for any ¢ > v.
Denote by q1, g2 the tops of A and put r = &(As). Then we have that
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(1) [0,r =11 C Ry(As—1), forallg > q1 — 1.
(2) [r,n—1]1 C Ry(A), forallg > g2 — 1.

In particular cx < n(Qp — 1).

Proof Note that Statements (1) and (2) imply that
I():[(),n—1]=[O,r]U[r,n—1]CRq(A), quA_l

and thus, we have that cy < n(Qp — 1).

Proof of Statement (1) By Remark A.1 it is enough to show that we have [0, r —

1] C Ry —1(As—1). Since Ay + n€y € Ay, there is an index k < s — 1 such that

As +n€y = Mg + an + bm. By the minimality of ¢, we have that a = 0 and hence

As + 1l = Ay + bm. Denote ri, = £(r). Note that ry # r, since r ¢ Ry(As_1).
Assume that the next statements are true:

(a) If rp > r, then [0, 7] C Ry, (Ax + ).
(b) If i < r,then [rg, 7] C Ry, (A + 1) and [0, 7] C Ry —1(As—1).

If 7 > r, by the minimality of £1, we have that » ¢ Ry, _1(Ax + I'); now, in view of
Remark A.2 and noting that [0, 7] = [0, r — 1] U {r}, we obtain that

[0,7 = 11 C Rgy—1 G + T) C Rgy—1 (As—1).
If ri < r, we obtain as above that [r, r — 1] C Ry, —1(Ax +I), then
[0,r =11 =[0, e ] U rg, r — 11 C Ry —1(As—1).

If remains to prove (a) and (b).

Proof of (a): We can apply Lemma A.3 to have that (rx, r) C Ry (Ax +T"). We end
by noting that [0, ] C (rg, r).

Proof of (b): We apply Lemma A.3 to have that (rg, r) = [rx,r] C Ry (Ax +1T).
On the other hand, we know that R, 1(A;—1) is a circular interval since g1 — 1 > v
and it contains 0 and r;. Moreover r ¢ Ry, _1(As—1) and r > 1y, then the circular
interval Ry, —1(As—1) contains [0, r¢].

Proof of Statement (2): 1t is enough to show that [r,n — 1] C Ry,—1(A). By an
argument as before, there is an index k < s — 1 such that Ay + m¥fy = Ay + na. Take
ri # r as above. By Lemma A.3, we have that (r, rx) C Ry, (As +T). Let us see that
't ¢ Rg,—1(As + I'). For this, let us show that the property

Ik € Rgy—1(As +T)

leads to a contradiction. This property should imply that Ay +n(a — 1) € A; + T and
hence there are nonnegative integer numbers «, 8 such that

As +na+mpB = A +n(a—1).
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Ifa—1 < «a, we have that Ay = Ay + (0 —a + 1)n 4+ Bm and this contradicts the fact
that Ay < Ay; hence a — 1 > « and we have

As+mB =rir+na—1—a).

Since a — 1 — o < a, we have that 8 < £>. This contradicts the minimality of £5.
Since ry ¢ Ry,—1(As +T'), we can apply Remark A.2 that tells us that

(rori) \{r} C Rgy—1(ks +T') C Rgp—1(A).

Note also that ry € Ry,—1(A). Then we have that (r, 1) C Ry,—1(A).

If r > rg, then [r,n — 1] C (r, k) C Ry,—1(A). Assume now that r < ry. Recall
that r ¢ R,(As—1); since R,(As_1) is a circular interval containing r and 0, but not
containing r, we have that

[rk,n — 11 C Ry(As—1) C Rgp—1(Ag—1) C Rg—1(A).

We conclude that [r,n — 1] = (r, rg) U [rx, n — 1] C Ry, —1(A). O

Proposition A.6 Ler A be a normalized increasing semimodule of length s and let v
be such that ugy1 € I,. Then Ry (A) is a circular interval for any g > v.

