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Abstract
Let X ⊂ R

n be a closed semi-algebraic set, F : Rn → R be a C2 semi-algebraic
function and f = F|X : X → R

n be the restriction of F to X . We define the global
index of a critical value ci of f and prove an index formula for χ(X) that generalizes
a result previously proved by the authors for the case of isolated critical points. We
define also new indices at infinity and prove an alternative index formula for χ(X).
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Mathematics Subject Classification 14P10 · 14P25

1 Introduction

Let f : (Rn, 0) → (R, 0) be an analytic function germ with an isolated critical point
at 0. The Khimshiashvili formula (see Khimshiashvili 1977) states that

χ( f −1(δ) ∩ Bε) = 1 − sign(−δ)n deg0 ∇ f ,

where 0 < |δ| � ε � 1, Bε is the closed ball of radius ε centered at 0, ∇ f is the
gradient of f and deg0 ∇ f is the topological degree of themapping ∇ f

|∇ f | : Sε → Sn−1.
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As a corollary of the Khimshiashvili formula, by a result of Arnol’d (1978) and
Wall (1983) we have that

χ({ f ≤ 0} ∩ Sε) = 1 − deg0 ∇ f ,

χ({ f ≥ 0} ∩ Sε) = 1 + (−1)n−1 deg0 ∇ f ,

and

χ({ f = 0} ∩ Sε) = 2 − 2 deg0 ∇ f ,

if n is even.
Szafraniec (1986) generalized the results of Arnol’d and Wall to the case of a

function germ f with non-isolated singularities and in Szafraniec (1991) he improved
this result for a weighted homogeneous polynomial f : Rn → R.

In Dutertre (2020) Lemma 2.5, the first named author proves a new relation between
the topology of the positive (resp. negative) real Milnor fibre of an analytic function
germ f : (Rn, 0) → (R, 0) and the topology of the link of the set { f ≤ 0} (resp. { f ≥
0}). Using Szafraniec’s results, he deduces a generalization of the Khimshiashvili
formula for non-isolated singularities. Namely he proves that if 0 < δ � ε, then

χ( f −1(−δ) ∩ Bε) = 1 − (−1)n deg0 ∇g−,

and

χ( f −1(δ) ∩ Bε) = 1 − (−1)n deg0 ∇g+,

with g− = − f − ωd , g+ = f − ωd , ω(x) = x21 + · · · + x2n and d is an integer big
enough.

Sekalski (2005) gives a global counterpart of Khimshiasvili’s formula for a poly-
nomial function f : R2 → R with a finite number of critical points. He considers the
set � f = {λ1, . . . , λk} of critical values of f at infinity, where λ1 < λ2 < · · · < λk ,
and its complement R \ � f = ∪k

i=0]λi , λi+1[ where λ0 = −∞ and λk+1 = +∞.

Denoting by r∞(g) the number of real branches at infinity of a curve {g = 0} in R
2,

he proves that

deg∞ ∇ f = 1 +
k∑

i=1

r∞( f − λi ) −
k∑

i=0

r∞( f − λ+
i ),

where for i = 0, . . . , k, λ+
i is an element of ]λi , λi+1[ and deg∞ ∇ f is the topological

degree of the mapping ∇ f
‖∇ f ‖ : SR → Sn−1, R � 1.

Gwoździewicz (2009) gives a topological proof of Sekalski’s result using Euler
integration. He proves that

deg∞ ∇ f = 1 +
∫

R

r∞( f − t)dχc(t),

123



Semi-Algebraic Functions with Non-Compact Critical Set Page 3 of 25 22

where χc denotes the Euler characteristic with compact support that we will define
later.

The first named author generalizes Sekalski result inDutertre (2012) by considering
a closed semi-algebraic set X ⊂ R

n and a C2 semi-algebraic function f : Rn → R

such that f|X has a finite number of critical points. In Dutertre and Moya Perez (2016)
the authors recover the first named author’s results using Euler integration, which
clearly simplifies the proofs.

Finally, in Dutertre et al. (2016), Sect. 3, Araujo, Chen, Andrade and the first named
author gave a generalization of the results of Dutertre (2012) when X = R

n and f is
a semi-tame function with non-isolated critical points, by adapting to the global case
the method developed by Szafraniec (1986).

The aim of this paper is to extend these results to the general case, i.e., without
any assumption on the set of critical points of the function. We work in the following
setting: X ⊂ R

n is a closed semi-algebraic set, F : Rn → R is a C2 semi-algebraic
function and f = F|X : X → R

n is the restriction of F to X .
In Sect. 3, we define the global index of a critical value ci of f ,

indg( f , X , f −1(ci )) = χ( f −1(ci )) − χ( f −1(ci − α) ∩ BRci
),

where Rci � 1 and 0 < α � 1
Rci

. Then, we generalize Theorem 3.16 of Dutertre

(2012) and Theorem 5.1 of Dutertre and Moya Perez (2016) for the case of a non-
compact critical set, that is, we prove that (Theorem 3.2)

χ(X) =
l∑

i=1

indg( f , X , f −1(ci )) −
∫

R

χ(Lk∞({ f ≤ t}))dχc(t).

Using the same techniques we generalize the other results of Dutertre (2012) and
Dutertre and Moya Perez (2016) for χ(X) for the case of a non-compact critical set.
As an application, we obtain an index formula for the quotient of two semi-algebraic
functions.

In Sect. 4 we define two new indices, the right index at infinity of an asymptotic
non-ρ-regular value di (see Definition 2.15),

ind+∞( f , X , f −1(di )) = χ( f −1(di + α)) − χ( f −1(di + α) ∩ BRdi
),

and the left index at infinity of di ,

ind−∞( f , X , f −1(di )) = χ( f −1(di − α)) − χ( f −1(di − α) ∩ BRdi
),

where Rdi � 1 and 0 < α � 1
Rdi

. We compute these indices in particular cases and

we finish the section with a formula that relates χ(X) with them (Theorem 4.4). This
formula can be viewed as a generalization of Corollary 2.3 applied to f : X → R.

We end the paper in Sect. 5 with some real and global Lê-Iomdine type formulas.
Namely, by addingor substracting to f a big power of an adapted function,we construct
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two functions g+ and g− that have compact sets of critical points and then we prove
that the sum of the global indices of f (respectively − f ) and g− (respectively g+)
coincide (Theorem 5.11). Such results were prevoiusly proved inDutertre et al. (2016),
when X = R

n and f is a semi-tame function.
Let us finish this introduction with a comment. It seems that all these results can be

extended to the case of arbitrary real closed fields. Indeed the tools and results that we
use (Euler characteristic with compact support, Hardt’s theorem, constructible func-
tions, first Thom–Mather’s isotopy lemma...) have versions in this case. For instance,
Coste and Shiota (1995) proved a version of the Thom–Mather isotopy lemmawithout
integrating vector fields. But in order to do this, one needs to check many (hidden)
details.

The authors are grateful to the referee for suggesting valuable improvements.

2 Some Preliminary Results

2.1 Euler Integration

Let X ⊂ R
n be a semi-algebraic set. We can write it in the following way:

X = 
l
j=1C j ,

where C j is semi-algebraically homeomorphic to ] − 1, 1[d j (C j is called a cell of
dimension d j ). We set

χc(X) =
l∑

j=1

(−1)d j ,

and we call it the Euler characteristic with compact support of X . Let us remark that
if X is compact, then χc(X) = χ(X).

A constructible function ϕ : X → Z is a Z-valued function that can be written as
a finite sum

ϕ =
∑

i∈I
mi1Xi ,

where Xi is a semi-algebraic subset of X .
If ϕ is a constructible function, the Euler integral of ϕ is defined as

∫

X
ϕdχc(x) =

∑

i∈I
miχc(Xi ).

Definition 2.1 Let f : X → Y be a continuous semi-algebraic map and let ϕ : X →
Z be a constructible function. The push forward f∗ϕ of ϕ along f is the function
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f∗ϕ : Y → Z defined by

f∗ϕ(y) =
∫

f −1(y)
ϕdχc(x).

Theorem 2.2 (Fubini type theorem) Let f : X → Y be a continuous semi-algebraic
map and let ϕ be a constructible function on X. Then, we have

∫

Y
f∗ϕdχc(y) =

∫

X
ϕdχc(x).

Proof See Statement 3.A in Viro (1988). �

Corollary 2.3 Let X, Y be semi-algebraic sets and let f : X → Y be a continuous
semi-algebraic map. Then

χc(X) =
∫

Y
χc( f

−1(y))dχc(y).

2.2 Link at Infinity and Adapted Radius

For any closed semi-algebraic set equippedwith aWhitney stratification X = 
α∈ASα ,
we denote byLk∞(X) the link at infinity of X . It is defined as follows. Letω : Rn → R

be a C2 proper semi-algebraic positive function. Since ω|X is proper, the set of critical
points of ω|X (in the stratified sense) is compact. Hence for R sufficiently big, the map
ω : X ∩ ω−1([R,+∞[) → R is a stratified submersion. The link at infinity of X is
the fibre of this submersion. The topological type of Lk∞(X) does not depend on the
choice of the function ω (for instance, see Dutertre (2012), Sect. 3).

Definition 2.4 We will say that R > 0 is an adapted radius for X if D : X ∩
D−1([R,+∞[) → R is a stratified submersion, where D is the euclidean norm.

Remark 2.5 (i) We note that if R is an adapted radius for X then Lk∞(X) is
homeomorphic to X ∩ SR′ , for R′ ≥ R.

(ii) We note that χc(X) = χ(X) − χ(Lk∞(X)).

2.3 Stratified Critical Points andValues

Let us consider from now on a closed semi-algebraic set X ⊂ R
n . It is equipped with

a finite semi-algebraic Whitney stratification X = 
a∈ASa . Let F : Rn → R be a
C2-semi-algebraic function and let f = F|X .

Definition 2.6 (1) A point p ∈ X is a critical point of f if it is a critical point of F|S(p),
where S(p) is the stratum that contains p.

(2) A point c ∈ R is a critical value if there exists p ∈ f −1(c) such that p is a critical
point of f .
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(3) If p is an isolated critical point of f , we define the index of f at p by

ind( f , X , p) = 1 − χ({ f = f (p) − δ} ∩ Bε(p)),

where 0 < δ � ε � 1.
Let us notice that if X = R

n , by Khimshiashvili (1977), ind( f , X , p) = degp ∇ f .

Lemma 2.7 The set of critical points of f , � f , is a closed semi-algebraic subset of X
and its set of critical values, � f , is finite.

Proof To prove that� f is closed we useWhitney’s condition (a) and to prove that� f

is finite we use the Bertini-Sard Theorem ( Bochnak et al. (1998)). �

The following result gives a relation between the Euler characteristic of X and the

indices of the pi ’s, when X is compact.

Theorem 2.8 (Dutertre (2012), Theorem3.1) If X is compact and f has a finite number
of critical points p1, . . . , pl , we have

χ(X) =
l∑

i=1

ind( f , X , pi ).

Now, we give some lemmas that we will use later on. For the proofs we refer to
Dutertre (2012).We assume that f has a finite number of critical points p1, p2, . . . , pl .

Lemma 2.9 If δ < 0 is a small regular value of f and R � 1 is such that f −1(0)∩ BR

is a retract by deformation of f −1(0), then

χ( f −1(δ) ∩ BR) = χ( f −1(0)) −
∑

pi∈ f −1(0)

ind( f , X , pi ).

Lemma 2.10 If f is proper then for any α ∈ R, we have

χ({ f ≥ α}) − χ({ f = α}) =
∑

i : f (pi )>α

ind( f , X , pi ).

We state a Mayer–Vietoris type result that we will apply several times in the paper.

Lemma 2.11 For any α ∈ R, we have

χ(X) = χ({ f ≥ α}) + χ({ f ≤ α}) − χ({ f = α}).

Proof By the additivity of χc, we know that

χc(X) = χc({ f ≥ α}) + χc({ f ≤ α}) − χc({ f = α}),

so the result is obvious if X is compact. If X is not compact, we can choose R > 0
such that X (resp. { f ≥ α}, { f ≤ α}, { f = α}) is a deformation retract of X ∩ BR
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(resp. { f ≥ α}∩ BR , { f ≤ α}∩ BR , { f = α}∩ BR). It is enough to apply the compact
case and the relation between χ and χc. �


The following lemma is a consequence of Lemma 2.10 and Lemma 2.11.

Lemma 2.12 If f is proper then for α and α′ with α < α′, we have

χ({α ≤ f ≤ α′}) − χ({ f = α}) =
∑

i :α< f (pi )≤α′
ind( f , X , pi ).

Let g : R
n → R be a C2-semi-algebraic function such that g−1(0) intersects

X transversally. Let us suppose that f|X∩{g≤0} admits an isolated critical point p in
X ∩ {g = 0} which is not a critical point of f . We say that such a point is a correct
critical point. If S denotes the stratum of X that contains p, this implies that

∇( f|S)(p) = λ(p)∇(g|S)(p),

with λ(p) �= 0.

Lemma 2.13 For 0 < δ � ε � 1, we have

χ( f −1(−δ) ∩ Bε(p) ∩ X ∩ {g ≤ 0}) = 1,

if λ(p) > 0 and

χ( f −1(−δ) ∩ Bε(p) ∩ X ∩ {g ≤ 0}) = χ( f −1(−δ) ∩ Bε(p) ∩ X ∩ {g = 0}),

if λ(p) < 0.

Remark 2.14 As a consequence of the last lemma and the definition of the index of a
critical point p, we get that

ind( f , X ∩ {g ≤ 0}, p) = 0,

if λ(p) > 0, and

ind( f , X ∩ {g ≤ 0}, p) = ind( f , X ∩ {g = 0}, p),

if λ(p) < 0.

2.4 Asymptotic Non-�-Regular Values

Let ρ(x) = 1 + 1
2 (x

2
1 + · · · + x2n ). Note that ∇ρ(x) = x , ρ(x) ≥ 1 and the levels of

ρ are the spheres of radius greater than or equal to 1. Let 
 f ,ρ be the polar set


 f ,ρ = {
x ∈ R

n | rank[∇ f|S(x),∇ρ|S(x)] < 2
}
,

where S is the stratum that contains x . We have � f ⊂ 
 f ,ρ .
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Definition 2.15 The set of asymptotic non-ρ-regular values of f is the set defined as
follows:

� f = {α ∈ R | ∃{xn}n∈N ∈ 
 f ,ρ such that |xn| → +∞ and f (xn) → α}.

The set � f was introduced and studied by Tibăr (1999) when X = R
n and f :

R
n → R is a polynomial. By Lemma 2.2 in Dutertre (2012), we can assume that


 f ,ρ \ �( f ) is a curve and so, that � f is a finite set {d1, d2 . . . , dm}, with d1 < d2 <

· · · < dm .

2.5 Some Others Sets of Special Values

We define four sets of special values. They are values where some changes in the
topology of the fibres of f may occur.

Definition 2.16 Let ∗ ∈ {≤,=,≥}.
(1) We define �∗

f by

�∗
f = {α ∈ R | β �→ χ(Lk∞({ f ∗ β})) is not constant

in a neighborhood of α}.

(2) We define B̃( f ) by B̃( f ) = � f ∪ �
≤
f ∪ �

≥
f .

Proposition 2.17 (1) The sets �∗
f and B̃( f ) are finite. Moreover �=

f ⊂ �
≤
f ∪ �

≥
f .

(2) If α /∈ B̃( f ), the functions

β �→ χ({ f ∗ β}), ∗ ∈ {≤,=,≥},

are constant in a neighborhood of α.

Proof The first point is proved in Dutertre (2012). Let α /∈ B̃( f ) and let α− < α be
a value close enough to α. Let Rα (resp. Rα− ) be an adapted radius for f −1(α) (resp.
f −1(α−)). We can choose them in such a way that they are also adapted to { f ≤ α}
and { f ≤ α−} respectively. The critical points of f|{α−< f <α}∩BR

α− can only lie on

SRα− , and they point outwards. By Lemma 2.12, this implies that

χ({ f ≤ α−}) = χ({ f ≤ α}),

because Rα− is also adapted for { f ≤ α}.
Similarly, we can consider the critical points of − f|{α−< f<α}∩BR

α− . Applying
Lemma 2.12 twice, we obtain that

χ({ f ≥ α−}) − χ({ f ≥ α}) = χ(Lk∞({ f ≥ α−})) − χ(Lk∞({ f ≥ α})) = 0,
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since α /∈ �
≥
f . By Lemma 2.11, we see that

χ({ f = α−}) = χ({ f = α}).

The same proof works for α+ > α, a value close enough to α. �

Remark 2.18 Taking into account Proposition 2.17 and basic properties of χc, if we
have inclusions

�∗
f ⊂ {ν1, ν2, . . . , νt },

with ν1 < ν2 < · · · < νt and

B̃( f ) ⊂ {η1, η2, . . . , ηu},

with η1 < η2 < · · · < ηu , we can express the Euler integral
∫
R

χ(Lk∞(X ∩ { f ∗
t}))dχc(t) as

∫

R

χ(Lk∞(X ∩ { f ∗ t}))dχc(t) =
t∑

i=1

χ(Lk∞(X ∩ { f ∗ νi }))

−
t∑

i=0

χ(Lk∞(X ∩ { f ∗ ν+
i })),

the Euler integral
∫
R

χ(X ∩ { f ∗ t})dχc(t) as

∫

R

χ(X ∩ { f ∗ t})dχc(t) =
u∑

j=1

χ(X ∩ { f ∗ η j }) −
u∑

j=0

χ(X ∩ { f ∗ η+
j }),

and the Euler integral
∫
R

χc(X ∩ { f ∗ t})dχc(t) as

∫

R

χc(X ∩ { f ∗ t})dχc(t) =
u∑

j=1

χc(X ∩ { f ∗ η j }) −
u∑

j=0

χc(X ∩ { f ∗ η+
j }),

where ν0, η0 = −∞, νt+1 = +∞, ηu+1 = +∞, ν+
i ∈]νi , νi+1[ and η+

j ∈]η j , η j+1[.

3 Formulas for the Euler Characteristic of a Closed Semi-Algebraic Set
in the General Case

Let X be a closed semi-algebraic set, equipped with a finite semi-algebraic Whitney
stratification X = 
a∈ASa . Let F : Rn → R be a C2 semi-algebraic function. We call
f = F|X , the restriction of F to X . Let � f = {c1, c2, . . . , ck} be the set of critical
values of f .
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Let ci be a critical value of f . The partition f −1(ci ) = 
a∈A f −1(ci )∩ Sa may not
be aWhitney stratification, but sinceWhitney conditions are stratifying, we can refine
it in order to get a Whitney stratification f −1(ci ) = 
b∈BTB of f −1(ci ) such that

X = 
a∈A(Sa \ f −1(ci ))
⊔


b∈BTB

is still a Whitney stratification of X .

Definition 3.1 We define the index of a critical value ci of f as

indg( f , X , f −1(ci )) = χ( f −1(ci )) − χ( f −1(ci − α) ∩ BRci
)

with 0 < α � 1 and Rci is an adapted radius for f −1(ci ).

Theorem 3.2 We have

χ(X) =
k∑

i=1

indg( f , X , f −1(ci )) −
∫

R

χ(Lk∞({ f ≤ t}))dχc(t).

Proof By Hardt’s theorem Hardt (1975), there exists a finite set �̃ f ⊂ R such that
over each connected component of R \ �̃ f , f is a semi-algebraic trivial fibration. Let
us write

� f ∪ B̃ f ∪ �̃ f = {b1, . . . , bl},

where b1 < · · · < bl .
Note that, by Lemma 2.9, indg( f , X , f −1(b j )) = 0 if b j /∈ � f .
By Corollary 2.3, we have

χc(X) =
∫

R

χc( f
−1(t))dχc(t) =

l∑

j=1

(χc( f
−1(b j ) − χc( f

−1(b−
j )) − χc( f

−1(b+
l )),

where b−
j = b j − α and b+

j = b j + α, with 0 < α � 1.
To compute the right-hand side of the above equality, we work with each difference

χc( f −1(b j ) − χc( f −1(b−
j )) for j = 1, . . . , l. Let us set b−

j = b− and b j = b with

b− = b − δ, 0 < δ � 1
Rb−

, where Rb− > Rb � 1 are adapted radius for f −1(b−)

and f −1(b). We have

χc( f
−1(b)) − χc( f

−1(b−))

= χ( f −1(b)) − χ(Lk∞( f −1(b)) − χ( f −1(b−) ∩ BRb) + χ( f −1(b−) ∩ SRb )

−χc( f
−1(b−) ∩ {|x | ≥ Rb})

= indg( f , X , f −1(b)) − χ(Lk∞( f −1(b)) + χ( f −1(b−) ∩ SRb )

−χc( f
−1(b−) ∩ {|x | ≥ Rb}).
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Fig. 1 Critical points on the
fiber f −1(b−)

As explained above, we can assume that f −1(b) is a union of strata of our stratifica-
tion. If Rb is sufficiently big and b− is sufficiently close to b, then the (stratified) critical
points of −ρ|{b−≤ f ≤b} lying in {Rb ≤ ρ ≤ Rb−} appear on { f = b−}. Moreover they
are correct and points outwards (Fig. 1).

Therefore, by Lemmas 2.12 and 2.13, we have

χ({Rb ≤ |x | ≤ Rb−} ∩ {b− ≤ f ≤ b})
= χ({b− ≤ f ≤ b} ∩ SRb− ) = χ({ f ≤ b} ∩ SRb− ) − χ({ f ≤ b−} ∩ SRb− )

+χ({ f = b−} ∩ SRb− )

= χ(Lk∞({ f ≤ b})) − χ(Lk∞({ f ≤ b−})) + χ(Lk∞({ f = b−})),

applying Lemma 2.11 and the definition of the link at infinity.
Let us compute χ({Rb ≤ |x | ≤ Rb−} ∩ {b− ≤ f ≤ b}) in another way. Let b̃ be a

regular value of f such that b− < b̃ < b and f|{Rb≤|x |≤Rb−} has no critical point on

{b̃ ≤ f < b}. This implies that f −1(b)∩{Rb ≤ |x | ≤ Rb−} is a deformation retract of
{Rb ≤ |x | ≤ Rb−}∩{b̃ ≤ f ≤ b}. Applying the same argument as above, considering
the function f|{Rb≤|x |≤Rb−} and applying Lemmas 2.12 and 2.13, we obtain that

χ({b− ≤ f ≤ b̃} ∩ {Rb ≤ |x | ≤ Rb−}) = χ({ f = b−} ∩ {Rb ≤ |x | ≤ Rb−}).

By Lemma 2.11 and the deformation retract argument, we get that

χ({b− ≤ f ≤ b} ∩ {Rb ≤ |x | ≤ Rb−}) = χ({ f = b−} ∩ {Rb ≤ |x | ≤ Rb−})
+χ({ f = b} ∩ {Rb ≤ |x | ≤ Rb−})
−χ({ f = b̃} ∩ {Rb ≤ |x | ≤ Rb−}).

Moreover if we choose b̃ close enough to b, then the intersection


 f ,ρ \ � f ∩ [ f −1([b̃, b]) ∩ {Rb ≤ |x | ≤ Rb−}]
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Fig. 2 The fiber f −1(b̃)

is empty (see Fig. 2).
This implies that

χ({ f = b̃} ∩ {Rb ≤ |x | ≤ Rb−}) = χ({ f = b̃} ∩ SRb ).

Finally we obtain that

χ({b− ≤ f ≤ b} ∩ {Rb ≤ |x | ≤ Rb−}) = χ({ f = b−} ∩ {Rb ≤ |x | ≤ Rb−})
+χ(Lk∞( f −1(b))) − χ({ f = b′} ∩ SRb ).

Comparing the two expressions for χ({Rb ≤ |x | ≤ Rb−} ∩ {b− ≤ f ≤ b}) leads to

χ({ f = b−} ∩ {Rb ≤ |x | ≤ Rb−}) = χ(Lk∞({ f ≤ b})) − χ(Lk∞({ f ≤ b−}))
+χ(Lk∞({ f = b−})) − χ(Lk∞( f −1(b)))

+χ({ f = b′} ∩ SRb ).

Then we can write

χc({ f = b−} ∩ {|x | ≥ Rb}) = χ({ f = b−} ∩ {|x | ≥ Rb}) − χ(Lk∞( f −1(b−)))

= χ({ f = b−} ∩ {Rb ≤ |x | ≤ Rb−}) − χ(Lk∞( f −1(b−)))

= χ(Lk∞({ f ≤ b})) − χ(Lk∞({ f ≤ b−}))
−χ(Lk∞( f −1(b))) + χ({ f = b′} ∩ SRb ).

Finally we obtain

χc( f
−1(b)) − χc( f

−1(b−)) = indg( f , X , f −1(b))

−χ(Lk∞({ f ≤ b})) + χ(Lk∞({ f ≤ b−})),
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and so

χc(X) =
l∑

j=1

indg( f , X , f −1(b j )) −
l∑

j=1

χ(Lk∞({ f ≤ b j }))

+
l∑

j=1

χ(Lk∞({ f ≤ b−
j })) − χc( f

−1(b+
l )).

Let Rb+
l
be an adapted radius for f −1(b+

l ). We can write

χc( f
−1(b+

l )) = χ( f −1(b+
l ) ∩ BR

b+l
) − χ(Lk∞( f −1(b+

l )))

= χ({ f ≥ b+
l } ∩ BR

b+l
) − χ(Lk∞( f −1(b+

l ))),

because by Lemma 2.10, χ( f −1(b+
l ) ∩ BR

b+l
) = χ({ f ≥ b+

l } ∩ BR
b+l

). Hence,

χc( f
−1(b+

l )) = χ({ f ≥ b+
l }) − χ(Lk∞( f −1(b+

l )))

= χc({ f ≥ b+
l }) + χ(Lk∞({ f ≥ b+

l })) − χ(Lk∞( f −1(b+
l ))).

But since χc([bl+ ,+∞[) = 0 and f|[bl+ ,+∞[ is a trivial fibration, we get that χc({ f ≥
b+
l }) = 0. We conclude that

χc( f
−1(b+

l )) = χ(Lk∞(X)) − χ(Lk∞({ f ≤ b+
l })),

by Lemma 2.11. Putting b+
l = b−

l+1, where bl+1 = +∞, we have

χc(X) = χ(X) − χ(Lk∞(X))

=
l∑

j=1

indg( f , X , f −1(b j )) − χ(Lk∞(X)) +
l+1∑

j=1

χ(Lk∞({ f ≤ b−
j }))

−
l∑

j=1

χ(Lk∞({ f ≤ b j })) =
l∑

j=1

indg( f , X , f −1(b j ))

−χ(Lk∞(X)) −
∫

R

χ(Lk∞({ f ≤ t}))dχc(t),

obtaining the desired result. �

Corollary 3.3 If f has a finite number of critical points p1, p2, . . . , pl then

χ(X) =
l∑

i=1

ind( f , X , pi ) −
∫

R

χ(Lk∞({ f ≤ t}))dχc(t).
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Proof Let bi be a critical value such that f −1(bi ) has a finite number of singularities
p1, . . . , pri . By Lemma 2.9, we know that

ri∑

i=1

ind( f , X , pi ) = χ( f −1(bi )) − χ( f −1(b−
i ) ∩ BRbi

)

where Rbi is an adapted radius for f −1(bi ). �

Corollary 3.4 We have

χ(X) =
k∑

i=1

indg(− f , X , f −1(ci )) −
∫

R

χ(Lk∞({ f ≥ t}))dχc(t).

Proof By replacing f by − f and applying an analogous procedure as in the last
theorem, we arrive to the desired result. �

Corollary 3.5 We have

2χ(X) − χ(Lk∞(X)) =
l∑

i=1

indg( f , X , f −1(ci ))

+
l∑

i=1

indg(− f , X , f −1(ci ))

−
∫

R

χ(Lk∞({ f = t}))dχc(t).

Proof It follows from Theorem 3.2 and Corollary 3.4 by applying Lemma 2.11. �

Lemma 3.6 We have

∫
R

χc({ f ≤ t})dχc(t) = 0.

Proof Let us take b in � f ∪ B̃ f ∪ �̃ f and b+ = b + δ, with δ > 0 small enough, a
regular value. Since f|X∩]b,b+] is trivial and χc(]b, b+]) = 0, we conclude that

χc({ f ≤ b+}) − χc({ f ≤ b}) = χc({α < f ≤ b+}) = 0.

Therefore,

∫

R

χc({ f ≤ t})dχc(t) =
l∑

j=1

χc({ f ≤ bi }) −
l∑

j=0

χc({ f ≤ b+
i })

= −χc({ f ≤ b+
0 }) = 0.

�
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Corollary 3.7 We have

χ(X) =
k∑

i=1

indg( f , X , f −1(ci )) −
∫

R

χ({ f ≤ t})dχc(t).

Proof We have

χ(X) =
k∑

i=1

indg( f , X , f −1(ci )) −
∫

R

χ(Lk∞({ f ≤ t}))dχc(t),

and
∫

R

χc({ f ≤ t})dχc(t) =
∫

R

χc({ f ≤ t} ∩ BRt )dχc(t)

−
∫

R

χc(Lk
∞({ f ≤ t}))dχc(t) = 0.

Then,

∫

R

χ({ f ≤ t})dχc(t) =
∫

R

χ({ f ≤ t} ∩ BRt )dχc(t)

=
∫

R

χc({ f ≤ t} ∩ BRt )dχc(t)

=
∫

R

χ(Lk∞({ f ≤ t}))dχc(t),

arriving to the desired result. �

Corollary 3.8 We have

χ(X) =
k∑

i=1

indg(− f , X , f −1(ci )) −
∫

R

χ({ f ≥ t})dχc(t).

Proof By replacing f by − f and applying an analogous procedure as in the last
corollary, we arrive to the desired result. �

Corollary 3.9 We have

χ(X) =
k∑

i=1

indg( f , X , f −1(ci ))

+
k∑

i=1

indg(− f , X , f −1(ci )) −
∫

R

χ({ f = t})dχc(t).
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Proof It follows from the last two corollaries by applying Lemma 2.11. �

Remark 3.10 Since indg( f , X , f −1(t)) = 0 if t is not a critical value of f , we can
replace

∑k
i=1 indg(± f , X , f −1(ci )) with

∫
R
indg(± f , X , f −1(t))dχc(t) in all our

statements.

Application 3.11 Let us apply these results to the case of a function given as the
quotient of two semi-algebraic functions. Let f , g : X → R be two semi-algebraic
functions, where X a closed semi-algebraic set and f (resp. g) is the restriction to X
of a C2 semi-algebraic function F (resp. G). We consider their quotient φ := f /g :
X \V (g) → Rwhich is also a semi-algebraic function. Let Y be the following closed
semi-algebraic set:

Y = {(x, y) ∈ X × R | f (x) − yg(x) = 0}.

We cannot apply Corollary 3.9 since φ is not defined in X , so we work with Y to obtain
a formula for the sum of the global indices of the function φ.

Let π : Y → R be the linear function defined by π(x, y) = y. By applying
Corollary 3.9, we have that

χ(Y ) =
∫

R

indg(π,Y , π−1(t))dχc(t) +
∫

R

indg(−π,Y , π−1(t))dχc(t)

−
∫

R

χ(Y ∩ {π = t})dχc(t).

We have that, if t �= 0,

Y ∩ {π = t} = {(x, t) | f (x) − tg(x) = 0} = {x | φ(x) = t} 
 { f = g = 0},

and so,

χ(Y ∩ {π = t}) = χ({φ(x) = t}) + χ({ f = g = 0}).

When t = 0, we have that

Y ∩ {π = 0} = {x | f (x) = 0},

and so,

χ(Y ∩ {π = 0}) = χ({ f = 0}).

Let us study the global index of π at the non-zero critical value t . We recall that

indg(π,Y , π−1(t)) = χ(Y ∩ π−1(t)) − χ(Y ∩ π−1(t − α) ∩ BRt ),

where Rt is an adapted radius for π−1(t) and 0 < α � 1
Rt
.
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We have

(x, t) ∈ Y ∩ π−1(t) ⇔ f (x) − tg(x) = 0 ⇔

{
φ(x) = t if g(x) �= 0,

f (x) = 0 if g(x) = 0,

then,

χ(Y ∩ π−1(t)) = χ({φ = t}) + χ({ f = g = 0}).

Let us study χ(Y ∩ π−1(t − α) ∩ BRt ). We have

(x, t − α) ∈ Y ∩ π−1(t − α) ∩ BRt ⇔
{
f (x) − (t − α)g(x) = 0

|(x, t − α)| ≤ Rt
⇔

{
φ(x) = t − α, |x | ≤

√
R2
t − (t − α)2 if g(x) �= 0

f (x) = 0 if g(x) = 0
.

If Rt is big enough and α small enough, then R̃ =
√
R2
t − (t − α)2 is an adapted

radius for {φ = t} and { f = g = 0}. Therefore we have

χ(Y ∩ π−1(t − α) ∩ BRt ) = χ({φ = t − α}) ∩ BR̃) + χ({ f = g = 0} ∩ BR̃).

Therefore, we get

χ(Y ) =
∫

R∗
indg(φ, X , φ−1(t))dχc(t) +

∫

R∗
indg(−φ, X , φ−1(t))dχc(t)

+ indg(π,Y , π−1(0)) + indg(−π,Y , π−1(0)) − χ({ f = 0})
+2χ({ f = g = 0}) −

∫

R∗
χ(X ∩ {φ = t})dt .

We have that

Y = {(x, y) | f (x) − yg(x) = 0} = {(x, y) | φ(x) = y} 

(
{ f = g = 0} × R

)
,

and so,

χ(Y ) = χ(X \ V (g)) + χ({ f = g = 0}).

123



22 Page 18 of 25 N. Dutertre, J.A. Moya Pérez

Finally we obtain that

χ(X \ V (g)) =
∫

R∗
indg(φ, X , φ−1(t))dχc(t) +

∫

R∗
indg(−φ, X , φ−1(t))dχc(t)

+ indg(π,Y , π−1(0)) + indg(−π,Y , π−1(0)) − χ({ f = 0})
+χ({ f = g = 0}) −

∫

R∗
χ(X ∩ {φ = t})dt .

If furthermore we assume that 0 is a regular value (in the stratified sense) of f , then
0 is a regular value of π and so

χ(X \ V (g)) =
∫

R∗
indg(φ, X , φ−1(t))dχc(t) +

∫

R∗
indg(−φ, X , φ−1(t))dχc(t)

−χ({ f = 0}) + χ({ f = g = 0}) −
∫

R∗
χ(X ∩ {φ = t})dt .

Taking f = 1,we obtain an index formula for theEuler characteristic of the non-closed
semi-algebraic set X\V (g). Namely we have

χ(X \ V (g)) =
∫

R∗
indg(φ, X , φ−1(t))dχc(t) +

∫

R∗
indg(−φ, X , φ−1(t))dχc(t)

−
∫

R∗
χ(X ∩ {φ = t})dt .

4 New Indices at Infinity

By Proposition 2.17, there exists a finite set {e1, e2, . . . , es}, e1 < e2 < · · · < es , such
that the function t �→ χ( f −1(t)) is locally constant on R \ {e1, e2, . . . , es}. When X
is compact, by Corollary 2.3, we have

χ(X) =
∫

[e1,es ]
χ( f −1(t))dχc(t),

because f −1(t) is empty for t < e1 and t > es . The aim of this section is to generalize
this equality when X is only closed, by introducing new indices at infinity and applying
the results of Sect. 3.

We recall that � f is defined by

� f = {α ∈ R | ∃(xn)n∈N ∈ 
 f such that |xn| → +∞ and f (xn) → α},

and that it is a finite set {d1, d2 . . . , dm}, with d1 < d2 < · · · < dm .

Definition 4.1 We define the right index at infinity of di as

ind+∞( f , X , f −1(di )) = χ( f −1(d+
i )) − χ( f −1(d+

i ) ∩ BRdi
).
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Fig. 3 The Broughton polynomial

Analogously, we define the left index at infinity of di as

ind−∞( f , X , f −1(di )) = χ( f −1(d−
i )) − χ( f −1(d−

i ) ∩ BRdi
),

where d+
i = di + α, d−

i = di − α with 0 < α � 1 and Rdi is an adapted radius for
f −1(di ).

Example 4.2 Let us consider the Broughton polynomial f (x, y) = y(xy − 1) defined
on X = R

2.
We have that � f = {0} and

ind+∞( f ,R2, f −1(0)) = χ( f −1(δ)) − χ( f −1(δ) ∩ BR0) = 2 − 3 = −1,

ind−∞( f ,R2, f −1(0)) = χ( f −1(−δ)) − χ( f −1(−δ) ∩ BR0) = 2 − 3 = −1,

with R0 an adapted radius for 0 and 0 < δ � 1 (see Fig. 3).

Example 4.3 (Tibăr and Zaharia 1999) Let us consider the polynomial f (x, y) =
x2y2 + 2xy + (y2 − 1)2 defined on X = R

2. We have that 0 ∈ � f and

ind+∞( f ,R2, f −1(0)) = χ( f −1(δ)) − χ( f −1(δ) ∩ BR0) = 2 − 2 = 0,

ind−∞( f ,R2, f −1(0)) = χ( f −1(−δ)) − χ( f −1(−δ) ∩ BR0) = 0 − 0 = 0,

with R0 an adapted radius for 0 and 0 < δ � 1 (see Fig. 4).
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Fig. 4 f (x, y) = x2y2 + 2xy + (y2 − 1)2

Theorem 4.4 We have

χ(X) =
m∑

i=1

(ind+∞( f , X , f −1(di )) + ind−∞( f , X , f −1(di )))

+
∫

[e1,es ]
χ( f −1(t))dχc(t).

Proof We recall that

� f ∪ B̃ f ∪ �̃ f = {b1, . . . , bl},

with b1 < b2 < · · · < bl . First of all, note that, by the definition of the indices at
infinity,

ind+∞( f , X , f −1(bi )) = ind−∞( f , X , f −1(bi )) = 0,

if bi /∈ �( f ) and that

indg(− f , X , f −1(bi )) = indg( f , X , f −1(bi )) = 0,

if bi /∈ � f .
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By Corollary 3.9, we have

χ(X) =
l∑

j=1

indg( f , X , f −1(bi ))

+
l∑

j=1

indg(− f , X , f −1(bi )) −
∫

R

χ({ f = t})dχc(t).

By definition,

indg( f , X , f −1(bi )) = χ( f −1(bi )) − χ( f −1(b−
i ) ∩ BRbi

).

Therefore, we have

χ(X) =
l∑

i=1

(
2χ(( f −1(bi )) − χ( f −1(b−

i ) ∩ BRbi
) − χ( f −1(b+

i ) ∩ BRbi
)
)

+
l∑

i=1

(
χ(( f −1(b−

i )) + χ(( f −1(b+
i ))

)
−

l∑

i=1

χ(( f −1(bi )) −
l−1∑

i=1

χ(( f −1(b+
i ))

=
l∑

i=1

χ(( f −1(bi )) +
m∑

i=1

(
ind+∞( f , X , f −1(di )) + ind−∞( f , X , f −1(di ))

)

−
l−1∑

i=1

χ(( f −1(b+
i )) =

m∑

i=1

(
ind+∞( f , X , f −1(di )) + ind−∞( f , X , f −1(di ))

)

+
∫

[b1,bl ]
χ( f −1(t))dχc(t).

To conclude, we remark that

∫

[b1,e1[
χ( f −1(t))dχc(t) = 0,

if b1 < e1 and

∫

]el ,bl ]
χ( f −1(t))dχc(t) = 0,

if el < bl . �


5 Relations with Functions with Compact Critical Set

If f : (Cn, 0) → (C, 0) is an analytic function germ with a one-dimensional singular
locus then f + ld has an isolated singularity at the origin, where l is a generic linear
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form and d ∈ N is sufficiently big. Moreover the topology of the Milnor fibre of f is
closely related to that of the Milnor fibre of f + ld . This is the well-know Lê-Iomdine
formula (Iomdin 1974; Lê 1980).

In the real case, Szafraniec (1986) adapted this method by replacing l with the
distance function to the origin. Then, using Szafraniec’s approach, the first author in
Dutertre (2020) found generalizations of the Khimshiashvili formula for non-isolated
singularities.

The aim of this section is to present similar results in our global and general setting.
We note that our results generalize the ones of Dutertre et al. (2016), where the case
X = R

n and f semi-tame is considered.
We recall that ρ(x) = 1 + 1

2 (x
2
1 + · · · + x2n ) and that


 f ,ρ = {
x ∈ R

n | rank[∇ f (x),∇ρ(x)] < 2
}
.

Note that ∇ρ(x) = x and ρ(x) ≥ 1. We have � f ⊂ 
 f ,ρ .
Let � f = {d1, d2 . . . , dm}.

Lemma 5.1 There is k ∈ N such that for all i ∈ {1, 2, . . . ,m}, for all x ∈

 f ,ρ\ f −1(di ),

| f (x) − di | >
1

ρ(x)k
, 1 ≤ i ≤ m,

for |x | � 1.

Proof Note that 1 is the greatest critical value of ρ. We set S̃r = ρ−1(r). Let β :
]1,+∞[→ R be defined by

β(r) = inf
{
| f (x) − di | | x ∈ S̃r ∩ (
 f ,ρ \ f −1(di ))

}
.

The function β is semi-algebraic. Furthermore β > 0 because for r > 1, f|S̃r has

a finite number of critical values. Thus the function 1
β
is also semi-algebraic. Hence

there exist r1 ≥ 1 and k0 ∈ N such that 1
β

< rk , for r ≥ r1 and k ≥ k0. This implies

that β(r) > 1
rk

for r ≥ r1 and k ≥ k0. We can conclude that for r ≥ r1 and k ≥ k0,

| f (x) − di | >
1

ρ(x)k
,

for x ∈ S̃r ∩ (
 f ,ρ\ f −1(di )). �

Let G−(x) = F(x) − 1

ρ(x)k
and let g− = G−|X .

Lemma 5.2 We have � f = �g−
Proof By definition of g−(x), we have that 
 f ,ρ = 
g−,ρ . So if {xn} is a sequence of
points in 
 f ,ρ such that {xn} → ∞ then { f (xn)} → di if and only if {g−(xn)} → di

�
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Lemma 5.3 For R � 1, χ({g− ≤ di } ∩ S̃R) = χ({ f ≤ di } ∩ S̃R).

Proof Let R � 1 be such that for all x ∈ (
 f ,ρ\ f −1(di ))∩{ρ(x) ≥ R}, | f (x)−di | >
1

ρ(x)k
. Set N≤

f = {x ∈ S̃R | f (x) ≤ di } and N≤
g− = {x ∈ S̃R | g−(x) ≤ di }. For x ∈ S̃R ,

we have

g−(x) ≤ di ⇔ f (x) − 1

Rk
≤ di ⇔ f (x) ≤ di + 1

Rk
,

and so N≤
f ⊂ N≤

g− . Furthermore if 0 < f (x) − di ≤ 1
Rk then x /∈ 
 f ,ρ\ f −1(di ) and

therefore { f (x) ≤ di + 1
Rk } ∩ S̃R retracts by deformation to { f (x) ≤ di } ∩ S̃R . We

get the result. �

Corollary 5.4 We have χ(Lk∞({g− ≤ di })) = χ(Lk∞({ f ≤ di })).
Lemma 5.5 Let α /∈ � f . We have χ(Lk∞({g− ≤ α})) = χ(Lk∞({ f ≤ α})).
Proof Let us study first the case when α belongs to an interval ofR\� f bounded from
above. We can assume that 0 ∈ � f and that b < 0 is the greatest negative element of
� f (b can be −∞).

Let α be such that b < α < 0. We can find Rb � 1 such that b < 1
2 + 1

Rk
b

< 0.

If {xn} ⊆ 
g−,ρ is a sequence such that b < g−(xn) ≤ 1
2α, then {g−(xn)} → b. If

ρ(xn) ≥ Rb then f (xn) = g−(xn) + 1
ρ(xn)k

≤ g−(xn) + 1
Rk
b

≤ 1
2α + 1

Rk
b

< 0. Then,

{ f (xn)} tend to b as well. As a consequence, there exists R0 � 1 such that for all
R ≥ R0 and x ∈ S̃R ∩ 
g−,ρ ∩ {g− ≤ 1

2α}, f (x) ≤ b+α
2 and g−(x) ≤ b+α

2 .
To conclude, we have that Lk∞({g− ≤ α}) is homeomorphic to {g− ≤ α} ