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Abstract
The analytic moduli of equisingular plane branches has the semimodule of differen-
tial values as the most relevant system of discrete invariants. Focusing in the case of
cusps, the minimal system of generators of this semimodule is reached by the dif-
ferential values attached to the differential 1-forms of the so-called standard bases.
We can complete a standard basis to an extended one by adding a last differential
1-form that has the considered cusp as invariant branch and the “correct” divisorial
order. The elements of such extended standard bases have the “cuspidal” divisor as a
“totally dicritical divisor” and hence they define packages of plane branches that are
equisingular to the initial one. These are the analytic semiroots. In this paper we prove
that the extended standard bases are well structured from this geometrical and foliated
viewpoint, in the sense that the semimodules of differential values of the branches in
the dicritical packages are described just by a truncation of the list of generators of
the initial semimodule at the corresponding differential value. In particular they have
all the same semimodule of differential values.
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1 Introduction

The analytic classification of plane branches startswithZariski (2006),whopointed the
importance of the differential values in this problem. The semimodule of differential
values was extensively described by Delorme (1978), although the complete analytic
classification is due to Hefez and Hernandes (2011).

Geometrically, the “most interesting” differential values are viewed as the contact
νC(ω) of a given branch C with the foliations defined by differential 1-formsωwithout
common factors in the coefficients. From the moduli view-point, the semimodule of
differential values � is interpreted as the “discrete structure” supporting the contin-
uous part of the moduli. More precisely, the semimodule � has a well defined basis
{λ j }sj=−1; so, it is reasonable to fix our attention in the differential forms that produce
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precisely the elements of the basis as differential values: these are the elements of the
standard bases (for more details, see Hefez and Hernandes 2001, 2007).

In this paper we focus in the case of cusps, that is, branches with a single Puiseux
pair (n,m). Our objective is to describe the cusps close to a cusp C, in terms of a given
standard basisH and the dicritical foliated behaviour of the elements ofH in the final
divisor E of the reduction of singularities of C. Let us precise this.

We consider a cusp C with Puiseux pair (n,m). In view of Zariski Equisingularity
Theory, we know that the semigroup � = nZ≥0 + mZ≥0 of C is an equivalent data
of the equisingularity class of C. The differential values define a semimodule �C over
�, that will have a strictly increasing basis

λ−1 = n, λ0 = m, λ1, . . . , λs,

to be the minimal one such that �C = ∪s
j=−1(λ j + �). By definition, an extended

standard basis is a list of 1-forms

ω−1, ω0, ω1, . . . , ωs+1,

such that νC(ωi ) = λi for i = −1, 0, 1, . . . , s and C is an invariant branch of ωs+1,
that is νC(ωs+1) = ∞, with some restrictions on the weighted order of ωs+1.

Associated to the final divisor E given by C, we have a divisorial order νE (ω)

defined for functions and 1-forms. In adapted coordinates it is the weighted monomial
order that assigns the weight an + bm to the monomial xa yb. Both the differential
values and the divisorial orders act “like” valuations and we have that νE (ω) ≤ νC(ω).
For the case of a function we have that if νE (d f ) < nm, then there is no resonance
in the sense that νE (d f ) = νC(d f ). Thus, the “new differential values” in �C will
correspond to resonant 1-forms ω such that νE (ω) < νC(ω).

The structure of the semimodule �C is well known (see Delorme 1978; Alberich-
Carramiñana et al. 2022; Almirón andMoyano-Fernández 2021); anyway, we provide
complete proofs using another approach in the appendices of the paper. The key
elements are the axes ui , and the critical orders ti , defined by

ui+1 = min(�i−1 ∩ (λi + �)), ti+1 = ti + ui+1 − λi ,

starting at u0 = n and t−1 = n, t0 = m, where �C
i−1 = ∪i−1

j=−1(λ j + �). The axes are
defined for i = 0, 1, . . . , s + 1 and the critical orders for i = −1, 0, . . . , s + 1. We
know that the semimodule is increasing in the sense that λi > ui for i = 1, 2, . . . , s
and the elements of any extended standard basis are characterized by the following
properties

(1) νE (ωi ) = ti and νC(ωi ) /∈ �C
i−1, for i = −1, 0, . . . , s.

(2) νE (ωs+1) = ts+1 and νC(ωs+1) = ∞.

Of course, the above properties assure that νC(ωi ) = λi .
From the geometrical viewpoint, for each i = 1, 2, . . . , s + 1, the elements ωi of

an extended standard basis are what we call basic and resonant. This property implies
that the transform ω̃i of the 1-form ωi by the morphism π of reduction of singularities
of C has two remarkable properties:
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(a) The greatest common divisor of the coefficients of ω̃i defines a normal crossings
divisor at the points of E contained in the exceptional divisor of the morphism π .

(b) The divisor E is dicritical (not invariant) for the foliation given by ω̃i = 0. More-
over, this foliation is nonsingular and it has normal crossings with the exceptional
divisor of π at the points of E .

As a consequence of this, given an extended standard basis, we find a dicritical package
{CiP } of cusps for each i = 1, 2, . . . , s+1 parameterized by the points P ∈ E that are
not corners of the exceptional divisor (that is, elements of C∗). Each CiP corresponds
to the invariant curve of ω̃i = 0 through the point P . In particular, if P0 is the
infinitely near point of C at E , we have that Cs+1

P0
= C. In a terminology inspired in

Equisingularity Theory and Reduction of Singularities (see for instance Abhyankar
and Moh 1973a, b; Wall 2004; Seidenberg 1968 for the case of foliations), we could
say that {CiP0} are the specific analytic semiroots and that {CiP } are the general analytic
semiroots of C associated to the given extended standard basis.

The property of E to be dicritical for the 1-forms ωi has been suggested to us by
M. E. Hernandes. We have a work in progress with him in this direction (Corral et al.
2023).

The main objective of this paper is to describe the semimodule and extended stan-
dard bases of the analytic semiroots. The statement is the following one:

Theorem 1.1 Let �C = ∪s
j=−1(λi + �) be the semimodule of differential values and

consider an extended standard basis

ω−1 = dx, ω0 = dy, ω1, . . . , ωs+1

of the cusp C. Take an index i ∈ {1, 2, . . . , s + 1} and an analytic semiroot CiP of C
associated to the given extended standard basis. Then the semimodule of differential
values of CiP is precisely �C

i−1 and

ω−1 = dx, ω0 = dy, ω1, . . . , ωi

is a extended standard basis for CiP .
The proof of this result uses as amain toolDelorme’s decomposition of the elements

of a standard basis. In the appendices, we provide proofs, using a different approach to
the one of Delorme, of the structure results for the semimodule of differential values
and of Delorme’s decomposition.

Let us remark that it is possible to have curves of the dicritical package of the
elements ω j , when j ≥ 2, of an extended standard basis that are not analytically
equivalent, although they have the same semimodule of differential values. This occurs
for instance if we compute a standard basis for the curve

t 	→ (t7, t17 + t30 + t33 + t36).

as shown inExample 8.13.Anatural question arises about “howmany” analytic classes
may be obtained in this way.
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2 Cusps and Cuspidal Divisors

We are interested in the analytic moduli of branches with only one Puiseux pair, the
analytic cusps. The last divisor of the minimal reduction of singularities of an analytic
cusp is what we call a cuspidal divisor. As we shall see below, the study of the analytic
moduli may be done through a fixed cuspidal divisor.

2.1 Cuspidal Sequences of Blowing-ups

Our ambient space is a two-dimensional germ of nonsingular complex analytic space
(M0, P0). We are going to consider a specific type of finite sequences of blowing-ups
centered at points, that we call cuspidal sequences of blowing-ups and we introduce
below.

First of all, let us establish some notations concerning a nonempty finite sequence
of blowing-ups centered at points

S = {πk : (Mk, Kk) → (Mk−1, Kk−1); k = 1, 2, . . . , N },

starting at (M0, P0) = (M0, K0). For any k = 1, 2, . . . , N , the center of πk is denoted
by Pk−1, note that Pk−1 ∈ Kk−1. We denote the intermediary morphisms as σk :
(Mk, Kk) → (M0, P0) and ρk : (MN , KN ) → (Mk, Kk), where

σk = π1 ◦ π2 ◦ · · · ◦ πk, ρk = πk+1 ◦ πk+2 ◦ · · · ◦ πN .

We denote the exceptional divisor of πk as Ek
k = π−1

k (Pk−1). By induction, for any
1 ≤ j < k we denote by Ek

j ⊂ Mk the strict transform of Ek−1
j by πk . In this way we

have that

Kk = σ−1
k (P0) = Ek

1 ∪ Ek
2 ∪ · · · ∪ Ek

k .

For any P ∈ Kk , we define e(P) = #{ j; P ∈ Ek
j }. Note that e(P) ∈ {1, 2}. If

e(P) = 1, we say that P is a free point and if e(P) = 2 we say that it is a corner
point. Note that all the points in E1

1 = K1 are free points. The last divisor EN
N will be

denoted E = EN
N . We will also denote M = MN , K = KN and π = σN : (M, K ) →

(M0, P0).

Definition 2.1 Following usual Hironaka’s terminology, we say that the sequence S
is a bamboo if Pk ∈ Ek

k for any k = 1, 2, . . . , N − 1. We say that S is a cuspidal
sequence if it is a bamboo and e(Pk−1) ≤ e(Pk), for any 2 ≤ k ≤ N − 1. The last
divisor E of a cuspidal sequence is called a cuspidal divisor.

Remark 2.2 In the frame of Algebraic Geometry, the cuspidal divisor E corresponds
to a valuation νE of the field of rational functions and it determines completely the
cuspidal sequence, once the starting ambient space is fixed. We will work with this
valuation, but we present it in a direct way.
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Given a cuspidal sequence S with N ≥ 2, there is well defined index of free-
ness f with 1 ≤ f ≤ N − 1 such that P1, P2, . . . , Pf are free points and
Pf+1, Pf +2, . . . , PN−1 are corner points. If N = 1 we put f = 0. A nonsingu-
lar branch (Y , P0) ⊂ (M0, P0) has maximal contact with S if and only if Pk is an
infinitely near point of (Y , P0) for each k = 1, 2, . . . , Pf .

Remark 2.3 For any cuspidal sequence S there is at least one nonsingular branch
(Y , P0) having maximal contact with S. Moreover, if (Y , P0) has maximal contact
with S and (Y ′, P0) is another nonsingular branch, we have that (Y ′, P0) has maximal
contact with S if and only if iP0(Y ,Y ′) ≥ f + 1, where iP0(Y ,Y ′) stands for the
intersection multiplicity.

We define intermediate cuspidal sequences of a cuspidal sequence S as follows.
Given an index 0 ≤ j ≤ N − 1, the intermediate j th-cuspidal sequence S( j) of S is
the sequence of length N − j , starting at (Mj , Pj ) such that the blowing ups

π
( j)
k : (Mk+ j , K

( j)
k ) → (Mk+ j−1, K

( j)
k−1), k = 1, 2, . . . , N − j

are obtained by restriction from πk+ j , where we put K
( j)
0 = {Pj } and K ( j)

k ⊂ Kk+ j

is the image inverse of Pj by π j+1 ◦ π j+2 ◦ · · · ◦ π j+k .

Remark 2.4 Note that the (k, i)-divisor of S( j) corresponds to the (k+ j, i+ j) divisor
of S. In particular the last divisors of S( j) and S are both equal to E .

The Puiseux pair (n,m) of S is defined by an inductive process that corresponds
to Euclides’ algorithm as follows. If N = 1, we put (n,m) = (1, 1). If N > 1, we
consider the intermediate cuspidal sequence S(1) starting at (M1, P1) that is supposed
to have Puiseux pair (n1,m1). Then

(1) If f ≥ 2, we have that f1 = f − 1 and we put (n,m) = (n1,m1 + n1).
(2) If f = 1, we put (n,m) = (m1, n1 + m1).

We see that 1 ≤ n ≤ m and n,m are without common factor. Note also that f ≥ 2
if and only ifm ≥ 2n. Moreover, if f = 1 and N ≥ 2, we have that 2 ≤ n < m < 2n.

Proposition 2.5 Consider 1 ≤ n ≤ m without common factor and a nonsingular
branch (Y , P0) ⊂ (M0, P0). There is a unique cuspidal sequence S starting at
(M0, P0) having maximal contact with (Y , P0) and such that (n,m) is the Puiseux
pair of S.
Proof If n = m = 1, the only possibility is that N = 1 and then S consists in the
blowing-up of P0. Let us proceed by induction on n +m and assume that n +m > 2.
We necessarily have that N ≥ 2, the first blowing-up π1 is centered in P0 and P1 is
the infinitely near point of Y in E1

1 .
Assume first that 2n ≤ m. We apply induction to (Y1, P1) with respect to the pair

n′,m′ where n′ = n,m′ = m−n and we obtain a cuspidal sequence S ′ over (M1, P1)
of length N ′ with the required properties. We construct S of length N = N ′ + 1 by
taking πk centered at the point P ′

k−2, for k = 2, 3, . . . , N ′ + 1.
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In the case that n ≤ m < 2n we consider the branch (Y ′
1, P1) = (E1

1 , P1), we apply
induction to (Y ′

1, P1) with respect to the pair n
′,m′ where n′ = m−n,m′ = n and we

obtain a cuspidal sequence S ′ over (M1, P1) of length N ′. We construct S os length
N = N ′ + 1 as before.

The uniqueness of S follows by an inductive invoking of the uniqueness after one
blowing-up. ��

We denote by Sn,m
Y the sequence obtained in Proposition 2.5. Recall that Y ′ has

maximal contact with Sn,m
Y if and only if iP0(Y ,Y ′) ≥ f + 1, and hence in this case

we have that Sn,m
Y = Sn,m

Y ′ . Note also that given a cuspidal sequence S there is a
nonsingular branch (Y , P0) and a Puiseux pair (n,m) in such a way that S = Sn,m

Y .

2.2 Coordinates Adapted to a Cuspidal Sequence of Blowing-ups

Consider a cuspidal sequence S over (M0, P0). A system (x, y) of local coordinates
at P0 is adapted to S if and only if y = 0 has maximal contact with S. In particular,
we have that S = Sn,m

y=0, where (n,m) is the Puiseux pair of S.
The blowing-ups of S have a monomial expression in terms of adapted coordinates

aswe see below.Assume thatS = Sn,m
y=0,with N ≥ 2. Let us describe a local coordinate

system (x1, y1) at P1 and a pair (n1,m1):

• If f ≥ 2, we know that 2n ≤ m and we put

n1 = n, m1 = m − n, x = x1, y = x1y1.

• If f = 1, we have that 2n > m > n ≥ 2 and we put

n1 = m − n, m1 = n, y = x1y1, x = y1.

The reader can verify that (x1, y1) is a coordinate system adapted to S(1) and that
(n1,m1) is its Puiseux pair. In this way, we have local coordinates x j , y j at each Pj ,
for 0 ≤ j ≤ N − 1.

Once we have an adapted coordinate system (x, y), we denote (H0, P0) the normal
crossings germ given by xy = 0. Define Hj = σ−1

j (H0), then the germ of Hj at Pj is

given by x j y j = 0, for any 0 ≤ j ≤ N−1.We can also consider H = π−1(H0) ⊂ M ;
it is a normal crossings divisor of (M, K ) containing K .

2.3 Cuspidal Analytic Module

Consider a cuspidal sequence S with Puiseux pair (n,m) with 2 ≤ n. Let E be the
last divisor of S. We say that an analytic branch (C, P0) ⊂ (M0, P0) is an E-cusp,
or a S-cusp if the strict transform of (C, P0) under the sequence of blowing-ups π

is nonsingular and cuts transversely E at a free point. Let us denote by Cusps(E) =
Cusps(S) the family of E-cusps.

Each element of Cusps(S) is equisingular to the irreducible cusp yn − xm = 0,
where (n,m) is the Puiseux pair of S. Moreover, we have the following result
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Proposition 2.6 Consider a cuspidal sequence S with Puiseux pair (n,m) and last
divisor E. Let (C, P0) be a branch of (M0, P0) equisingular to the irreducible cusp
yn − xm = 0. There is an E-cusp analytically equivalent to (C, P0).

Proof Choose a local coordinate system (x, y) adapted to S.
If n = 1, the branch (C, P0) is nonsingular. Then, there is an automorphism φ :

(M0, P0) → (M0, P0) such that φ(C) = (y = 0). We are done since in this case
y = 0 is an E-cusp.

Assume that 2 ≤ n < m. In view of the classical arguments of Hironaka (see
for instance Aroca et al. 2018, p. 105), there is a nonsingular branch (Z , P0) having
maximal contact with (C, P0), that is with the property that

iP0(Z , C) = m.

Take an automorphism φ : (M0, P0) → (M0, P0) such that φ(Z) = (y = 0). We
have that (φ(C), P0) is an E-cusp. ��

According to the above result, the analytic moduli of the family of branches equi-
singular to the irreducible cusp yn − xm = 0 is faithfully represented by the analytic
moduli of the family Cusps(S).

Along the rest of this paper,we consider afixed cuspidal sequenceS where (n,m)

is its Puiseux pair and E is the last divisor. Recall also that the composition of
all the blowing-ups of S is denoted by

π : (M, K ) → (M0, P0).

We also choose a local coordinate system (x, y) adapted to S.

3 Divisorial Order

Consider a holomorphic function h in (M, K ) defined globally in E ⊂ K , the diviso-
rial order νE (h) of h is obtained as follows. Take a point P ∈ E and choose a reduced
local equation u = 0 of the germ (E, P), then

νE (h) = max{a ∈ Z; u−ah ∈ OM,P }.

This definition does not depend on the chosen point P ∈ E nor on the local reduced
equation of E . Take a point Pj , with j ∈ {0, 1, . . . , N −1} and a germ of holomorphic
function h ∈ OMj ,Pj . Then ρ∗

j h is a germ of function in (M, K ) globally defined in
E . We define the divisorial order νE (h) by νE (h) = νE (ρ∗

j h).

Proposition 3.1 Consider a germ h ∈ OM0,P0 that we write as

h =
∑

α,β

hα,βx
α yβ, hαβ ∈ C.
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Then νE (h) = min{nα + mβ; hα,β �= 0}.
Proof If n = m = 1we have a single blowing-up andwe recover the usualmultiplicity,
that we visualize in E as νE (h). Let us work by induction on n + m and assume that
n+m ≥ 2.We remark that νE (h) = νE (π∗

1 h). Consider the first intermediate sequence
S(1) of S, with adapted coordinates (x1, y1). Recalling how we obtain intermediate
coordinate systems, we conclude that

π∗
1 h =

∑

α,β

hα,βx
α+β
1 yβ

1 ; if f ≥ 2; here n1 = n,m1 = m − n,

π∗
1 h =

∑

α,β

hα,βx
β
1 y

α+β
1 ; if f = 1; here n1 = n − m,m1 = n.

We end by applying induction hypothesis. ��

3.1 Divisorial Order of a Differential Form

Recall that we denote

H0 = (xy = 0) ⊂ M0, Hj = σ−1
j (H0) ⊂ Mj

and that Hj is locally given at Pj by xi y j = 0 for 0 ≤ j ≤ N − 1. We also consider
HN = H = π−1(H0) ⊂ M . Each Hj is a normal crossings divisor in (Mj , K j ),
containing K j .

Take a point Q ∈ K j , not necessarily equal to Pj , in particular we consider also
the case j = N . Select local coordinates (u, v) such that (u = 0) ⊂ Hj ⊂ (uv = 0),
then we have that either Hj = (u = 0) or Hj = (uv = 0) locally at Q. The
OMj ,Q-module 
1

Mj ,Q
[log Hj ] of germs of Hj -logarithmic 1-forms is the rank two

free OMj ,Q-module generated by

du/u, dv if Hj = (u = 0),
du/u, dv/v if Hj = (uv = 0).

Note that 
1
Mj ,Q

⊂ 
1
Mj ,Q

[log Hj ]. Indeed, a differential 1-form ω = adu + bdv

may be written as

ω = ua
du

u
+ bdv = ua

du

u
+ vb

dv

v
.

Now, let us consider a 1-form ω ∈ 
1
M [log H ] defined in the whole divisor E (we

suppose that the reader recognizes the sheaf nature of 
1
M [log H ]). Select a point

Q ∈ E and a local reduced equation u = 0 of E at Q. We define the divisorial order
νE (ω) by

νE (ω) = max{� ∈ Z; u−�ω ∈ 
1
M,Q[log H ]}.
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The definition is independent of Q ∈ E and of the reduced local equation of E .

Remark 3.2 Let ω ∈ 
1
M [log E] be globally defined on E as before. Since E is one

of the irreducible components of H , we have that


1
M [log E] ⊂ 
1

M [log H ].

Let us choose a reduced local equation u = 0 of E at a point Q ∈ E as before. A
direct computation shows that

νE (ω) = max{� ∈ Z; u−�ω ∈ 
1
M,Q[log E]}. (1)

This remark shows that the divisorial order, applied to 1-forms ω ∈ 
1
M [log E] is

independent of the choice of the adapted coordinate system that defines H0. Anyway,
this is only a remark for the case n = 1, since when n ≥ 2 the divisor H at the points
of E is itself independent of the adapted coordinate system.

Definition 3.3 For any ω ∈ 
1
Mj ,Pj

, the divisorial order νE (ω) is defined by νE (ω) =
νE (ρ∗

jω).

Proposition 3.4 Consider a differential 1-form ω = adx + bdy ∈ 
1
M0,P0

, that we
can write as

ω = xa(dx/x) + yb(dy/y) ∈ 
1
M0,P0 [log H0].

Then, we have that νE (ω) = min{νE (xa), νE (yb)}.
Proof Write ω = f (dx/x) + g(dy/y). We proceed by induction on N . If N = 1 we
have that E = (x ′ = 0) where x = x ′, y = x ′y′ and

π∗
1ω = ( f + g)(dx ′/x ′) + g(dy′/y′).

Then νE (ω) = min{νE ( f + g), νE (g)} = min{νE ( f ), νE (g)} and we are done. If
N ≥ 2, we have that

νE (ω) = νE (π∗ω) = νE (ρ∗
1 (π

∗
1ω)) = νE (π∗

1ω).

By induction hypothesis, we have

νE (π∗
1ω) = min{νE ( f + g), νE (g)} = min{νE ( f ), νE (g)}

and we are done as before. ��
Corollary 3.5 If f ∈ OM0,P0 and ω = d f , then νE (ω) = νE ( f ).

Proof It is enough to write d f = x(∂ f /∂x)(dx/x) + y(∂ f /∂ y)(dy/y), recalling
Euler’s identity gP = x Px + yPy for degree g homogeneous polynomials. ��
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3.2 Weighted Initial Parts

Consider a nonzero germ h ∈ OM0,P0 , that we write as h = ∑
α,β hαβxα yβ . Suppose

that q ≤ νE (h). We define the weighted initial part Inqn,m;x,y(h) by

Inqn,m;x,y(h) =
∑

nα+mβ=q

hαβx
α yβ.

Note that Inqn,m;x,y(h) = 0 if and only if q < νE (h). Anyway, we can write

h = Inqn,m;x,y(h) + h̃, νE (h̃) > q.

This definition extends to logarithmic differential 1-forms ω ∈ 
1
M0,P0

[log(xy = 0)]
as follows. Take q ≤ νE (ω). Write ω = f (dx/x) + g(dy/y). We define

Inqn,m;x,y(ω) = Inqn,m;x,y( f )(dx/x) + Inqn,m;x,y(g)(dy/y).

As before, we have ω = Inqn,m;x,y(ω) + ω̃, with νE (ω̃) > q.

Remark 3.6 The definition of initial part we have presented should be made in terms
of graduated rings and modules to be free of coordinates. Anyway, this “coordinate-
based” definition is enough for our purposes.

Proposition 3.7 Assume that N > 1, take ω ∈ 
1
M0,P0

[log(xy = 0)] and q ∈ Z≥0

with q ≤ νE (ω). If W = Inqn,m;x,y(ω), then π∗
1 (W ) = Inqn1,m1;x1,y1(π

∗
1ω).

Proof Left to the reader. ��

4 Total Cuspidal Dicriticalness

This section is devoted to characterize the 1-forms ω ∈ 
1
M0,P0

whose transform π∗ω
defines a foliation that is transversal to E and has normal crossings with K at each
point of E . These 1-forms are the so-called pre-basic and resonant 1-forms. We detect
these properties in terms of resonances of the initial part. The initial part is visible in
the Newton polygon as the contribution of the 1-form to a single vertex (a, b), under
the condition that the Newton polygon is contained in the particular region Rn,m(a, b).

4.1 Reduced Divisorial Order and Basic Forms

Let us consider a nonnull differential 1-form ω ∈ 
1
M0,P0

. Let Vω = xa yb be the

monomial defined by the property that ω = Vωη, where η ∈ 
1
M0,P0

[log(xy = 0)] is
a logarithmic form that cannot be divided by any nonconstant monomial. We define
the reduced divisorial order rdoE (ω) to be rdoE (ω) = νE (η).
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Definition 4.1 We say that ω ∈ 
1
M0,P0

is a basic 1-form if and only if its reduced
divisorial order satisfies that rdoE (ω) < nm.

Proposition 4.2 Assume that N ≥ 2 and take ω ∈ 
1
M0,P0

. If ω is a basic 1-form, then
π∗
1ω is also a basic 1-form.

Proof Put p = rdoE (ω) = νE (η) < nm. Recall that νE (η) = νE (π∗
1 η). Since

monomials are well behaved under π1, it is enough to show that there are c, d ≥ 0
such that π∗

1 η = xc1 y
d
1 η′, with νE (η′) < n1m1. Write

η =
∑

α,β

xα yβηαβ, ηαβ = μαβ

dx

x
+ ζαβ

dy

y
, (μαβ, ζαβ) ∈ C

2.

Recall that p = min{nα + mβ; ηαβ �= 0}. Put r = min{α + β; ηαβ �= 0}. We have
two cases: f = 1 and f ≥ 2, where f is the index of freeness.

Assume first that f ≥ 2 and hence 2n ≤ m. In this situation, we have that x = x1,
y = x1y1, n1 = n, m1 = m − n ≥ n and

π∗
1 (η) = xr1η

′, η′ =
∑

α,β

xα+β−r
1 yβ

1 η′
αβ, η′

αβ = (
μαβ + ζαβ

) dx1
x1

+ ζαβ

dy1
y1

.

Note that η′
αβ �= 0 if and only if ηαβ �= 0. Hence

νE (η′) = min{n1(α + β − r) + m1β; ηαβ �= 0}
= min{n(α + β − r) + (m − n)β; ηαβ �= 0}
= min{nα + mβ − nr; ηαβ �= 0} = p − nr .

We have to verify that p−nr < n1m1, where n1m1 = n(m−n) = nm−n2. If r ≥ n,
we are done, since by hypothesis we have that p < nm. Assume that r < n. There are
α̃, β̃ with ηα̃β̃ �= 0 such that α̃ + β̃ = r . Then

p − nr ≤ nα̃ + mβ̃ − nr = n(α̃ + β̃) + (m − n)β̃ − nr

= (m − n)β̃ < (m − n)n,

since β̃ ≤ r < n.
Assume that f = 1 and thus n < m < 2n. We have x = y1, y = x1y1, n1 =

m − n < n, m1 = n and

π∗
1 (η) = yr1η

′′, η′′ =
∑

α,β

xβ
1 y

α+β−r
1 η′′

αβ, η′′
αβ = ζαβ

dx1
x1

+ (
μαβ + ζαβ

) dy1
y1

.
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As before, we have that η′′
αβ �= 0 if and only if ηαβ �= 0. Hence

νE (η′′) = min{n1β + m1(α + β − r); ηαβ �= 0}
= min{(m − n)β + n(α + β − r); ηαβ �= 0}
= min{mβ + nα − nr; ηαβ �= 0} = p − nr .

We verify that p − nr < n1m1 exactly as before. ��

4.2 Resonant Basic Forms

Let ω ∈ 
1
M0,P0

be a basic 1-form with p = rdoE (ω). This means that there is

η ∈ 
1
M0,P0

[log(xy = 0)] and a, b ≥ 0 such that ω = xa ybη

ω = xa ybη, η ∈ 
1
M0,P0 [log(xy = 0)],

where p = νE (η) < nm. The initial part of ω may be written

Inp+na+mb
n,m;x,y (ω) = xa ybW , W = Inp

n,m;x,y(η).

Note that there is exactly one pair (c, d) ∈ Z
2≥0 such that cn+dm = p. Then we have

that

W = xc yd
{
μ
dx

x
+ ζ

dy

y

}
.

We say that ω is resonant if and only if nμ + mζ = 0.
We have the following result that follows directly from the computations in the

proof of Proposition 4.2.

Corollary 4.3 Assume that N ≥ 2. A basic differential 1-form ω ∈ 
1
M0,P0

is resonant
if and only if π∗

1ω is resonant.

4.3 Pre-Basic Forms

Let us introduce a slightly more general class of 1-forms that we call pre-basic forms.
Given a 1-form

ω =
∑

α,β

cαβx
α yβωαβ, ωαβ =

{
μαβ

dx

x
+ ζαβ

dy

y

}
, (2)

the cloud of points Cl(ω; x, y) is Cl(ω; x, y) = {(α, β);ωαβ �= 0} and the Newton
Polygon N (ω; x, y) is the positive convex hull of Cl(ω; x, y) in R2≥0.

Consider a pair (n,m) with 1 ≤ n ≤ m such that n,m have no common factor.
There are unique b, d ∈ Z≥0 such that dn−bm = 1 with the property that 0 ≤ b < n
and 0 < d ≤ m. We call (b, d) the co-pair of (n,m).
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Remark 4.4 Suppose that 1 ≤ n ≤ m are without common factor and take b, d such
that dn − bm = 1. If 0 ≤ b < n, we have that 0 < d ≤ m and then (b, d) is the
co-pair of (n,m). In the same way, if 0 < d ≤ m, we have that 0 ≤ b < n and then
(b, d) is the co-pair of (n,m).

Definition 4.5 Given a pair 1 ≤ n ≤ m without common factor, we define the region
Rn,m by Rn,m = Hn,m

− ∩ Hn,m
+ , where

Hn,m
− = {(α, β) ∈ R

2; (n − b)α + (m − d)β ≥ 0},
Hn,m

+ = {(α, β) ∈ R
2; bα + dβ ≥ 0},

and (b, d) is the co-pair of (n,m).

Remark 4.6 If n = m = 1, the co-pair of (1, 1) is (b, d) = (0, 1). Then

H1,1
− = {(α, β); α ≥ 0}, H1,1

+ = {(α, β); β ≥ 0}.

Thus, we have that R1,1 is the quadrant R1,1 = R
2≥0.

Remark 4.7 The slopes −(n − b)/(m − d) and −b/d satisfy that

−(n − b)/(m − d) < −n/m < −b/d.

Indeed, we have −n/m < −b/d ⇔ −dn < −mb = −dn + 1. On the other hand

−(n − b)/(m − d) < −n/m ⇔ m(n − b) > n(m − d) ⇔ bm < dn = bm + 1.

We conclude that Rn,m is a positively convex region of R2 such that (0, 0) is its
only vertex and we have that

Rn,m ∩ {(α, β) ∈ R
2; nα + mβ = 0} = {(0, 0)}.

Given a point (a, b) ∈ R
2≥0, we define Rn,m(a, b) by Rn,m(a, b) = Rn,m + (a, b).

Definition 4.8 We say that ω ∈ 
1
M0,P0

is pre-basic if and only if there is a point
(a, b) ∈ Cl(ω; x, y) such that Cl(ω; x, y) ⊂ Rn,m(a, b).

Remark 4.9 Note that ω is pre-basic if and only if (a, b) ∈ N (ω; x, y) and
N (ω; x, y) ⊂ Rn,m(a, b).

If ω is pre-basic, we have that

Cl(ω; x, y) ∩ {(α, β) ∈ R
2; nα + mβ = νE (ω)} = {(a, b)}.

Thus, the initial part W of ω has the form

W = xa yb
{
μab

dx

x
+ ζab

dy

y

}
. (3)
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As for basic forms, we say that ω is resonant if and only if nμab + mζab = 0.

Lemma 4.10 Assume that 1 ≤ n < m, where n,m are without common factor and
let (b, d) be the co-pair of (n,m). Let us put (n1,m1) = (n,m − n), if m ≥ 2n and
(n1,m1) = (m − n, n), if m < 2n. Then, the co-pair (b1, d1) of (n1,m1) is given by
(b1, d1) = (b, d − b), if m ≥ 2, and by (b1, d1) = (m − n− d + b, n− b), if m < 2n.
Moreover, we have that �(Rn,m) = Rn1,m1 , where � is the linear automorphism of
R
2 given by �(α, β) = (α + β, β), if m ≥ 2n, and �(α, β) = (β, α + β), if m < 2n.

Proof Let us show the first statement. If m ≥ 2n, we have that

d1n1 − b1m1 = (d − b)n − b(m − n) = 1.

Moreover, since 0 ≤ b1 = b < n1 = n we conclude that (b1, d1) is the co-pair of
(n1,m1), in view of Remark 4.4. If m < 2n, we have

d1n1 − b1m1 = (n − b)(m − n) − (m − n − d + b)n = 1.

We know that 0 ≤ b < n, hence 0 < d1 = n − b ≤ m1 = n; by Remark 4.4, we
deduce that (b1, d1) is the co-pair of (n1,m1).

Let us show the second statement. Consider (α, β) ∈ R
2 and put (α1, β1) =

�(α, β).
Case m ≥ 2n. In order to prove that �(Rn,m) = Rn1,m1 it is enough to see that

(α, β) ∈ Hn,m
− ⇔ (α1, β1) ∈ Hn1,m1− and (α, β) ∈ Hn,m

+ ⇔ (α1, β1) ∈ Hn1,m1+ .

We verify these properties as follows:

(α1, β1) ∈ Hn1,m1− ⇔ (n1 − b1)α1 + (m1 − d1)β1 ≥ 0

⇔ (n − b)(α + β) + (m − n − d + b)β ≥ 0

⇔ (n − b)α + (m − d)β ≥ 0 ⇔ (α, β) ∈ Hn,m
− .

(α1, β1) ∈ Hn1,m1+ ⇔ b1α1 + d1β1 ≥ 0

⇔ b(α + β) + (d − b)β ≥ 0

⇔ bα + dβ ≥ 0 ⇔ (α, β) ∈ Hn,m
+ .

Case m < 2n. In this case, we have that

(α, β) ∈ Hn,m
+ ⇔ (α1, β1) ∈ Hn1,m1− (4)

(α, β) ∈ Hn,m
− ⇔ (α1, β1) ∈ Hn1,m1+ . (5)
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and this also implies that �(Rn,m) = Rn1,m1 . We verify the properties in Eqs. (4) and
(5) as follows:

(α1, β1) ∈ Hn1,m1− ⇔ (n1 − b1)α1 + (m1 − d1)β1 ≥ 0

⇔ (m − n − (m − n − d + b))β + (n − n + b)(α + β) ≥ 0

⇔ dβ + bα ≥ 0 ⇔ (α, β) ∈ Hn,m
+ .

(α1, β1) ∈ Hn1,m1+ ⇔ b1α1 + d1β1 ≥ 0

⇔ (m − n − d + b)β + (n − b)(α + β) ≥ 0

⇔ (m − d)β + (n − b)α ≥ 0 ⇔ (α, β) ∈ Hn,m
− .

The proof is ended. ��

Proposition 4.11 Assume that N ≥ 2. For any ω ∈ 
1
M0,P0

, we have

(1) ω is pre-basic if and only if π∗
1ω is pre-basic.

(2) ω is pre-basic and resonant if and only if π∗
1ω is pre-basic and resonant.

Proof We consider two cases as in the statement of Lemma 4.10, the casem ≥ 2n and
m < 2n and we define the linear automorphism � accordingly to these cases, as well
as the Puiseux pair (n1,m1). A monomial by monomial computation shows that

Cl(π∗
1ω; x1, y1) = �(Cl(ω; x, y)). (6)

In view of Lemma 4.10, we have that

�(Rn,m(a, b)) = Rn1,m1(�(a, b)). (7)

Statement (1) is now a direct consequence of Eqs. (6) and (7). Property (2) is left to
the reader. ��

Proposition 4.12 Take a differential 1-form ω ∈ 
1
M0,P0

. We have

(1) If N = 1, then ω is pre-basic if and only if it is basic.
(2) If ω is basic then it is pre-basic.
(3) If ω is basic and resonant then it is pre-basic and resonant.

Proof If N = 1, we have n = m = 1 and R1,1(a, b) = R
2≥0 + (a, b). Then being

basic is the same property of being pre-basic: the Newton Polygon has a single vertex.
Assume now that ω is basic. In view of the stability result in Proposition 4.2, we

have that ω̃ is basic, where ω̃ is the pull-back of ω in the last center PN−1 of the
cuspidal sequence. By the previous argument we have that ω̃ is pre-basic. Now we
apply Proposition 4.11 to conclude that ω is pre-basic.

The resonance for pre-basic 1-forms that are basic ones is the same property as for
basic 1-forms. ��
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4.4 Totally E-dicritical Forms

Consider a 1-formω ∈ 
1
M defined around the divisor E . Recall that we have a normal

crossings divisor H such that H ⊃ E , coming from our choice of adapted coordinates,
although if n ≥ 2 the divisor H around E is intrinsically defined and it coincides with
K . We say that ω is totally E-dicritical with respect to H if for any point P ∈ E there
are local coordinates u, v such that E = (u = 0), H ⊂ (uv = 0) and ω has the form

ω = uavbdv,

where b = 0 when H = (u = 0). Note that ω defines a non-singular foliation around
E , this foliation has normal crossings with H and E is transversal to the leaves.

Proposition 4.13 For any ω ∈ 
1
M0,P0

, the following properties are equivalent:

(1) π∗ω is totally E-dicritical with respect to H.
(2) The 1-form ω is pre-basic and resonant.

Proof In view of the stability of the property “pre-basic and resonant” under the
blowing-ups of S given in Proposition 4.11, it is enough to consider the case when
N = 1. In this case we have a single blowing-up, H0 = (xy = 0) and the property
for π∗ω of being totally E-dicritical with respect to H is equivalent to say that

ω = h(x, y)xa yb

⎡

⎣
{
dx

x
− dy

y

}
+

∑

α+β≥1

xα yβ

{
μαβ

dx

x
+ ζαβ

dy

y

}⎤

⎦ , a, b ≥ 1,

where h(0, 0) �= 0. That is, the 1-form ω is pre-basic and resonant. ��
Remark 4.14 If n ≥ 2 the axes x ′y′ = 0 around PN−1 coincide with the germ of
KN−1 = σ−1

N−1(P0) at PN−1. In this situation, the property of being basic and resonant
does not depend on the chosen adapted coordinate system.

Definition 4.15 Given a resonant pre-basic 1-form ω, we say that a branch (C, 0) in
(M0, P0) is a ω-cusp if and only if it is invariant by ω and the strict transform of
(C, P0) by π cuts E at a free point.

Let us note that each free point of E defines a ω-cusp and conversely, in view of
the fact that π∗ω is totally E-dicritical with respect to H .

One of the results in this paper is that any element of Cusps(S) is a ω-cusp for
certain resonant basic ω and hence can be included in the corresponding “dicritical
package”.

5 Differential Values of a Cusp

Let us consider a branch (C, P0) ⊂ (M0, P0) belonging to Cusps(E). It has a Puiseux
expansion of the form

(x, y) = φ(t) = (tn, αtm + tm+1ξ(t)), α �= 0.
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defined by the fact that for any germ h ∈ OM0,P0 we have that (C, P0) ⊂ (h = 0) if
and only if h ◦ φ = 0. We recall that the intersection multiplicity of (C, P0) with a
germ h is given by

iP0(C, h) = ordert (h ◦ φ).

We also denote νC(h) = iP0(C, h). The semigroup � of C is defined by

� ∪ {∞} = {νC(h); h ∈ OM0,P0}.

As stated in Zariski’s Equisingularity Theory, this semigroup depends only on the
equisingularity class (or topological class) of C. In our case, we know that all the
elements in Cusps(E) are equisingular to the cusp yn − xm = 0. Hence � does not
depend on the particular choice of C ∈ Cusps(E). More precisely, we know that � is
the subsemigroup of Z≥0 generated by n,m. That is

� = {an + bm; a, b ∈ Z≥0}.

An important feature of� is the existence of its conductor c� = (n−1)(m−1), which
is the smallest element c� ∈ � such that any non-negative integer greater or equal to
c� is contained in �. In a more algebraic way, the conductor ideal (tc� ) is contained
in the image of the morphism

φ# : C{x, y} → C{t}, f 	→ f ◦ φ.

On the other hand, as it was pointed by Zariski, the differential values of C may
strongly depend on the analytic class of C. In fact, they are the main discrete invariants
in the analytic classification of branches (see Hefez and Hernandes 2011).

Given a differential 1-form ω ∈ 
1
M0,P0

with ω = gdx + hdy. If we write φ(t) =
(x(t), y(t)), we have that φ∗(ω) = (g(φ(t))x ′(t) + h(φ(t))y′(t))dt . We put a(t) =
t(g(φ(t))x ′(t) + h(φ(t))y′(t)), hence

φ∗(ω) = a(t)
dt

t

and we define the differential value νC(ω) by νC(ω) = ordert (a(t)).
We know that (C, P0) is an invariant branch of ω if and only if φ∗(ω) = 0 and

hence νC(ω) = ∞. The semimodule �C of the differential values is defined by

�C = {νC(ω); ω ∈ 
1
M0,P0 , νC(ω) �= ∞} ⊂ Z≥0.

It is a �-semimodule in the sense that

p ∈ �, q ∈ �C ⇒ p + q ∈ �C .
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Remark 5.1 Note that νC(ω) ≥ 1 for any ω ∈ 
1
M0,P0

. Anyway, we have the important

property that � ⊂ {0}∪�C . If�C ∪{0} = �, we say that C is quasi-homogeneous and
it is analytically equivalent to the cusp yn − xm = 0. Otherwise, if λ1 is the minimum
of �C \ �, we know that λ1 − n is the Zariski invariant, the first nontrivial analytic
invariant. This invariant was introduced by Zariski (1966).

Remark 5.2 Let us note that νE (ω) ∈ �, for any ω ∈ 
1
M0,P0

.

5.1 Divisorial Order and Differential Values

In view of the definition of the differential values, for any ω ∈ 
1
M0,P0

we have that
νE (ω) ≤ νC(ω). A useful consequence of this fact is the following one:

Lemma 5.3 A basic 1-form ω ∈ 
1
M0,P0

is resonant if and only if νC(ω) > νE (ω).

Proof Write ω = W + ω̃, where W is the initial form of ω. Denote d = νE (ω) <

nm. Recall that νE (ω̃) > νE (W ) = d, we conclude that νC(ω) > d if and only if
νC(W ) > d. Since ω is a basic 1-form, we can write

W = xa yb
{
μ
dx

x
+ ζ

dy

y

}
, an + bm = d.

We have

φ∗W = (tn)a(tm + tm+1ξ(t))b (nμ + mζ + tψ(t))
dt

t
.

The fact that νC(W ) > d is equivalent to say that nμ + mζ = 0 and hence it is
equivalent to say that ω is resonant. ��
Corollary 5.4 If νC(ω) /∈ �, then ω is a resonant basic 1-form.

Proof Since νC(ω) /∈ �, this differential value is bounded by the conductor c� =
(n − 1)(m − 1), hence we have that

νE (ω) ≤ νC(ω) < (n − 1)(m − 1) < nm.

Then ω is a basic 1-form. Moreover, since νE (ω) ∈ � and νC(ω) /∈ �, we have that
νE (ω) < νC(ω) and we conclude that ω is a resonant basic 1-form. ��

5.2 Reachability Between Resonant Basic Forms

Let ω,ω′ be two 1-forms ω,ω′ ∈ 
1
M0,P0

. We say that ω′ is reachable from ω if and
only if there are nonnegative integer numbers a, b and a constant μ ∈ C such that

νE (ω′ − μxa ybω) > νE (ω′).
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Note that the constant μ and the pair (a, b) are necessarily unique.
We are interested in the case whenω andω′ are basic and resonant. In this situation,

the initial parts are respectively given by

W = μxc yd
{
m
dx

dy
− n

dy

y

}
, W ′ = μ′xc′

yd
′
{
m
dx

x
− n

dy

y

}
.

Note that a, a′, b, b′ ≥ 1 since ω,ω′ are holomorphic 1-forms. We have that ω′ is
reachable from ω if and only if c′ ≥ c and d ′ ≥ d; in this case we have that

νE

(
ω′ − μ′

μ
xc

′−c yd
′−dω

)
> νE (ω′) = c′n + d ′m.

Note also that the minimum divisorial value of a basic and resonant 1-form is n + m
and its initial part is necessarily of the type

μxy

{
m
dx

x
− n

dy

y

}
= μ(mydx − nxdy).

If ω is basic and resonant with νE (ω) = n + m, then any basic and resonant 1-form
is reachable from ω.

6 Cuspidal Semimodules

In this section we develop certain features of semimodules over the semigroup �

generated by the Puiseux pair (n,m). We consider, unless it is specified, only the
singular case n ≥ 2; in this case the conductor is c� = (n − 1)(m − 1) and we have
the interesting property that any p ∈ � with p < nm is written as p = an + bm in a
unique way, with a, b ≥ 0.

We proceed in a self contained way in order to help the reader, several results are
true for more general semigroups, but we focus on the cuspidal semigroup� to shorten
the arguments.

6.1 The Basis of a Semimodule

A nonempty subset � ⊂ Z≥0 is a �-semimodule if � + � ⊂ �. We say that �

is normalized if 0 ∈ �, this is equivalent to say that � ⊂ �. As for the case of
semigroups, the conductor c� is defined by

c� = min{p ∈ Z≥0; {q ∈ Z; q ≥ p} ⊂ �}.

Note that if λ−1 is the minimum of �, then we have that c� ≤ c� + λ−1.

Definition 6.1 Let � be a �-semimodule. A nonempty finite increasing sequence of
nonnegative integer numbers B = (λ−1, λ0, . . . , λs) is abasis for� if for any 0 ≤ j ≤
swehave thatλ j /∈ �(B j−1), where�(B j−1) = (λ−1+�)∪(λ0+�)∪· · ·∪(λ j−1+�).
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If � = �(B), we have a chain of semimodules

λ−1 + � = �−1 ⊂ �0 ⊂ · · · ⊂ �s = �, (8)

where � j = �(B j ). We call decomposition sequence of � to this chain of semi-
modules. Let us note that

λ j = min(� \ � j−1), 0 ≤ j ≤ s. (9)

This definitions are justified by next Proposition 6.2

Proposition 6.2 Given a semimodule�, there is a unique basisB such that� = �(B).

Proof We start with λ−1 = min�. Note that �(λ−1) ⊂ �. If �(λ−1) = � we stop
and we put s = −1. If �(λ−1) �= �, we put λ0 = min(� \ �(λ−1)). Note that
�(λ−1, λ0) ⊂ �. We continue in this way and, since λ j �≡ λk mod n for j �= k,
after finitely many steps we obtain that � = �(λ−1, λ0, . . . , λs). Let us show the
uniqueness of B = (λ−1, λ0, . . . , λs). Assume that � = �(B′), for another �-basis
B′ = (λ′−1, λ

′
0, . . . , λ

′
s′). Note that λ−1 = min� = λ′−1. Assume that λ j = λ′

j for
any 0 ≤ j ≤ k − 1. In view of Eq. (9) we have that λk = λ′

k = min (�\�(Bk−1)) =
min

(
�\�(B′

k−1)
)
. This ends the proof. ��

We say that B = (λ−1, λ0, . . . , λs) is the basis of� = �(B) and that s is the length
of �.

Consider a semimodule� = �(B), an elementλ ∈ Z≥0 is said to be�-independent
if and only if λ /∈ � and λ > λs , where λs is the last element in the basis B. In this
case we obtain a basis B(λ), just by adding λ to B as being the last element. The new
semimodule is denoted �(λ), thus we have �(λ) = � ∪ (λ + �) = �(B(λ)).

Given a semimodule � = �(λ−1, λ0, . . . , λs), we define the axes ui = ui (�) by

u0 = λ−1; ui = min (�i−2 ∩ (λi−1 + �)) , 1 ≤ i ≤ s + 1. (10)

Note that ui (� j ) = ui (�), for 0 ≤ i ≤ j + 1 ≤ s + 1.

Definition 6.3 A semimodule � = �(λ−1, λ0, . . . , λs) is increasing if and only if
λi > ui for any i = 0, 1, . . . , s.

Remark 6.4 If � is an increasing semimodule, each element �i of the decomposition
sequence is also an increasing semimodule. Moreover, if λ′ is a �-independent value
with λ′ > us+1, then �(λ′) is also an increasing �-semimodule.

Given a semimodule � = �(λ−1, λ0, . . . , λs), the semimodule �̃ = � − λ−1 is
called the normalization of �. Next features allow to deduce properties of � from
properties of its normalization:

(1) The basis of �̃ is (0, λ0 − λ−1, . . . , λs − λ−1).
(2) �̃i = �i − λ−1, for i = −1, 0, . . . , s.
(3) ui (�̃) = ui (�) − λ−1, i = 0, 1, . . . , s + 1.
(4) c�̃ = c� − λ−1.
(5) � is increasing if and only if �̃ is increasing.
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6.2 Axes and Conductor

We precise the expressions of the axes and we bound them by the conductors.

Lemma 6.5 Consider a semimodule � of length s and two indices 0 ≤ k < i ≤ s.
Then we have that ui+1 < c�k + n.

Proof We can assume that i = s, k = s − 1. Note that λs < c�s−1 , since λs /∈ �s−1.
Then, there is a unique α ∈ Z>0 such that 0 ≤ λs − c�s−1 + αn < n. We have that
λs + αn ∈ λs + � and λs + αn ≥ c�s−1 . We obtain

λs + αn ∈ �s−1 ∩ (λs + �).

We deduce that us+1 ≤ λs + αn < c�s−1 + n. ��
Corollary 6.6 Consider a semimodule � of the form � = �(n,m, λ1, . . . , λs). Then
ui+1 < nm, for any 0 ≤ i ≤ s.

Proof By Lemma 6.5, we have that ui+1 ≤ c�0 + n, but in this situation, we have that
�0 ∪ {0} = � and thus

c�0 = c� = (n − 1)(m − 1).

Hence ui+1 ≤ c�0 + n = (n − 1)(m − 1) + n < nm. ��
Lemma 6.7 Consider � = �(λ−1, λ0, . . . , λs). There is a unique index k with −1 ≤
k ≤ s − 1 such that us+1 ∈ λk + � and there are unique expressions

us+1 = λs + na + mb, a, b ∈ Z≥0 (11)

us+1 = λk + nc + md, c, d ∈ Z≥0. (12)

In these expressions, we have ac = bd = ab = cd = 0 and (a, b) �= (0, 0) �= (c, d).

Proof The existence of the expressions (11) and (12) is given by the definition of us+1
as us+1 = min(�s−1∩(λs+�)). By theminimality of us+1 and the fact that us+1 �= λs
and us+1 �= λk , we deduce the properties ac = bd = 0 and (a, b) �= (0, 0) �= (c, d).
Moreover, if ab �= 0 we should have that c = d = 0 which is not possible; in the
same way we see that cd = 0.

Let us show the uniqueness of the index k. Assume that there are two indices
−1 ≤ k < k′ ≤ s − 1 with us+1 = λk + cn + dm = λk′ + c′n + d ′m. Take the case
when a �= 0, then we have that c = c′ = 0 and we can write

λk′ = λk + m(d − d ′) ∈ λk + �,

this is a contradiction. Same argument if b �= 0.
If we normalize �, we have that us+1 − λs = ũs+1 − λ̃s . By Lemma 6.5 we have

ũs+1 − λ̃s ≤ ũs+1 < c�̃s−1
+ n ≤ c� + n = (n − 1)(m − 1) + n < nm.
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Hence, we have that us+1 − λs (and with the same argument us+1 − λk) are strictly
smaller than nm. Thus, the expression of these elements of � as a linear combination
of n,m with non-negative coefficients is unique. ��

6.3 The Limits

Consider a semimodule � = �(λ−1, λ0, . . . , λs) with s ≥ 0. The first and second
limits �1 and �2 of � are defined by

�1 = min{p; np + λs ∈ �s−1}. (13)

�2 = min{q; mq + λs ∈ �s−1}. (14)

Remark 6.8 We have that �1�2 �= 0 and

us+1 = min{�1n + λs, �2m + λs}. (15)

Indeed, by Lemma 6.7, we have either us+1 = an + λs or us+1 = bm + λs ; if
us+1 = an+λs , byminimalitywehave thata = �1, in the sameway, ifus+1 = bm+λs
we have that b = �2. Moreover, there is a unique index k with −1 ≤ k < s such that

(1) If us+1 = �1n + λs , then us+1 = λk + bm.
(2) If us+1 = �2m + λs , then us+1 = λk + an.

Lemma 6.9 If an + bm + λs ∈ �s−1, then either a ≥ �1 or b ≥ �2.

Proof Let us write an + bm + λs = cn + dm + λ j for a certain j ≤ s − 1. If ac �= 0,
we find

(a − 1)n + bm + λs = (c − 1)n + dm + λ j ∈ �s−1.

Repeating the argument and working in a similar way with the coefficients b, d, we
find an element

ãn + b̃m + λs = c̃n + d̃m + λ j

such that a ≥ ã and b ≥ b̃, with the property that ãc̃ = 0 and b̃d̃ = 0. Moreover, we
have that (c̃, d̃) �= (0, 0), since otherwise λs ≤ λs−1. Suppose that c̃ �= 0, then ã = 0
and

b̃m + λs = c̃n + d̃m + λ j ∈ �s−1.

By the minimality property of �2, we have that b̃ ≥ �2 and then b ≥ �2. In a similar
way, we show that if d̃ �= 0 we have that a ≥ �1. ��

Let us note that the limits of the normalization �̃ are the same ones as for �.
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Example 6.10 Consider the semigroup � = 〈5, 11〉 and the �-semimodule � =
�(5, 11, 17, 23, 29). Let us compute the axes and the limits for this semimodule.
Note that s = 3. We have u0 = λ−1 = n = 5, and λ0 = m = 11. In order to compute
the limits of �0 we have to find the minimal non-negative integers

• �11 such that 11 + 5�11 = 5 + 11b, hence �11 = b = 1;
• �12 such that 11 + 11�12 = 5 + 5a and we obtain �12 = 4 and a = 10.

Hence, λ0 + n�11 = 16 and λ0 + m�12 = 55 and u1 = min{16, 55} = 16. Now, let us
compute the limits of �1 where λ1 = 17. We search �21 and �22 minimal such that

• 17 + 5�21 = 11 + 11b, hence �21 = b = 1 and λ1 + n�21 = 22;
• 17 + 11�22 = 5 + 5a and we have that �22 = 3 and a = 9, then λ1 + m�22 = 50.

We get that u2 = 22. In a similar way, taking into account that λ2 = 23 and λ3 = 29,
we get that u3 = 28 and u4 = 34. Since ui < λi , for i = 0, 1, 2, 3, we obtain that the
semimodule � is increasing.

7 Standard Bases

From now on, we fix a cusp C in Cusps(E) and we consider the semimodule � of
differential values of C:

� = �C = {νC(ω); ω ∈ 
1
M0,P0} \ {∞}. (16)

We recall that � \ {0} ⊂ �.

Lemma 7.1 If (λ−1, λ0, λ1, . . . , λs) is the basis of �C , then λ−1 = n and λ0 = m.

Proof Let (x, y) = (tn, tmξ(t)) be a Puiseux parametrization of C, where ξ(0) �= 0.
Recall that νC(adx + bdy) is the order in t of the expression

ntna(tn, tmξ(t)) + tmξ(t)b(tn, tmξ(t)){m + tξ ′(t)/ξ(t)}. (17)

We see that this order is ≥ n and that νC(dx) = n. Hence n = λ−1. Moreover, the
terms in Eq. (17) of degree < m come only from the first part ntna(tn, tmξ(t)) of the
sum, so, they are values in �. Since m = νC(dy), we conclude that λ0 = m. ��
Definition 7.2 Write �C = �(n,m, λ1, . . . , λs). A standard basis for C is a list of
1-forms G = (ω−1, ω0, ω1, . . . , ωs) such that νC(ωi ) = λi , for i = −1, 0, 1, . . . , s.

Remark 7.3 There is at least one standard basis, by definition of the semimodule of
differential values. The standard bases are not in general unique. For instance, we have
that

νC(hdx) = n, νC(hdy) = m, h(0) �= 0.

On the other hand, for i = 1, 2, . . . , s, we have that νC(ωi ) = λi /∈ �, then, in view
of Corollary 5.4, the 1-form ωi is basic resonant.
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Remark 7.4 Let G = (ω−1, ω0, ω1, . . . , ωs) be a standard basis for C. Then ω−1, ω0
have the form

ω−1 = hdx + gdy, h(0) �= 0; ω0 = f dx + ψdy, ψ(0) �= 0, νC( f dx) > m.

Thus, we can write any differential 1-form ω in a unique way as ω = aω−1 + bω0.
Anyway, we are mainly interested in the study of the 1-forms ωi , for 1 ≤ i ≤ s. From
the standard basis G we can obtain a new one “adapted to the coordinates” given by

G = (dx, dy, ω1, . . . , ωs).

Just for simplifying the presentation of the computations, we will consider only this
kind of standard bases.

7.1 The Zariski Invariant

In this subsection, we deal with properties of divisorial orders and differential values
around the element λ1, where

�C = �(n,m, λ1, . . . , λs).

This is the first step for a general result. Anyway, let us recall that λ1−n is the classical
Zariski invariant. Let us cite the work of Gómez-Martínez (2021) that essentially
contains several of the results in this section.

Proposition 7.5 We have the following properties:

(1) If s = 0, then ∞ = sup{νC(ω); ω ∈ 
1
M0,P0

, νE (ω) = n + m}.
(2) If s ≥ 1, then λ1 = sup{νC(ω); ω ∈ 
1

M0,P0
, νE (ω) = n + m}.

Proof Assume that s = 0 and hence �C = � \ {0}. Let us consider the 1-form
η = mydx − nxdy. We have that νC(η) > n + m = νE (η). Moreover, since s = 0
we have that νC(η) ∈ �; then there is a monomial function f such that

νE (d f ) = νC(d f ) = νC(η) > n + m.

In particular, there is a constant μ �= 0 such that νC(η − μd f ) > νC(η). Write
η1 = η − μd f ; we have that νE (η1) = νE (η) = n + m and νC(η1) > νC(η). We
repeat the argument with η1 and in this waywe obtain 1-forms ηk with νE (ηk) = n+m
and νC(ηk) ≥ n + m + 1 + k. This proves the first statement.

Assume now that s ≥ 1. Let us first show that

λ1 ≤ sup{νC(ω); ω ∈ 
1
M0,P0 , νE (ω) = n + m}.

If νC(η) /∈ �, we have that νC(η) ≥ λ1 since λ1 is the minimum of the differential
values not in �, then we are done. Assume that νC(η) ∈ � and hence

νC(η) = an + bm > n + m.
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Taking the function f = xa yb, up to multiply d f by a constant c1 we obtain that

νC(η1) > νC(η) = an + bm, η1 = η − c1d f .

Note that νE (η1) = n + m, since νE (d f ) = an + bm > n + m. We restart with η1
instead of η, noting that νC(η) < νC(η1). Repeating finitelymany times this procedure,
we obtain a new 1-form η̃ = η − d f̃ such that νE (η̃) = n + m and either νC(η̃) ≥
c� = (n − 1)(m − 1) or νC(η̃) /∈ �, in both cases we have that νC(η̃) ≥ λ1 and we
are done.

It remains to show that λ1 ≥ sup{νC(ω); ω ∈ 
1
M0,P0

, νE (ω) = n + m}. Let us
consider ω1 such that νC(ω1) = λ1 and let us show that it is not possible to have ω̃

such that νE (ω̃) = n + m and νC(ω̃) > νC(ω1). In this situation, both ω1 and ω̃ are
basic resonant. We know that ω1 is reachable from ω̃ and thus there is a constant μ

and a, b ≥ 0 such that

νE (ω1
1) > νE (ω1), ω1

1 = ω1 − μxa ybω̃.

We have that νC(ω1
1) = νC(ω1) = λ1. We restart with the pair ω1

1, ω̃; in this way, we
obtain an infinite sequence of 1-formsω1, ω

1
1, ω

2
1, . . .with strictly increasing divisorial

orders. Up to a finite number of steps, we find an index k such that νE (ωk
1) > λ1 =

νC(ωk
1). This contradicts with the fact νC(ωk

1) ≥ νE (ωk
1). ��

Corollary 7.6 Any 1-form w ∈ 
1
M0,P0

such that νE (ω) = n + m and νC(ω) /∈ �

satisfies that νC(ω) = λ1.

Proof In view of the previous result, we have that νC(ω) ≤ λ1. Since νC(ω) /∈ �, we
also have that νC(ω) ≥ λ1. ��
Corollary 7.7 Any 1-form w ∈ 
1

M0,P0
such that νC(ω) = λ1 satisfies that νE (ω) =

n + m.

Proof Take ω1 such that νC(ω1) = λ1 and νE (ω1) = n + m. Assume that

νE (ω) > n + m

in order to obtain a contradiction. Since λ1 /∈ �, both ω and ω1 are basic resonant and
ω is reachable from ω1. Then there is a function f with νC( f ) > 0 such that

νE (ω − f ω1) > νE (ω).

Put ω1 = ω − f ω1, since νC( f ω1) > λ1, we have that νC(ω1) = λ1. We restart
with the pair ω1, ω. After finitely many repetitions we find ωk with νC(ωk) = λ1 and
νE (ωk) > λ1, contradiction. ��

The following two lemmas are necessary steps in order to prove an inductive version
of Proposition 7.5 valid for all indices i = 1, 2, . . . , s:
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Lemma 7.8 Assume that s ≥ 1 and take ω1 such that νC(ω1) = λ1. Consider an
integer number k = na+mb+λ1 ∈ λ1+�. The following statements are equivalent:

(1) k /∈ �.
(2) νE (ω) ≤ νE (xa ybω1), for any ω ∈ 
1

M0,P0
such that νC(ω) = k.

Proof Note that k = νC(xa ybω1) > (a + 1)n + (b + 1)m = νE (xa ybω1).
Assume that k ∈ �, then k = na′ + mb′ > νE (xa ybω1). Taking ω = d(xa

′
yb

′
),

we have νC(ω) = νE (ω) = k > νE (xa ybω1).
Now assume that k /∈ �. Let us reason by contradiction assuming that there is ω

with νC(ω) = k with νE (ω) > νE (xa ybω1). We have that ω is basic resonant, since
νC(ω) /∈ �. Then ω is reachable from ω1. Then there is a′, b′ ≥ 0 and a constant μ

such that νE (xa
′
yb

′
ω1) = νE (ω) and

νE (ω − cxa
′
yb

′
ω1) > νE (ω) > νE (xa ybω1).

Since na′ + mb′ > na + mb, we have that νC(xa
′
yb

′
ω1) > k and hence νC(ω1) = k,

where ω1 = ω − cxa
′
yb

′
ω1. Repeating the procedure with the pair ω1, ω1, we obtain

a sequence

ω,ω1, ω2, . . .

with strictly increasing divisorial order and such that νC(ω j ) = k for any j . This is a
contradiction. ��
Lemma 7.9 Takeω1 with νC(ω1) = λ1. Letω ∈ 
1

M0,P0
be a 1-form such that νC(ω) =

λ /∈ �. There are unique a, b ≥ 0 such that νE (ω) = νE (xa ybω1). Moreover, we have
that λ ≥ na + mb + λ1.

Proof Note that ω is basic resonant and thus the existence and uniqueness of a, b is
assured. Moreover, if λ < na + mb + λ1, we can find a constant μ such that

νE (ω − μxa ybω1) > νE (xa ybω1)

and νC(ω − μxa ybω1) = λ. Put ω1 = ω − μxa ybω1, we have that νC(ω1) = λ /∈ �.
As before, we have that

νE (ω1) = νE (xa1 yb1ω1), a1n + b1m > an + bm

and thus λ < a1n + b1m + λ1. We repeat the process with the pair ω1, ω1, where
ω1 = ω−μxa ybω1 in order to have a sequence ω,ω1, ω2, . . .with strictly increasing
divisorial orders and such that νC(ω j ) = λ for any j . This is a contradiction. ��

7.2 Critical Divisorial Orders

Recall that we are considering a cusp C in Cusps(E), whose semimodule of differential
values is

�C = �(n,m, λ1, . . . , λs).
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The critical divisorial orders ti , for i = −1, 0, . . . , s + 1 are defined as follows:

• We put t−1 = n and t0 = m.
• For 1 ≤ i ≤ s + 1, we put ti = ti−1 + ui − λi−1.

Let us note that t1 = m + (n + m) − m = n + m.

Lemma 7.10 Consider the semimodule � = �(n,m, λ1, . . . , λs) and take an index
1 ≤ i ≤ s. If λ� > u�, for any 0 ≤ � ≤ i , we have that

λ j − λk > t j − tk, −1 ≤ k < j ≤ i . (18)

Proof We have that λ j − λ j−1 > t j − t j−1 if and only if

t j = t j−1 + u j − λ j−1 > t j + u j − λ j ,

which is true, since u j − λ j < 0. Noting that

λ j − λk =
j−1∑

�=k

(λ�+1 − λ�) >

j−1∑

�=k

(t�+1 − t�) = t j − tk,

The proof is ended. ��
Lemma 7.11 If the semimodule � = �(n,m, λ1, . . . , λs) is increasing, we have that
ti < nm, for any i = −1, 0, 1, . . . , s + 1.

Proof If i ∈ {−1, 0} we have that t−1 = n, t0 = m and we are done. Assume that
1 ≤ i ≤ s, we have that

ti − n = ti − t−1 =
i∑

�=0

(t� − t�−1) ≤
i∑

�=0

(λ� − λ�−1) = λi − λ−1 = λi − n.

Then ti ≤ λi < c� < nm. Consider the case i = s + 1. We have that

ts+1 = ts + us+1 − λs = us+1 + (ts − λs) ≤ us+1 < c� + n < nm.

See Lemma 6.5. ��
Remark 7.12 As a consequence of Lemma 7.11 we have that any 1-form ω such that
νE (ω) = ti is a basic 1-form; moreover, if ti = νE (ω) < νC(ω), then it is basic and
resonant.

The critical divisorial orders are the divisorial orders of the elements of a standard
basis, in view of the following

Theorem 7.13 For each 1 ≤ i ≤ s we have the following statements

(1) λi = sup{νC(ω) : νE (ω) = ti }.
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(2) If νC(ω) = λi , then νE (ω) = ti .
(3) For each 1-form ω with νC(ω) /∈ �i−1, there is a unique pair a, b ≥ 0 such that

νE (ω) = νE (xa ybωi ). Moreover, we have that νC(ω) ≥ λi + na + mb.
(4) We have that λi > ui .
(5) Let k = λi + na +mb, then k /∈ �i−1 if and only if for all ω such that νC(ω) = k

we have that νE (ω) ≤ νE (xa ybωi ).

In particular, the semimodules �i are increasing, for i = 1, 2, . . . , s.

A proof of this Theorem 7.13 is given in Appendix B.

Remark 7.14 Note that if B = (ω−1 = dx, ω0 = dy, ω1, ω2, . . . , ωs) is a standard
basis, Theorem 7.13 says that νE (ωi ) = ti for any i = −1, 0, 1, . . . , s and that ω j+1
is reachable from ω j , for any 1 ≤ j ≤ s − 1. That is, the initial parts of the 1-forms
ωi are given by

Wi = μi x
ai ybi

{
m
dx

x
− n

dy

y

}
, μi �= 0,

where (a1, b1) = (1, 1) and

1 = a1 ≤ a2 ≤ · · · ≤ as, 1 = b1 ≤ b2 ≤ · · · ≤ bs .

Moreover, we have that nai + mbi = ti , for i = 1, 2, . . . , s.

Remark 7.15 Note thatB = (ω−1 = dx, ω0 = dy, ω1, ω2, . . . , ωs) is a standard basis
if and only if νE (ωi ) = ti and νC(ωi ) /∈ �i−1, for any i = 1, 2, . . . , s. Moreover,
Theorem 7.13 justifies an algorithm of construction of a standard basis as follows:

Assume we have obtained ω j , for j = −1, 0, 1, . . . , s′. We can produce the axis
us′+1 and the critical divisorial order ts′+1 = ts′ + us′+1 − λs′ . There is an
expression ts′+1 = an + bm. We consider the 1-form

ω0
s′+1 = xa yb

{
m
dx

x
− n

dy

y

}
.

If νC(ω0
s′+1) /∈ �s′ , we know that λs′+1 = νC(ω0

s′+1) and s ≥ s′ + 1. If
νC(ω0

s′+1) ∈ �s′ , there is j ≤ s′ and c, d ≥ 0 such that

νC(xc ydω j ) = νC(ω0
s′+1).

We take a constantμ such that νC(ω0
s′+1−μxc ydω j ) > νC(ω0

s′+1). Putω
1
s′+1 =

ω0
s′+1 − μxc ydω j . We have that νE (ω1

s′+1) = ts′+1. We repeat the procedure

with ω1
s′+1. After finitely many steps we get that either νC(ωk

s′+1) /∈ �s′ or

νC(ωk
s′+1) ≥ c� . In the first case, we put λs′+1 = νC(ωk

s′+1), in the second case
we know that s = s′.
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Example 7.16 Consider the semigroup � = 〈5, 11〉 and the �-semimodule � =
�(5, 11, 17, 23, 29) as in Example 6.10. The computation of the critical divisorial
orders ti , i = −1, 0, 1, 2, 3, gives

t−1 = 5, t0 = 11, t1 = 16, t2 = 21, t3 = 26, t4 = 31.

Since the semimodule � is increasing, by Alberich-Carramiñana et al. (2022) there
exists a curve whose semimodule is �. In particular, the curve C given by the Puiseux
parametrization φ(t) = (t5, t11 + t12 + t13) has semigroup � and semimodule of
differential values�. An extended standard basis is given by {ω−1, ω0, ω1, ω2, ω3, ω4}
where

ω−1 = dx, ω0 = dy, ω1 = 5xdy − 11ydx,

ω2 = 11xω1 − 5ydy, ω3 = xω2 + yω1

and ω4 = xω3 − 33yω2 − 1199x6dx − 2035x4ydx − 407x4ω1 − 1595x3ω2 + · · · .
The reader can check that νE (ωi ) = ti as stated in Theorem 7.13.

8 Extended Standard Basis and Analytic Semiroots

As in previous sections, we consider a cusp C in Cusps(E), whose semimodule of
differential values is

� = �(n,m, λ1, . . . , λs).

Let us recall that the axis us+1 = min(�s−1 ∩ (λs + �)) is well defined and we have
also a well defined critical divisorial order

ts+1 = ts + us+1 − λs .

Let us also remark that t� < nm, for 0 ≤ � ≤ s + 1, in view of Lemma 7.11.

Definition 8.1 We say that a differential 1-form ω is dicritically adjusted to C if and
only if νE (ω) = ts+1 and νC(ω) = ∞. An extended standard basis for C is a list

ω−1 = dx, ω0 = dy, ω1, . . . , ωs; ωs+1

where ω−1, ω0, ω1, . . . , ωs is a standard basis and ωs+1 is dicritically adjusted to C.

Lemma 8.2 Assume that νE (η) = ts+1 and νC(η) > us+1. Then, there is a 1-form η̃

such that νE (η̃) = ts+1 and νC(η̃) > νC(η).

Proof Take a standard basis dx, dy, ω1, . . . , ωs for C. There is an index k such that
νC(η) = an+bm+λk . Consider the 1-form xa ybωk . Note that νC(xa ybωk) = νC(η).

123



Analytic Semiroots for Plane Branches and Singular Foliations Page 31 of 49 27

If we show that an + bm + tk > ts+1, we are done, by taking η̃ = η − μxa ybωk for
a convenient constant μ. We have

an + bm + λk > us+1 ⇒ an + bm + tk > us+1 − λk + tk . (19)

It remains to show that us+1 − λk + tk ≥ ts+1. We have

us+1 − λk + tk ≥ ts+1 ⇔ us+1 − λk + tk ≥ ts + us+1 − λs ⇔ λs − λk ≥ ts − tk .

We are done by Lemma 7.10. ��
Proposition 8.3 There is at least one 1-form ω dicritically adjusted to C.
Proof Take a standard basis dx, dy, ω1, . . . , ωs for C. There is an index k < s such
that us+1 = an + bm + λs = cn + dm + λk . Note that

an + bm + ts < cn + dm + tk,

since ts − tk < λs − λk . In this way, we have

(1) ts+1 = νE (xa ybωs) < νE (xc ydωk).
(2) us+1 = νC(xa ybωs) = νC(xc ydωk).

Taking η = xa ybωs − μxc ydωk , for a convenient constant μ, we have that

νE (η) = ts+1, νC(η) > us+1.

By a repeated application of Lemma 8.2, we find a 1-form η̃ such that

νE (η̃) = ts+1 < νC(η̃), νC(η̃) > c� + 1.

Now, we can integrate η̃ as follows. Let φ : t 	→ φ(t) = (φ1(t), φ2(t)) be a reduced
parametrization of the curve C. Then φ induces a morphism

φ# : C{x, y} → C{t}, h 	→ h ◦ φ,

whose kernel is generated by a local equation of C and moreover, the conductor ideal
tc�C{t} is contained in the image of φ#. Let us write

φ∗η̃ = ξ(t)dt, ξ(t) ∈ tc�C{t}.

By integration, there is a series ψ(t) such that ψ ′(t) = ξ(t), with ψ(t) ∈ tc�+1
C{t}.

In view of the properties of the conductor ideal, there is a function h ∈ C{x, y} such
that h ◦φ(t) = ψ(t). If we consider ω = η̃−dh, we have that νE (ω) = νE (η̃) = ts+1
and νC(ω) = ∞. ��
Proposition 8.4 If ω is dicritically adjusted to C, we have that ω is basic and resonant
(hence it is E-totally dicritical) and C is an ω-cusp.

Proof Recall that ts+1 < nm and νC(ω) = ∞ > ts+1. ��
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8.1 Delorme’s Decompositions

Delorme’s decompositions are described in next Theorem 8.5. This result is the main
tool we need to use in our statements on the analytic semiroots. We provide a proof
of it, using a different approach to the one of Delorme, in Appendix C.

Theorem 8.5 (Delorme’s decomposition) Let C be a cusp in Cusps(E), consider an
extended standard basis ω−1, ω0, ω1, . . . , ωs;ωs+1 of C and denote by

� = �(n,m, λ1, . . . , λs)

the semimodule of differential values of C. For any indices 0 ≤ j ≤ i ≤ s, there is a
decomposition

ωi+1 =
j∑

�=−1

f i j� ω�

such that, for any−1 ≤ � ≤ j we have νC( f i j� ω�) ≥ vi j , where vi j = ti+1−t j+λ j and

there is exactly one index −1 ≤ k ≤ j − 1 such that νC( f i jk ωk) = νC( f i jj ω j ) = vi j .

Remark 8.6 Note that vi i = ti+1 − ti + λi = ui+1. We also have that

vi j = ui+1 − (λi − ui ) − · · · − (λ j+1 − u j+1).

In particular we have that vi j ≤ ui+1 < c� + n < nm. See Lemma 6.5.

8.2 Analytic Semiroots

Let � = �(n,m, λ1, . . . , λs) be the semimodule of differential values of the E-cusp
C and let us consider an extended standard basis

E = (ω−1, ω0, ω1, . . . , ωs;ωs+1)

We recall that ω1, ω2, . . . , ωs+1 are basic and resonant. Fix a free point P ∈ E . For
each i = 1, 2, . . . , s + 1, there is an E-cusp CiP passing through P and invariant by
ωi . Let us note that if P is the infinitely near point of C in E , we have that Cs+1

P = C.

Definition 8.7 The cusps CiP , for i = 1, 2, . . . , s + 1 are called the analytic semiroots
of C through P with respect to the extended standard basis E .

Let us denote Ei = (ω−1, ω0, ω1, . . . , ωi−1;ωi ) for any 1 ≤ i ≤ s + 1. The main
objective of this paper is to show the following Theorem

Theorem 8.8 For any 1 ≤ i ≤ s + 1 and any free point P ∈ E, we have

(a) �i−1 is the semimodule of differential values of CiP .
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(b) Ei is an extended standard basis for CiP .

Let us consider an index 1 ≤ i ≤ s + 1 and an analytic semiroot CiP in order to
prove Theorem 8.8.

Lemma 8.9 We have that νCi
P
(ω j ) = λ j , for any j = −1, 0, 1, . . . , i − 1.

Proof For any basic non resonant 1-form ω, we have that

νC(ω) = νE (ω) = νCi
P
(ω).

This is particularly true for the case of 1-forms of the type ω = d f , where we know
that νE (ω) = νE ( f ). Hence, for any germ of function f ∈ C{x, y} we have that

min{νC(d f ), nm} = min{νCi
P
(d f ), nm}. (20)

The statement of the Lemma is true for � = −1, 0, since

νC(dx) = νCi
P
(dx) = n, νC(dy) = νCi

P
(dy) = m.

Let us assume that it is true for any � = −1, 0, 1, . . . , j , with 0 ≤ j ≤ i − 2. We
apply Theorem 8.5 to obtain a decomposition

ωi =
j+1∑

�=−1

f�ω�

such that νC( f�ω�) ≥ vi−1, j+1, where vi−1, j+1 < nm (see Remark 8.6) and there is
a single k ≤ j such that νC( f j+1ω j+1) = νC( fkωk) = vi−1, j+1. We deduce that

νC

⎛

⎝
j∑

�=−1

f�ω�

⎞

⎠ = νC( fkωk) = vi−1, j+1.

On the other hand, by induction hypothesis and noting that vi−1, j+1 < nm, we have
that

min{νC( f�ω�), nm} = min{νCi
P
( f�ω�), nm}, � = −1, 0, 1, . . . , j .

In particular, we have that

νCi
P
( fkωk) = vi−1, j+1, νCi

P

⎛

⎝
j∑

�=−1

f�ω�

⎞

⎠ = vi−1, j+1.

123



27 Page 34 of 49 F. Cano et al.

Since νCi
P
(ωi ) = ∞, we have that νCi

P
( f j+1ω j+1) = vi−1, j+1. Hence we have

vi−1, j+1 = νC( f j+1ω j+1) = νCi
P
( f j+1ω j+1).

Noting that νC( f j+1) = νCi
P
( f j+1), we conclude that νC(ω j+1) = νCi

P
(ω j+1). The

proof is ended. ��
Corollary 8.10 �Ci

P ⊃ �i−1.

Proof It is enough to remark that λ j ∈ �Ci
P for any j = −1, 0, 1, . . . , i − 1. ��

Proposition 8.11 �Ci
P = �i−1.

Proof We already know that �Ci
P ⊃ �i−1. Assume that �Ci

P �= �i−1 and take the
number

λ = min
(
�Ci

P \ �i−1

)
.

Note that λ > m and hence there is a maximum index 0 ≤ j ≤ i −1 such that λ j < λ.
We have that

νE (ω j ) = t j = t j (CiP ), t j = t j (C).

where t j (∗) denotes the critical divisorial order t j with respect to the curve ∗. Assume
first that j ≤ i − 2.

Let ω̃ be a 1-form in a standard basis for CiP that corresponds to the differential

value λ. Note that λ is the differential value in the basis of �Ci
P that immediately

follows λ j and the previous ones correspond to the values in the basis of �. We have
that

νE (ω j+1) = t j+1 = t j + u j+1 − λ j = t j+1(CiP ) = νE (ω̃).

In view of the property (1) in Theorem 7.13, we have that

λ = max{νCi
P
(ω); νE (ω) = t j+1(CiP ) = t j+1}

In view of Lemma 8.9, we know that νCi
P
(ω j+1) = λ j+1 and νE (ω j+1) = t j+1. This

implies that λ j+1 < λ, contradiction.
Let us consider now the case when j = i − 1. We shall prove that it is not possible

to have s(CiP ) > i − 1 where s(∗) refers to “concept s” with respect to the curve ∗
(that is, s + 2 is the number of elements of the basis of the semimodule of the curve).
If s(CiP ) > i − 1, we have that

λ = max{νCi
P
(ω); νE (ω) = ti (CiP ) = ti }.

But we know that νCi
P
(ωi ) = ∞ and νE (ωi ) = ti , this is the desired contradiction. ��
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Example 8.12 Let us compute the analytic semiroots of the curve C given in Exam-
ple 7.16. The Puiseux parametrizations for the E-cusps Cia of ωi , i = 1, 2, 3, are given
by

φa
1 (t) = (t5, at11)

φa
2 (t) = (t5, at11 + a2t12 + 23

22a
3t13 + 136

121a
4t14 + · · · )

φa
3 (t) =

⎛

⎝t5,
∑

i≥11

ai−10t i

⎞

⎠

with a ∈ C
∗. Hence, the analytic semiroots of C are the curves C11 , C21 and C31 given

by the above parametrizations φ1
i (t), i = 1, 2, 3, with a = 1.

Note that in this example, for any i = 1, 2, 3, all the E-cusps of the family {Cia}a
are analytically equivalent. To see this it is enough to consider the new parameter
t = a−1u and the change of variables x1 = a5x , y1 = a10y.

Example 8.13 We would like to remark that, in general, the E-cusps of an element ωi ,
i ≥ 2, of a standard basis are not analytically equivalent as the following example
shows. Consider the curve C given by the Puiseux parametrization φ(t) = (t7, t17 +
t30 + t33 + t36) with � = 〈7, 17〉 and � = �(7, 17, 37, 57). A standard basis is given
by ω−1 = dx, ω0 = dy, ω1 = 7xdy − 17ydx and

ω2 = 3757x2ydx − 1547x3dy − 4624y2dx + 1904xydy + 1183y2dy.

The E-cusps of ω2 are the curves given by the Puiseux parametrization

ϕa(t) = (t7, at17 + a3t30 + a4t33 + · · · )

with a ∈ C
∗. If we consider a new parameter t = a−2/13u and the wemake the change

of variables x1 = a14/13x, y2 = a21/13y, we obtain that the family of E-cusps of ω2
are the curves C2a given by the parametrizations

φa(t) = (t7, t17 + t30 + a7/13t33 + · · · )

From the results above, we have that �C2
a = �1 = �(7, 17, 37) for all a ∈ C

∗. Since
33 /∈ �1 − 7, by Theorem 2.1 in Hefez and Hernandes (2011), two curves C2a1 and C2a2
are not, in general, analytically equivalent for a1, a2 ∈ C

∗.

Example 8.14 Let us consider the 1-formω of example 4.7 in Gómez-Martínez (2021)
given by

ω = (7y5 + 2x9y − 2x9y2 − 9x2y4)dx + (4y3x3 − x10 + 2x10y − 3xy4 − x8y2)dy.
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This 1-form is pre-basic and resonant for the pair (4, 9) since νE (ω) = 48, the co-pair
of (4, 9) is (3, 7) and Cl(ω; x, y) ⊂ R4,9(3, 4) where

R4,9(3, 4) = {(α, β) ∈ R
2 α + 2β ≥ 11} ∩ {(α, β) ∈ R

2 3α + 7β ≥ 37}.

Moreover, the weighted initial part ofω is given by In484,9;x,y = x2y3(−9ydx+4xdy).
Consequently ω is totally E-dicritical for the last divisor E associated to the cuspidal
sequence S4,9

y=0. Note that ω is not a basic 1-form since νE (ω) > nm = 36.
The invariant curves of ω which are transversal to the dicritical component E are

the curves Ca , a ∈ C
∗, given by

y4 − ax9 + (a − 1)x7y + x7y2 = 0.

Note that these curves do not have the same semimodule of differential values since
the curves Ca , with a �= 1, have Zariski invariant equal to 10 whereas the curve C1 has
Zariski invariant equal to 19.
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Appendix A: Bounds for the Conductor

In this Appendix we present some bounds for the conductor of the semimodules �i

in the decomposition series of

� = �(λ−1, λ0, λ1, . . . , λs)

that will be enough to prove the results we need relative to the structure of the semi-
module of differential values.We recall that the semigroup� is generated by a Puiseux
pair (n,m), with 2 ≤ n.

Given two integer numbers r ≤ s, we denote [r , s] the set of the integer numbers �

such that r ≤ � ≤ s. For anyq ≥ 0wedenote by Iq the interval Iq = [nq, n(q+1)−1],
in particular, we have that I0 = {0, 1, 2, . . . , n − 1}. For any r , s ∈ I0, we define the
circular interval 〈r , s〉 by

〈r , s〉 = [r , s], if r ≤ s; 〈r , s〉 = [r , n − 1] ∪ [0, s], if r > s.
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We denote by ρ : Z → Z/(n) the canonical map and we also use the notation
ρ(p) = p̄. Since gcd(n,m) = 1, there is a bijection

ξ : Z/(n) → I0 = {0, 1, 2, . . . , n − 1}, ξ−1(k) = ρ(km).

For any q ≥ 0 and any subset S ⊂ Z≥0, we define the q-level set Rq(S) ⊂ I0 by
Rq(S) = ξ

(
ρ(S ∩ Iq)

)
.

Remark A.1 We have that Rq(�) ⊂ Rq ′(�) for all q ′ ≥ q.

Remark A.2 For any μ ∈ Z≥0 and q ≥ 1, we have

#Rq(μ + �) ≤ #Rq−1(μ + �) + 1.

Indeed, this is equivalent to show that #ρ((μ + �) ∩ Iq) ≤ #ρ((μ + �) ∩ Iq−1) + 1.
Assume that p̄1, p̄2 ∈ ρ((μ+�)∩ Iq)\ρ((μ+�)∩ Iq−1).We can take representatives
p1, p2 ∈ (μ + �) ∩ Iq of p̄1 and p̄2 of the form p1 = μ + b1m, p2 = μ + b2m. If
p1 �= p2, we have that |p1 − p2| ≥ m > n and this is not possible.

Lemma A.3 Consider μ ∈ Iv , denote r = ξ(μ̄) and let q be such that q ≥ v. For any
p ∈ Rq(μ + �) we have that 〈r , p〉 ⊂ Rq(μ + �). In particular, the set Rq(μ + �)

is a circular interval.

Proof The second statement is straightforward, since the union of circular intervals
with a common point is a circular interval. To prove the first statement, we proceed
by induction on the number � of elements in 〈r , p〉. If � ≤ 2, we are done, since
〈r , p〉 ⊂ {r , p} ⊂ Rq(μ + �). Assume that � > 2; in particular we have that r �= p.
Consider the point p̃ ∈ I0 given by p̃ = p − 1, if p ≥ 1 and p̃ = n − 1, if p = 0. We
have that 〈r , p〉 = 〈r , p̃〉 ∪ {p} and the length of 〈r , p̃〉 is � − 1. Then, it is enough to
show that p̃ ∈ Rq(μ + �). Take an element μ + an + bm ∈ Iq ∩ (μ + �) such that
ρ(μ + an + bm) = ρ(pm). Noting that r �= p, we have that b ≥ 1. There is q ′ ≤ q
such that μ + an + (b − 1)m ∈ Iq ′ and hence

μ + (a + q − q ′)n + (b − 1)m ∈ Iq ∩ (μ + �).

We have that ρ(μ + (a + q − q ′)n + (b − 1)m) = ρ( p̃m) and thus p̃ ∈ Rq(μ + �).

��
Definition A.4 We define the tops q1 and q2 of � by the property that

λs + n�1 ∈ Iq1 , λs + m�2 ∈ Iq2

where �1 and �2 are the limits of �. The main top Q� is the maximum of q1, q2.

Proposition A.5 Consider a normalized semimodule � = �(0, λ0, λ1, . . . , λs). Let v
be such that λs ∈ Iv and assume that Rq(�s−1) is a circular interval for any q ≥ v.
Denote by q1, q2 the tops of � and put r = ξ(λ̄s). Then we have that

123



27 Page 38 of 49 F. Cano et al.

(1) [0, r − 1] ⊂ Rq(�s−1), for all q ≥ q1 − 1.
(2) [r , n − 1] ⊂ Rq(�), for all q ≥ q2 − 1.

In particular c� ≤ n(Q� − 1).

Proof Note that Statements (1) and (2) imply that

I0 = [0, n − 1] = [0, r ] ∪ [r , n − 1] ⊂ Rq(�), q ≥ Q� − 1

and thus, we have that c� ≤ n(Q� − 1).
Proof of Statement (1) By Remark A.1 it is enough to show that we have [0, r −
1] ⊂ Rq1−1(�s−1). Since λs + n�1 ∈ �s−1, there is an index k ≤ s − 1 such that
λs + n�1 = λk + an + bm. By the minimality of �1, we have that a = 0 and hence
λs + n�1 = λk + bm. Denote rk = ξ(λ̄k). Note that rk �= r , since r /∈ Rv(�s−1).

Assume that the next statements are true:

(a) If rk > r , then [0, r ] ⊂ Rq1(λk + �).
(b) If rk < r , then [rk, r ] ⊂ Rq1(λk + �) and [0, rk] ⊂ Rq1−1(�s−1).

If rk > r , by the minimality of �1, we have that r /∈ Rq1−1(λk + �); now, in view of
Remark A.2 and noting that [0, r ] = [0, r − 1] ∪ {r}, we obtain that

[0, r − 1] ⊂ Rq1−1(λk + �) ⊂ Rq1−1(�s−1).

If rk < r , we obtain as above that [rk, r − 1] ⊂ Rq1−1(λk + �), then

[0, r − 1] = [0, rk] ∪ [rk, r − 1] ⊂ Rq1−1(�s−1).

If remains to prove (a) and (b).
Proof of (a):We can apply Lemma A.3 to have that 〈rk, r〉 ⊂ Rq1(λk +�). We end

by noting that [0, r ] ⊂ 〈rk, r〉.
Proof of (b): We apply Lemma A.3 to have that 〈rk, r〉 = [rk, r ] ⊂ Rq1(λk + �).

On the other hand, we know that Rq1−1(�s−1) is a circular interval since q1 − 1 ≥ v

and it contains 0 and rk . Moreover r /∈ Rq1−1(�s−1) and r > rk , then the circular
interval Rq1−1(�s−1) contains [0, rk].

Proof of Statement (2): It is enough to show that [r , n − 1] ⊂ Rq2−1(�). By an
argument as before, there is an index k ≤ s − 1 such that λs + m�2 = λk + na. Take
rk �= r as above. By Lemma A.3, we have that 〈r , rk〉 ⊂ Rq2(λs + �). Let us see that
rk /∈ Rq2−1(λs + �). For this, let us show that the property

rk ∈ Rq2−1(λs + �)

leads to a contradiction. This property should imply that λk + n(a − 1) ∈ λs + � and
hence there are nonnegative integer numbers α, β such that

λs + nα + mβ = λk + n(a − 1).
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If a − 1 ≤ α, we have that λk = λs + (α − a + 1)n + βm and this contradicts the fact
that λk < λs ; hence a − 1 > α and we have

λs + mβ = λk + n(a − 1 − α).

Since a − 1 − α < a, we have that β < �2. This contradicts the minimality of �2.
Since rk /∈ Rq2−1(λs + �), we can apply Remark A.2 that tells us that

〈r , rk〉 \ {rk} ⊂ Rq2−1(λs + �) ⊂ Rq2−1(�).

Note also that rk ∈ Rq2−1(�). Then we have that 〈r , rk〉 ⊂ Rq2−1(�).
If r > rk , then [r , n − 1] ⊂ 〈r , rk〉 ⊂ Rq2−1(�). Assume now that r < rk . Recall

that r /∈ Rv(�s−1); since Rv(�s−1) is a circular interval containing rk and 0, but not
containing r , we have that

[rk, n − 1] ⊂ Rv(�s−1) ⊂ Rq2−1(�s−1) ⊂ Rq2−1(�).

We conclude that [r , n − 1] = 〈r , rk〉 ∪ [rk, n − 1] ⊂ Rq2−1(�). ��
Proposition A.6 Let � be a normalized increasing semimodule of length s and let v

be such that us+1 ∈ Iv . Then Rq(�) is a circular interval for any q ≥ v.

Proof Let us proceed by induction on the length s of �. If s = −1, we have � =
�−1 = �. ByLemmaA.3 applied toμ = 0,we are done. Let us suppose that s ≥ 0 and
assume by induction that the result is true for�s−1.We have that� = �s−1∪(λs+�).
This implies that

Rq(�) = Rq(�s−1) ∪ Rq(λs + �), q ≥ 0.

Let v′ be such that us ∈ Iv′ . By induction hypothesis, we know that Rq(�s−1) is a
circular interval for any q ≥ v′. Moreover, by the increasing property, we have that

us+1 > λs > us ≥ λs−1.

In particular, we have that v ≥ v′ and Rq(�s−1) is a circular interval for any q ≥ v. On
the other hand, take v′′ such that λs ∈ Iv′′ . By Lemma A.3, we know that Rq(λs + �)

is a circular interval for any q ≥ v′′. Since v ≥ v′′, we have that Rq(λs + �) is a
circular interval for any q ≥ v. Thus, both

Rq(�s−1) and Rq(λs + �)

are circular intervals for q ≥ v. We need to show that their union is also a circular
interval. Since v ≥ v′′, we have that r ∈ Rq(λs + �) for r = ξ(λs). Noting that
0 ∈ Rq(�s−1) and r ∈ Rq(λs +�), in order to prove that Rq(�) is a circular interval,
it is enough to show that one of the following properties holds

(a) : [0, r ] ⊂ Rq(�); (b) : [r , n − 1] ⊂ Rq(�).
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We can apply Proposition A.5 to � = �s−1(λs). Indeed, by induction hypothesis we
know that Rp(�s−1) is a circular interval for any p ≥ v′; since v′ ≤ v′′, we have that
Rp(�s−1) is a circular interval for any p ≥ v′′ and thus we are in the hypothesis of
Proposition A.5. Now, by Eq. (15) in Remark 6.8, we have either us+1 = λs + nl1 or
us+1 = λs + ml2.

(a) If we have us+1 = λs + nl1, noting that q1 = v, we apply Proposition A.5 and we
obtain that [0, r ] ⊂ Rq(�s−1) ⊂ Rq(�).

(b) If we have us+1 = λs + ml2, noting that q2 = v, we apply Proposition A.5 and
we obtain that [r , n − 1] ⊂ Rq(�).

��
Corollary A.7 Let � be an increasing semimodule such that its minimum element λ−1
is a multiple of n. Let Q� be the main top of �. Then c� ≤ n(Q� − 1).

Proof Assume first that � is normalized. Let v′ be such that us ∈ Iv′ and v′′ such
that λs ∈ Iv′′ . We know that v′′ ≥ v′. By Proposition A.6, we know that Rq(�s−1)

is a circular interval for any q ≥ v′ and hence for any q ≥ v′′. Then we are in the
hypothesis of Proposition A.5 and we conclude.

Assume now that λ−1 = kn and consider the normalization �̃ = � − kn. Let us
note that the tops are related by the property q̃ j = q j − k, for j = 1, 2 and hence
Q�̃ = Q� − k. On the other hand c�̃ = c� − nk. We conclude that

c� = c�̃ + nk ≤ n(Q�̃ − 1) + nk = n(Q� − 1).

��

Appendix B: Structure of the Semimodule

In this Appendix we present a proof, using a different approach to the one of Delorme,
of the main results on the structure of the semimodule of differential values for an
E-cusp C. As before, we denote � = �(n,m, λ1, . . . , λs), n ≥ 2, the semimodule of
differential values of C andwe select a standard basisω−1 = dx, ω0 = dy, ω1, . . . , ωs

of the cusp C.
Proposition B.1 For each 1 ≤ i ≤ s we have the following statements

(1) λi = sup{νC(ω) : νE (ω) = ti }.
(2) If νC(ω) = λi , then νE (ω) = ti .
(3) For each 1-form ω with νC(ω) /∈ �i−1, there is a unique pair a, b ≥ 0 such that

νE (ω) = νE (xa ybωi ). Moreover, we have that νC(ω) ≥ λi + na + mb.
(4) We have that λi > ui .
(5) Let k = λi + na +mb, then k /∈ �i−1 if and only if for all ω such that νC(ω) = k

we have that νE (ω) ≤ νE (xa ybωi ).

In particular, the semimodules �i are increasing, for i = 1, 2, . . . , s.

Proof Assume that i = 1 and then t1 = n + m = u1. We have
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• Statement (1) is proven in Proposition 7.5.
• Statement (2) is proven in Corollary 7.7.
• Statement (3) is proven in Lemma 7.9.
• Statement (4) follows from the fact that λ1 > n + m = νE (ω1) = u1.
• Statement (5) is proven in Lemma 7.8.

Now, let us assume that i ≥ 2 and take the induction hypothesis that the statements
(1)-(5) are true for indices � with 1 ≤ � ≤ i − 1.

Denote by �1 and �2 the �i−1-limits. By Eq. (15) in Remark 6.8, we have two
possibilities: either ui = λi−1 + n�1 or ui = λi−1 + m�2. We assume that ui =
λi−1 + n�1, the computations in the case ui = λi−1 + m�2 are similar ones.

The proof is founded in three claims as follows:

• Claim 1: There is a 1-form η with νE (η) = ti , whose initial part is proportional
to the initial part of x�1ωi−1 and such that either νC(η) ≥ c� or νC(η) /∈ �i−1.

• Claim 2: Any 1-form ω with νC(ω) /∈ �i−1 is reachable from x�1ωi−1.
• Claim 3: Let η be a 1-form such that νE (η) = ti whose initial part is proportional
to the initial part of x�1ωi−1 and such that either νC(η) ≥ c� or νC(η) /∈ �i−1.
Then νC(η) = λi .

We recall to the reader that the notion “initial part” refers to the concept of weighted
initial part defined in Sect. 3.2.

Proof of Claim 1 Recall that ti = νE (ωi−1) + ui − λi−1 = νE (ωi−1) + n�1. Let us
start with η1 = x�1ωi−1. We have that

νE (η1) = n�1 + νE (ωi−1) = ti , νC(η1) = n�1 + λi−1 = ui ∈ �i−2.

By Statement (5) applied to νC(η1) ∈ �i−2, there is η′
1 with νC(η′

1) = νC(η1) and
νE (η′

1) > νE (η1). Since νC(η′
1) = νC(η1), there is a non-null constant μ such that

νC(η̃) > νC(η1), where η̃ = η1 − μη′
1.

Since νE (η′
1) > νE (η1), we have that νE (η̃) = νE (η1) = ti and the initial part of η̃ is

the same one as the initial part of η1 = x�1ωi−1. If νC(η̃) ≥ c� or νC(η̃) /∈ �i−1, we
put η = η̃ and we are done. Assume that νC(η̃) ∈ �i−1. Let us write

νC(η̃) = an + bm + λ�, � ≤ i − 1.

Let us see that νE (η̃) < νE (xa ybω�); this is equivalent to verify that ti −t� < na+mb.
Since νC(η̃) > ui , in view of Lemma 7.10 we have

na + mb > ui − λ� = n�1 + λi−1 − λ� ≥ n�1 + ti−1 − t� = ti − t�.

On the other hand, we have that νC(η̃) = νC(xa ybω�). Thus, there is a constant μ1,
such that νC(η̃1) > νC(η̃), νE (η̃1) = νE (η̃), where η̃1 = η̃ − μ1xa ybω�, and the
initial part of η̃1 is the same one as the initial part of x�1ωi−1.
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If νC(η̃1) ∈ �i−1, we repeat the procedure starting with η̃1, to obtain η̃2 such that
νC(η̃2) > νC(η̃1) and νE (η̃2) = ti . After finitely many repetitions, we get a 1-form
η such that νE (η) = ti , whose initial part is the same one as x�1ωi−1 and either
νC(η) ≥ c� or νC(η) /∈ �i−1. This proves Claim 1.

Proof of Claim 2 Take ω such that λ = νC(ω) /∈ �i−1. Note that λ /∈ �i−2. By
Statement (3), we have that ω is reachable from ωi−1. Thus, there are a, b ≥ 0 and a
constant μ such that

νE (ω − μxa ybωi−1) > νE (ω) = νE (xa ybωi−1) = an + bm + ti−1.

and moreover, we have that λ = νC(ω) > an + bm + λi−1 = k (note that λ �= k,
since λ /∈ �i−1).

Consider the 1-form ω′ = ω − μxa ybωi−1. We know that

νC(ω′) = k, νE (ω′) > νE (xa ybωi−1).

By Statement (5), we conclude that k ∈ �i−2. Hence k ∈ �i−2 ∩ (λi−1 + �). Let us
show that we necessarily have that a ≥ �1. Write

k = an + bm + λi−1 = ãn + b̃m + λ j , j ≤ i − 2.

Since λi−1 > λ j , we have that an + bm < ãn + b̃m. Thus, we have either a < ã or
b < b̃. If b < b̃, we have that an+λi−1 = ãn+ (b̃− b)m +λ j ∈ �i−2 ∩ (λi−1 +�).
In view of the minimality of �1 we should have that �1 ≤ a and then ω is reachable
from x�1ωi−1. Assume that a < ã and let us obtain a contradiction. We have

bm + λi−1 = (ã − a)n + b̃m + λ j ∈ �i−2 ∩ (λi−1 + �).

We deduce that b ≥ �2. By Statement (4), we know that �i−1 is an increasing semi-
module, starting at λ−1 = n. By Corollary A.7, we know that c�i−1 ≤ n(Q�i−1 − 1),
where Q�i−1 = max{q1, q2} and q1, q2 are the tops of �i−1. Suppose that λ ∈ Id , we
have

(1) λ > k = an + bm + λi−1 ≥ ui = �1n + λi−1 and hence d ≥ q1.
(2) λ > k = an + bm + λi−1 ≥ �2m + λi−1 and hence d ≥ q2.

We conclude that λ ∈ �i−1, contradiction. This ends the proof of Claim 2.

Proof of Claim 3 Note that νC(η) ≥ λi . Assume that λ = νC(η) > λi . Recalling
that νC(ωi ) = λi /∈ �i−1 and that the initial part of η is proportional to the initial
part of x�1ωi−1, we can apply Claim 2 and we get that ωi is reachable from η. Then
there are a, b ≥ 0 and a constant μ such that νE (ωi − μxa ybη) > νE (ωi ). Put
ω1
i = ωi − μxa ybη. We have that νC(ω1

i ) = λi , since νC(μxa ybη) ≥ λ > λi . In this
way we produce an infinite list of strictly increasing divisorial order 1-forms

ωi = ω0
i , ω

1
i , ω

2
i , . . .
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such that νC(ω
j
i ) = λi , for any i ≥ 0. For an index j we have that νE (ω

j
i ) ≥ c�

and then λi ≥ νE (ω
j
i ) ≥ c� and this is a contradiction. So we necessarily have that

νC(η) = λi . This ends the proof of Claim 3.

Proof of Statements (1) and (2): In view of Claim 1 and Claim 3, there is a 1-form η

with νE (η) = ti such that νC(η) = λi , whose initial part is proportional to the initial
part of x�1ωi−1. In order to prove Statement (1), it remains to prove that if νE (ω) = ti
then νC(ω) ≤ λi . Assume that λ = νC(ω) > λi = νC(η). The 1-form ω is basic and
resonant and it has the same divisorial order as η. Hence there is a constant μ �= 0
such that

νE (η1) > ti = νE (η) = νE (ω), η1 = η − μω.

The 1-form η1 satisfies that νC(η1) = λi /∈ �i−1; by Claim 2, there are a, b ≥ 0 and
a constant μ′ such that

νE (η2) > νE (η1), η2 = η1 − μ′xa ybη.

We have that νC(η2) = λi and νE (η2) > νE (η1). Repeating this procedure, we have a
list of 1-formsη1, η2, . . .with strictly increasing divisorial order such that νC(η j ) = λi
for any j .We find a contradiction just by considering one of such η j with νE (η j ) ≥ c� .
This ends the proof of Statement (1).

Let us prove Statement (2). Choose ω with νC(ω) = λi . By Claim 2, we have thatω
is reachable from η and hence νE (ω) ≥ ti . Assume by contradiction that νE (ω) > ti .
There is a constant μ and a, b ≥ 0 with a + b ≥ 1 such that

νE (ω1) > νE (ω), ω1 = ω − μxa ybη.

Since νC(μxa ybη) = an + bm + λi > λi , we have that νC(ω1) = λi . Repeating
the argument, we get a sequence of 1-forms ω0 = ω,ω1, . . . with strictly increasing
divisorial order such that νC(ω j ) = λi for any j . This is a contradiction.

Proof of Statement (3): By Claim 2, we have that ωi is reachable from x�1ωi−1. By
Statement (2) (already proved) we have that νE (ωi ) = ti . Hence the initial part of ωi

is proportional to the initial part of x�1ωi−1. Consider a 1-form ω with νC(ω) /∈ �i−1.
By Claim 2 the 1-form ω is reachable from x�1ωi−1 and hence it is reachable from
ωi . Then, there are a, b ≥ 0 such that

νE (xa ybωi ) = an + bm + ti = νE (ω).

Since νC(ω) /∈ �i−1, we have that nm > νC(ω) > νE (ω) > an+bm, this implies the
uniqueness of a, b. Let us show that νC(ω) ≥ an+bm+λi . Assume by contradiction
that νC(ω) < an+bm+λi . Consider ω1 = ω−μxa ybωi such that νE (ω1) > νE (ω).
In view of the contradiction hypothesis, we have that νC(ω1) = νC(ω). Moreover, if
νE (ω1) = νE (xa1 yb1ωi ) we also have that νC(ω) < a1n + b1m + λi . The situation
repeats andwe obtain an infinite sequence of 1-formsω0 = ω,ω1, ω2, . . .with strictly

123



27 Page 44 of 49 F. Cano et al.

increasing divisorial orders, such that νC(ω j ) = νC(ω) for any j ≥ 0. This is a
contradiction.

Proof of Statement (4): Noting that νE (x�1ωi−1) = ti , by Statement (1) we have
λi ≥ νC(x�1ωi−1) = n�1 + λi−1 = ui . On the other hand, since λi /∈ �i−1, we have
that λi �= ui and hence λi > ui .

Proof of Statement (5): Consider k = λi + na +mb. Assume first that k /∈ �i−1. Let
ω be such that νC(ω) = k. We have to prove that

νE (ω) ≤ νE (xa ybωi ) = an + bm + ti .

In view of Statement (3), we know that ω is reachable from ωi . Hence there are
a′, b′ ≥ 0 and a constant μ such that νE (ω − μxa

′
yb

′
ωi ) > νE (ω). Hence

νE (ω) = νE (xa
′
yb

′
ωi ) = a′n + b′m + ti .

Assume by contradiction that νE (ω) > νE (xa ybωi ) = an + bm + ti . This implies
that a′n + b′m > an + bm and thus

νC(xa
′
yb

′
ωi ) = a′n + b′m + λi > k = an + bm + λi = νC(xa ybωi ) = νC(ω).

Put ω1 = ω −μxa
′
yb

′
ωi . We have that νC(ω1) = k. Repeating the argument with ω1,

we obtain an infinite list of increasing divisorial orders 1-forms ω0 = ω,ω1, ω2, . . .

such that νC(ω j ) = k /∈ �i−1. This is a contradiction.
Assume now that k ∈ �i−1. There is an index � ≤ i − 1 such that

k = an + bm + λi = a′n + b′m + λ�.

ByLemma 7.10,we have thatλi−λ� > ti−t� and hence an+bm+ti < a′n+b′m+t�.
The 1-form xa

′
yb

′
ω� satisfies that k = νC(xa

′
yb

′
ω�) and

νE (xa
′
yb

′
ω�) = a′n + b′m + t� > an + bm + ti = νE (xa ybωi ).

This ends the proof. ��

Appendix C: Delorme’s Decompositions

In this Appendix, we provide a proof, using another approach, of Delorme’s decompo-
sitions stated in Theorem 8.5. That is, we consider a cusp C ∈ Cusps(E), an extended
standard basis ω−1, ω0, ω1, . . . , ωs;ωs+1 of C, where � = �(n,m, λ1, . . . , λs) is
the semimodule of differential values of C. We have to prove that for any indices
0 ≤ j ≤ i ≤ s, there is a decomposition

ωi+1 =
j∑

�=−1

f i j� ω�
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such that, for any−1 ≤ � ≤ j wehave νC( f i j� ω�) ≥ vi j , where vi j = ti+1−t j+λ j and

there is exactly one index −1 ≤ k ≤ j − 1 such that νC( f i jk ωk) = νC( f i jj ω j ) = vi j .
Note that the case i = 0 is straightforward. Indeed, we have v00 = n + m and if

we write ω1 = adx + bdy, we necessarily have that νC(adx) = νC(bdy) = n +m in
view of the fact that the initial part of ω1 is proportional to mydx − nxdy.

Thus, we assume that i ≥ 1.

Lemma C.1 Given a 1-form η with νC(η) > ui+1 and νE (η) > ti+1, we have

(a) If νE (η) < nm, there is a 1-form α such that νE (η − α) > νE (η) that can be
decomposed as α = ∑i

�=−1 g�ω�, where νC(g�ω�) > ui+1 for −1 ≤ � ≤ i .

(b) If νE (η) ≥ nm, there is a decomposition η = ∑i
�=−1 h�ω� where each summand

h�ω� satisfies that νC(h�ω�) > ui+1.

Proof (b) Assume that νE (η) ≥ nm, we have η = f dx + gdy = f ω−1 + gω0,
where νE ( f dx) ≥ nm and νE (gdy) ≥ nm. In view of Lemma 6.5, we have that
ui+1 < c� + n < nm. We are done by taking the decomposition η = f ω−1 + gω0.

(a) Assume that νE (η) < nm. Note that η is a basic 1-form. There are two possible
cases: η is resonant or not. Assume first that η is not resonant. Then

νC(η) = νE (η) = νE (α) > ui+1,

where α is the initial part of η. Note that νE (η − α) > νE (η). We can write α

= g−1dx + g0dy = g−1ω−1 + g0ω0, where

νC(g�ω�) ≥ νE (g�ω�) ≥ νE (α) = νE (η) = νC(η) > ui+1, � = −1, 0.

This is the desired decomposition.
Assume that η is resonant. Define k = max{� ≤ i; η is reachable from ω�}. The

fact that η is resonant implies that k ≥ 1 (recall that i ≥ 1). Consider a, b ≥ 0 and a
constant ϕ such that

νE (η̃) > νE (η), η̃ = η − ϕxa ybωk . (21)

If we show that νC(xa ybωk) > ui+1, we are done. Let us do it. Assume first that k = i .
We know that

νE (η) = νE (xa ybωi ) = an + bm + ti > ti+1 = ti + ui+1 − λi .

This implies that an+bm > ui+1−λi and then νC(xa ybωi ) = an+bm+λi > ui+1.
Assume now that 1 ≤ k ≤ i − 1. Let us reason by contradiction assuming that

νC(xa ybωk) ≤ ui+1. Denote by η̃ = η − ϕxa ybωk . By Eq. (21), we know that

νE (η̃) > νE (xa ybωk) = an + bm + tk . (22)

Since νC(xa ybωk) ≤ ui+1 < νC(η), we have that

νC(η̃) = νC(xa ybωk) = an + bm + λk . (23)
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In view of Eqs. (23) and (22), we can apply Statement (5) in Proposition B.1 to
conclude that

an + bm + λk ∈ �k−1. (24)

Let �1 and �2 be the �k-limits. Since an + bm + λk ∈ �k−1, we have that a ≥ �1 or
b ≥ �2, by Lemma 6.9. We have four cases to be considered:

uk+1 = n�1 + λk and a ≥ �1; uk+1 = n�1 + λk and b ≥ �2;
uk+1 = m�2 + λk and a ≥ �1; uk+1 = m�2 + λk and b ≥ �2.

Assume that uk+1 = n�1 + λk and a ≥ �1. This implies that xa ybωk , and hence η,
is reachable from x�1ωk and hence from ωk+1. This contradicts the maximality of the
index k.

Assume that uk+1 = n�1 + λk and b ≥ �2 and a < �1. We have that

νC(xa ybωk) ≥ νC(y�2ωk) = m�2 + λk > uk+1 = n�1 + λk .

Let q1 and q2 be the tops of �k and Q�k the main top, we have that

νC(xa ybωk) ≥ nQ�k ≥ c�k + n.

Recall that c�k ≤ n(Q�k − 1) in view of Proposition A.5. On the other hand, we
know by Lemma 6.5 that ui+1 < c�i + n ≤ c�k + n. We have the contradiction
ui+1 < c�k + n ≤ νC(xa ybωk) ≤ ui+1.

The two remaining cases with uk+1 = m�2 + λk may be considered in a similar
way to the previous ones. ��
Proposition C.2 We can write ωi+1 = ∑i

�=−1 f�ω� where νC( f�ω�) ≥ ui+1 for
−1 ≤ � ≤ i and such that νC( fiωi ) = ui+1 and there is exactly one index k ∈
{−1, 0, 1, . . . , i − 1} satisfying that νC( fkωk) = ui+1.

Proof Let us consider first the case i = 0. We know that u1 = t1 = n+m and that ω1
is basic resonant, with νE (ω1) = n+m. Then, there is a constantμ such that νE (η) >

n + m, where η = ω1 − μ(mydx − nxdy). We can write η = g−1dx + g0dy, where
νE (g−1) > m and νE (g0) > n. Let us put f−1 = μmy+g−1 and f0 = −μnx+g0.We
have that νC( f−1) = m and νC( f0) = n; henceω1 = f−1dx+ f0dy = f−1ω−1+ f0ω0
is the desired decomposition.

Assume now that 1 ≤ i ≤ s. Let �1, �2 be the limits of �i . By Remark 6.8, there
is exactly one index k with −1 ≤ k ≤ i − 1 such that

(1) If ui+1 = �1n + λi , then ui+1 = λk + bm (note that b ≥ 1).
(2) If ui+1 = �2m + λi , then ui+1 = λk + an (note that a ≥ 1).

Assume that ui+1 = �1n+λi , the case ui+1 = �2m +λi is symmetric to this one. We
have that

νC(x�1ωi ) = ui+1 = νC(ybωk). (25)
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On the other hand, we have that

νE (x�1ωi ) = ti + �1n = ti + (ui+1 − λi ) = ti+1;
νE (ybωk) = tk + bm = tk + ui+1 − λk .

By Lemma 7.10, we have that

tk + ui+1 − λk − ti+1 = (λi − λk) − (ti − tk) > 0,

and hence ti+1 = νE (x�1ωi ) < νE (ybωk). Since both ωi+1 and x�1ωi are basic
resonant with the same divisorial order ti+1, there is a constant ϕ such that

νE (ωi+1 − ϕx�1ωi ) > νE (ωi+1) = ti+1.

By Eq. (25), there is a constant μ such that

νC(ω0
i+1) > ui+1, where ω0

i+1 = ϕx�1ωi − μybωk .

Put η0 = ωi+1 − ω0
i+1 = ωi+1 − ϕx�1ωi + μybωk . We have that νE (η0) > ti+1 and

νC(η0) > ui+1 in view of the following facts:

(1) νE (η0) ≥ min{νE (ωi+1 − ϕx�1ωi ), νE (μybωk)} > ti+1.
(2) νC(η0) ≥ min{νC(ωi+1), νC(ω0

i+1)} = min{λi+1, νC(ω0
i )} > ui+1. Recall that �

is an increasing semimodule; (here we put λs+1 = ∞).

The proof is now a consequence of Lemma C.1 as follows. We start with η0 as before.
If νE (η0) ≥ nm, we apply Lemma C.1 (b). We are done by taking the decomposition

ωi+1 = ω0
i+1 +

i∑

�=−1

h�ω� = ϕx�1ωi − μybωk +
i∑

�=−1

h�ω�.

If νE (η0) < nm, we apply Lemma C.1 (a) and we obtain η1 = η0 − ∑i
�=−1 g�ω�

such that νE (η1) > νE (η0) > ti+1 and νC(η1) > ui+1. If νE (η1) < nm, we re-apply
Lemma C.1 (a) to η1. After finitely many steps, we obtain

η̃ = η0 −
i∑

�=−1

g̃�ω�,

such that νE (η̃) ≥ nm, νC(η̃) > ui+1 and νE (η̃) > ti+1, where νC(g̃�ω�) > ui+1 for
any −1 ≤ � ≤ i . We apply Lemma C.1 (b) to η̃ to obtain that η̃ = ∑i

�=−1 h̃�ω� with
νC(h̃�ω�) > ui+1. The desired decomposition is given by

ωi+1 = ω0
i+1 +

i∑

�=−1

(g̃� + h̃�)ω� = ϕx�1ωi − μybωk +
i∑

�=−1

(g̃� + h̃�)ω�.
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This ends the proof. ��
Let us end the proof of Theorem 8.5. We already know that it is true when j = i ,

in view of Proposition C.2. We assume that the result is true for j + 1 ≤ i and let us
show that it is true for 0 ≤ j ≤ i . In order to simplify notations, let us write

v j = ti+1 − t j + λ j , v j+1 = ti+1 − t j+1 + λ j+1.

Recall that v j+1 = v j + λ j+1 − u j+1. By induction hypothesis, we have that

ωi+1 =
j+1∑

�=−1

h�ω�,

where νC(h�ω�) ≥ v j+1 for any −1 ≤ � ≤ j + 1 and νC(h j+1ω j+1) = v j+1. We

apply Proposition C.2 to write ω j+1 = ∑ j
�=−1 g�ω�, where νC(g�ω�) ≥ u j+1 for any

−1 ≤ � ≤ j and there is exactly one index k such that νC(g jω j ) = νC(gkωk) = u j+1.
Now, we have an expression

ωi+1 =
j∑

�=−1

f�ω�, f� = h� + h j+1g�.

We have the following properties:

(1) νC(h�ω�) > v j , for any −1 ≤ � ≤ j . Indeed, we know that

v j+1 = v j + (λ j+1 − u j+1) > v j ,

recall that the semimodule is increasing and then λ j+1 > u j+1.
(2) νC(h j+1g�ω�) ≥ v j and k, j are the unique indices such that

νC(h j+1g jω j ) = νC(h j+1gkωk) = v j .

In order to prove this, it is enough to note that

νC(h j+1g�ω�) = (v j+1 − λ j+1) + νC(g�ω�) ≥ (v j+1 − λ j+1) + u j+1 = v j

and the equality holds exactly for the indices � = j, k.

The desired result comes from the above properties (1) and (2), noting that

νC( f�ω�) ≥ min{νC(h�ω�), νC(h j+1g�ω�)}

and the equality holds when the two values are different.
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