Proof Let us proceed by induction on the length s of A. If s = —1, we have A =
A_j; =T'.ByLemmaA.3 applied to © = 0, we are done. Let us suppose thats > 0 and
assume by induction that the result is true for A;_;. Wehave that A = A;_jU(Ag+1D).
This implies that

Rg(A) = Ry(As-1) U RyGhs +T). ¢ 2 0.

Let v be such that ug € I,y. By induction hypothesis, we know that Ry(As—1) isa
circular interval for any g > v’. Moreover, by the increasing property, we have that

Ugt] > g > Ug = Ag—].

In particular, we have that v > v’ and R, (Ag_1)isacircularinterval forany ¢ > v.On
the other hand, take v” such that A; € I,». By Lemma A.3, we know that R, (A; +T')
is a circular interval for any ¢ > v”. Since v > v”, we have that R,(A; + T') is a
circular interval for any ¢ > v. Thus, both

Ry(As—1) and R,(As+T)
are circular intervals for ¢ > v. We need to show that their union ig also a circular
interval. Since v > v”, we have that r € R, (A; + I') for r = &(A,). Noting that
0 e Ry(Ag—1)andr € R;(As +T), in order to prove that R, (A) is a circular interval,
it is enough to show that one of the following properties holds

(@): [0,7r] C Ry(N); b): [r,n—1]C Ry(A).
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We can apply Proposition A.5 to A = A;_1(As). Indeed, by induction hypothesis we
know that R, (As_1) is a circular interval for any p > v'; since v’ < v”, we have that
R, (Ag—1) is a circular interval for any p > v” and thus we are in the hypothesis of
Proposition A.5. Now, by Eq. (15) in Remark 6.8, we have either u;1 = Ay 4+ nlj or
Us+] = Ay +mlp.

(a) If we have us41 = Ag + nly, noting that ¢; = v, we apply Proposition A.5 and we
obtain that [0, 7] C Ry (As—1) C Ry(A).

(b) If we have us;41 = Ay + mly, noting that go = v, we apply Proposition A.5 and
we obtain that [r, n — 1] C Ry (A).

O

Corollary A.7 Let A be an increasing semimodule such that its minimum element )_
is a multiple of n. Let Q p be the main top of A. Then cp < n(Qp — 1).

Proof Assume first that A is normalized. Let v” be such that u; € I, and v” such
that A; € I,7. We know that v” > v’. By Proposition A.6, we know that R, (As_1)
is a circular interval for any ¢ > v’ and hence for any ¢ > v”. Then we are in the
hypothesis of Proposition A.5 and we conclude.

Assume now that A_; = kn and consider the normalization A = A —kn. Let us
note that the tops are related by the property g; = g; — k, for j = 1,2 and hence
Q% = QA — k. On the other hand ¢} = cp — nk. We conclude that

ca =cx +nk <n(Qx — 1) +nk =n(Qx — D).

Appendix B: Structure of the Semimodule

In this Appendix we present a proof, using a different approach to the one of Delorme,
of the main results on the structure of the semimodule of differential values for an

E-cusp C. As before, we denote A = I'(n, m, A1, ..., As), n > 2, the semimodule of
differential values of C and we select a standard basisw_; = dx, wy = dy, w1, ..., w;
of the cusp C.

Proposition B.1 For each 1 < i < s we have the following statements

(1) A; = sup{ve(w) : ve(w) =1}

) Ifve(w) = A, then vy (w) = t;.

(3) For each 1-form w with ve(w) ¢ A1, there is a unique pair a, b > 0 such that
vE (@) = vE(x*yPw;). Moreover, we have that ve (w) > Aj + na + mb.

(4) We have that A; > u;.

(5) Letk = Aj +na+mb, then k ¢ A;_1 if and only if for all  such that v¢(w) = k

we have that v (w) < ve(x®yPw;).

In particular, the semimodules A; are increasing, fori = 1,2,...,s.

Proof Assume thati = 1 and then t; = n + m = u;. We have
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Statement (1) is proven in Proposition 7.5.

Statement (2) is proven in Corollary 7.7.

Statement (3) is proven in Lemma 7.9.

Statement (4) follows from the fact that Ay > n +m = vg(w1) = uj.
Statement (5) is proven in Lemma 7.8.

Now, let us assume that i > 2 and take the induction hypothesis that the statements
(1)-(5) are true for indices £ with 1 < £ <i — 1.

Denote by ¢; and ¢, the A;_;-limits. By Eq. (15) in Remark 6.8, we have two
possibilities: either u; = A;j_; + nl; or u; = Aj—1 + mly. We assume that u; =
Xi—1 + nf1, the computations in the case u; = A;_1 + m#¥, are similar ones.

The proof is founded in three claims as follows:

e Claim 1: There is a 1-form n with vg(n) = t;, whose initial part is proportional
to the initial part of x“ w;_ and such that either vc(n) > cr or ve(n) € Ai—1.

e Claim 2: Any I-form w with ve(w) ¢ A;i_1 is reachable from x*'w;_1.

e Claim 3: Let n be a 1-form such that vy (n) = t; whose initial part is proportional
to the initial part of xYw;_y and such that either ve(n) = cr orve(n) ¢ Ai—1.
Then ve(n) = A;.

We recall to the reader that the notion “initial part” refers to the concept of weighted
initial part defined in Sect. 3.2.

Proof of Claim I Recall that t; = vg(w;—1) +u; — Aj—1 = ve(w;—1) + nty. Let us
start with n| = xh w;_1. We have that

ve(n) =nly +vep(wi—1) =1, ve(m) =nly +Ari—1 =u; € Ajs.

By Statement (5) applied to ve(171) € Aj—», there is 17’1 with vc(n’l) = vc(np) and
vE(n/]) > ve(n1). Since v¢ (n/l) = vce(n1), there is a non-null constant  such that

ve() > ve(n),  where 7 = 1y — un).
Since ve(n]) > ve(n1), we have that vg (77) = ve (1) = ¢; and the initial part of 7 is
the same one as the initial part of 7 = x“'w;_1. If ve (7)) > cr or ve(7]) ¢ A;_1, we
put n = 17 and we are done. Assume that ve(77) € A;_1. Let us write

ve(@) =an+bm+ i, £<i-—1.

Letusseethatvg () < vg (x“yba)g); this is equivalent to verify that#; —t;, < na+mb.
Since ve () > u;, in view of Lemma 7.10 we have

na+mb>u; —rp=nly+ri_1—rg>nly+ti_1—tg=t —ty.
On the other hand, we have that vc (7)) = ve(x*y?wg). Thus, there is a constant 41,
such that ve (1) > ve (i), ve(f1) = ve(ij), where 7] = 7 — n1x?y wy, and the

initial part of 7; is the same one as the initial part of x‘!ew;_;.
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If ve (1) € Aj—1, we repeat the procedure starting with 771, to obtain 7, such that
ve(m2) > ve(n) and ve(72) = t;. After finitely many repetitions, we get a 1-form
n such that vg(n) = t;, whose initial part is the same one as xYw;_y and either
ve(n) = cr or ve(n) ¢ Aj—1. This proves Claim 1.

Proof of Claim 2 Take w such that A = ve(w) ¢ A;_;. Note that A ¢ A;_. By
Statement (3), we have that w is reachable from w;_;. Thus, there are @, b > 0 and a
constant p such that
vE(w — pxyPwi1) > ve(w) = ve(x9yPwi_1) = an + bm + 1.
and moreover, we have that A = ve(w) > an + bm + Aj_1 = k (note that A # k,
since A ¢ A;_1).
Consider the 1-form o’ = w — ux? yba)i_l. We know that

ve(@) =k, vg@) > vpx®y w_1).

By Statement (5), we conclude that k € A;_». Hence k € Aj_> N (Aj—1 +T'). Letus
show that we necessarily have that a > £;. Write

k=an+bm+ A :&n+l;m+kj, j<i-2.
Since A;_1 > Aj, we have that an + bm < an + bm. Thus, we have either a < a or
b < b.1fb < b, we have thatan +A;—y = an+ (b —bym+xr; € Aj—aN(Ai—1 + D).
In view of the minimality of ¢; we should have that £; < a and then w is reachable
from x%' w;_;. Assume that ¢ < & and let us obtain a contradiction. We have

bm+ri—y = (@—ayn+bm+xr; € Ai—aN (A1 +T).

We deduce that b > £,. By Statement (4), we know that A;_; is an increasing semi-

module, starting at A_; = n. By Corollary A.7, we know thatcp, , <n(Qa, , — 1),
where Q 5;_, = max{qi, g2} and g1, g; are the tops of A;_;. Suppose that A € I;, we
have

(D) A>k=an+bm+ Aj_1 > u; =¥€in+ A;—1 and hence d > ¢q;.
2) A>k=an+bm+ ri_1 > €ym + A;j_1 and hence d > ¢3.

We conclude that A € A;_1, contradiction. This ends the proof of Claim 2.

Proof of Claim 3 Note that ve(n) > A;. Assume that A = ve(n) > X;. Recalling
that ve(w;) = A; ¢ A;—1 and that the initial part of 5 is proportional to the initial
part of x“'w;_1, we can apply Claim 2 and we get that w; is reachable from 7. Then
there are a,b > 0 and a constant p such that vg(w; — ux“ybn) > vp(w;). Put
a)ll = w; — ,ux“ybn. We have that vc(wil) = A;, since vc(,ux“ybn) > A > A;. In this
way we produce an infinite list of strictly increasing divisorial order 1-forms

Wi = w;,w;,w;

i i I
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such that vc(a)l.j) = Aj, for any i > 0. For an index j we have that vg (wij) > cr

and then A; > vg (wlj ) > cr and this is a contradiction. So we necessarily have that
ve(n) = A;. This ends the proof of Claim 3.

Proof of Statements (1) and (2): In view of Claim 1 and Claim 3, there is a 1-form 7
with vg(n) = t; such that ve (1) = A;, whose initial part is proportional to the initial
part of xYw;_1. In order to prove Statement (1), it remains to prove that if vg (w) = t;
then ve(w) < ;. Assume that A = ve(w) > A; = ve(n). The 1-form w is basic and
resonant and it has the same divisorial order as n. Hence there is a constant u 7% 0
such that

vEm) >t =ve() = ve(@), ' =n— po.

The 1-form 771 satisfies that vc(nl) = A; ¢ Aj_1; by Claim 2, there are a, b > 0 and
a constant u’ such that

vem? > vemh, n?=n'—uxyby.

We have that vc(nz) = ); and uE(nz) > vE(n1 ). Repeating this procedure, we have a
listof 1-forms n', 52, ... with strictly increasing divisorial order such that ve (n/) = A;
forany j. We find a contradiction just by considering one of such 5/ with vg (n/) > cr.
This ends the proof of Statement (1).

Let us prove Statement (2). Choose w with vg(w) = A;. By Claim 2, we have that w
is reachable from 7 and hence vg(w) > #;. Assume by contradiction that vg (w) > t;.
There is a constant u and a, b > 0 with a + b > 1 such that

1

ve(@") > vp(@), ©' =o— puxy’n.

Since ve(ux®y?n) = an 4+ bm + A; > A;, we have that ve(w') = A;. Repeating
the argument, we get a sequence of 1-forms 0’ = w, w!, ... with strictly increasing

divisorial order such that ve(w/) = A; for any j. This is a contradiction.

Proof of Statement (3): By Claim 2, we have that w; is reachable from x‘'w;_1. By
Statement (2) (already proved) we have that vg (w;) = t;. Hence the initial part of w;
is proportional to the initial part of x¢! w;_1. Consider a 1-form w with ve (w) ¢ A;_1.
By Claim 2 the 1-form w is reachable from x%w;_; and hence it is reachable from
w;. Then, there are a, b > 0 such that

ve(xYPwi) = an 4+ bm + t; = vg(w).

Since ve(w) ¢ Aj—1, we have thatnm > ve(w) > vE(w) > an+ bm, this implies the
uniqueness of a, b. Let us show that ve(w) > an + bm + A;. Assume by contradiction
that vo(w) < an+bm+ ;. Consider w' = w — pux®y?w; such that vg (0') > vE(w).
In view of the contradiction hypothesis, we have that v¢ (w") = vo(w). Moreover, if
ve(oh) = vE(x‘”yb'a)l-) we also have that vo(w) < ain + bym + A;. The situation
repeats and we obtain an infinite sequence of 1-forms 0¥ = w, 0!, ®?, ... with strictly
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increasing divisorial orders, such that ve(w/) = ve(w) for any j > 0. This is a
contradiction.

Proof of Statement (4): Noting that vg b wiy) = 1, by Statement (1) we have
Ai > vc(lea),»_l) = nfy + Ai—1 = u;. On the other hand, since A; ¢ A;_1, we have
that A; # u; and hence A; > u;.

Proof of Statement (5): Consider k = A; + na + mb. Assume first that k ¢ A;_q. Let
w be such that ve(w) = k. We have to prove that

vE(@) < vE(x*yPw;) = an + bm +1;.

In view of Statement (3), we know that w is reachable from w;. Hence there are
a’, b’ > 0 and a constant x such that vg (0 — ux® y? w;) > vg (w). Hence

vE@) = vy w)) = a'n +b'm +1;.

Assume by contradiction that vg(w) > vg (x“yba)l-) = an + bm + t;. This implies
that a’n + b'm > an + bm and thus

vc(xa/yb/a)i) =dn+bm+xr >k=an+bm+ r =ve(xyYw) = ve(w).

Putw' = w— ux”/yb/w,-. We have that v (') = k. Repeating the argument with !,

we obtain an infinite list of increasing divisorial orders 1-forms o = w, 0!, 0, ...

such that ve (/) = k ¢ A;_1. This is a contradiction.
Assume now that k € A;_1. There is an index £ < i — 1 such that

k=an+bm+xi =an+bm-+ r.

ByLemma7.10, we have that A; —A¢ > t; —t; and hence an+bm+1; < a’'n+b'm+1,.
The 1-form x% y” wy satisfies that k = ve (x® y” wy) and

vEGY Y wp) =d'n+bm+t > an+bm + t; = ve(x*yPw;).

This ends the proof. O

Appendix C: Delorme’s Decompositions

In this Appendix, we provide a proof, using another approach, of Delorme’s decompo-
sitions stated in Theorem 8.5. That is, we consider a cusp C € Cusps(E), an extended
standard basis w_1, wg, w1, ..., ws; ws+1 of C, where A = I'(n,m, A1, ..., Ag) is
the semimodule of differential values of C. We have to prove that for any indices
0 < j <i <s, there is a decomposition

J
ij
Wj+1 = Z fg Wy

t=—1
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such that, forany —1 < ¢ < j wehave vc(f[ a)g) > U,J,Where vij = t,_H—tJ +A;and

there is exactly one index —1 < k < j — 1 such that vc(fk W) = vc(f wj) = vjj.
Note that the case i = 0 is straightforward. Indeed, we have vgy = n + m and if
we write w| = adx + bdy, we necessarily have that ve(adx) = ve(bdy) = n+m in
view of the fact that the initial part of w; is proportional to mydx — nxdy.
Thus, we assume thati > 1.

Lemma C.1 Given a I-form n with ve(n) > uj+1 and vg(n) > ti+1, we have

(@) If ve(n) < nm, there is a 1-form a such that vp(n — a) > ve(n) that can be
decomposed as o = le:—l gewy, where vo(gewye) > ujy for —1 < € <.

(b) Ifve(n) = nm, there is a decomposition n =y _,__ | hywy where each summand
hewg satisfies that vg(hgwe) > Uj41.

Proof (b) Assume that vg(n) > nm, we have n = fdx + gdy = fw_| + gwo,
where vg(fdx) > nm and vg(gdy) > nm. In view of Lemma 6.5, we have that
ui+1 < cr +n < nm. We are done by taking the decomposition n = fw_1 + gwo.

(a) Assume that vg (1) < nm. Note that n is a basic 1-form. There are two possible
cases: 7] is resonant or not. Assume first that 7 is not resonant. Then

vem) =ve() = ve(a) > uiy,

where « is the initial part of 5. Note that ve(n — «) > vg(n). We can write «
= g-1dx + gody = g—1w—1 + gowo, where

ve(gewe) = ve(gewe) > ve(a) = vep(n) =ve() > uiy1, £=-—1,0.
This is the desired decomposition.
Assume that 7 is resonant. Define k = max{£ < i; n is reachable from w¢}. The

fact that 7 is resonant implies that K > 1 (recall that i > 1). Consider @, b > 0 and a
constant ¢ such that

ve@) > ve(), 7=n—ex*y . 1)

If we show that v¢ (x“yba)k) > u;4+1,we are done. Let us do it. Assume first thatk = i.
We know that

ve() = vE(X* Y wi) = an+bm+t; > tigr =t + uip1 — Ai.
This implies that an +bm > u; 1 — A; and then vc(x“yba)i) =an+bm—+XAi > uj41.
Assume now that 1 < k < i — 1. Let us reason by contradiction assuming that
ve (x¢yPwr) < uiq1. Denote by 77 = n — x?yPwy. By Eq. (21), we know that
ve(@) > ve(x*yYPwr) = an + bm + 1. (22)
Since v (x¢yPwr) < uit1 < ve(n), we have that

ve (@) = ve(x“yPwy) = an + bm + Ay (23)
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In view of Eqgs. (23) and (22), we can apply Statement (5) in Proposition B.1 to
conclude that

an +bm + © € Ap_1. 24)

Let £ and ¢, be the Ag-limits. Since an + bm + A, € Ar_1, we have thata > £ or
b > ¢, by Lemma 6.9. We have four cases to be considered:

upy1 =nly +Arganda > £y; ugyy =nly + A and b > £s;
upr1 =mly + A anda > €y; ugqy = mly + A and b > 0.

Assume that uz41 = nf; + Ax and a > £;. This implies that x“yba)k, and hence 7,
is reachable from x¢! wy, and hence from wi+1- This contradicts the maximality of the
index k.

Assume that ugy1 = nl; + Ag and b > £, and a < £1. We have that

ve(x“yPwr) = ve(yPwx) = mly + A > ups1 = nly + A
Let g1 and g, be the tops of A and Q 4, the main top, we have that

ve(xyPwr) > nQa, > ca, +n.

Recall that cp, < n(Qa, — 1) in view of Proposition A.5. On the other hand, we
know by Lemma 6.5 that u;11 < cp, +n < cp, + n. We have the contradiction
uis1 < ca, +n <ve(x®yPay) < uiy.

The two remaining cases with u;+; = m#f, + Ax may be considered in a similar
way to the previous ones. O

Proposition C.2 We can write wj+1 = 22:71 fewe where ve(fewe) > uijqy for
—1 < € < i and such that v¢(fiw;) = uijt1 and there is exactly one index k €
{—1,0,1,...,i — 1} satisfying that v (frwk) = Ujy1.

Proof Let us consider first the case i = 0. We know that u; = f; = n + m and that w;
is basic resonant, with vg (w1) = n + m. Then, there is a constant  such that vg () >
n 4+ m, where n = w; — u(mydx — nxdy). We can write n = g_1dx + gody, where
ve(g—1) > mandvg(go) > n.Letusput f_1 = umy+g_1 and fo = —unx-+go. We
have thatve (f—1) = mand ve(fo) = n;hence w) = fo1dx+ fody = fo10-1+ fowo
is the desired decomposition.

Assume now that 1 < i < s. Let £1, {5 be the limits of A;. By Remark 6.8, there
is exactly one index k with —1 < k <i — 1 such that

(1) fuj41 =£€1n+ A, then u; 1 = Ay + bm (note that b > 1).
2) fujy1 = €ym + A;, then uj 1 = Ay + an (note that a > 1).

Assume that u; 1 = £1n + A;, the case u; 1 = €om + A; is symmetric to this one. We
have that

ve (M wp) = i1 = ve(y ay). (25)
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On the other hand, we have that

vE( @) =1+ n =1+ Wig1 — A) = tiv1;
UE(ybwk) =t +bm =1ty +ujt1 — M.

By Lemma 7.10, we have that
e tuipr — A —tiv1 = (A — Ak) — (G — 1) > 0,

and hence t;1| = vE(xkla),-) < vE(yba)k). Since both w;+; and xY1w; are basic
resonant with the same divisorial order ¢#; 11, there is a constant ¢ such that

¢
VE(Wiy1 — ox"'w;) > vp(wit1) = tiy1.

By Eq. (25), there is a constant p such that

VC(CD,QH) > uj4+1, where “’?+1 = wxela)i — uthk.
Put 170 = wj+1 — a)?+] = wj+1 — <px£‘a)i + ,uyba)k. We have that vE(nO) > ti+1 and
ve(®) > uiy in view of the following facts:
(1) ve®) = min{ve @ip1 — @x“wp), vE(Uy o)) > i1
(2) ve(°) = min{ve (i 1), ve (@), )} = min{Ai 1, ve(@)} > uit1. Recall that A
is an increasing semimodule; (here we put A;| = 00).

The proof is now a consequence of Lemma C.1 as follows. We start with 7° as before.
If vg(n°) > nm, we apply Lemma C.1 (b). We are done by taking the decomposition

i i
0 ¢ b
Wiyl = w4 + E hewe = ox"'w; — py’ wp + E hews.
=1 =1

If ve(n®) < nm, we apply Lemma C.1 (a) and we obtain ' = 0 — 22:_1 gewy
such that vE(nl) > vE(nO) > ti+1 and vc(nl) > ujyp. If vE(nl) < nm, we re-apply
Lemma C.1 (a) to nl. After finitely many steps, we obtain

i
i=n"— > &,
(=1

such that vg (17) > nm, ve(7) > uit1 and ve (7)) > ti+1, where ve(8ewe) > uity for
any —1 < ¢ < i. We apply Lemma C.1 (b) to ] to obtain that 7 = > ,__| hew with
ve (hewy) > u;i+1. The desired decomposition is given by

14 1
w1 =0l + Y @ +hooe = px"or — o+ Y @+ hoor.
=1 e=—1
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This ends the proof. O

Let us end the proof of Theorem 8.5. We already know that it is true when j = i,
in view of Proposition C.2. We assume that the result is true for j + 1 < i and let us
show that it is true for 0 < j < i. In order to simplify notations, let us write

Vj = ligl =i+ Aj Vil = ligl — L+ Ayl
Recall that vj 1 = v; + 441 — u41. By induction hypothesis, we have that
j+l
wip1 =Y heo,
=—1
where ve(hewy) > vjgg forany —1 < € < j+ 1 and vo(hjr1@j4+1) = vjy1. We
apply Proposition C.2 to write w11 = Zé:—l gewg, where ve(gewe) > uj4 for any

—1 < £ < j and there is exactly one index k such that ve(gjw;) = ve(grwr) = uj11.
Now, we have an expression

J
w1 =Y fior, fo=he+hjpig.
=—1

We have the following properties:

(1) ve(hewe) > vj, forany —1 < £ < j. Indeed, we know that
Vit = vj + (g1 —ujy1) > vy,

recall that the semimodule is increasing and then A j 11 > u 1.
(2) ve(hjy1gew¢) > vj and k, j are the unique indices such that

ve(hjr18j@;) = ve(hjt18kwr) = vj.
In order to prove this, it is enough to note that
ve(hjr18ewe) = (Vi1 — Aj+1) +ve(gewe) = (Vjr1 — Aj1) + Ujr1 = v

and the equality holds exactly for the indices £ = j, k.

The desired result comes from the above properties (1) and (2), noting that
ve(fewe) = min{ve (hewe), ve(hjr18ewe)}
and the equality holds when the two values are different.
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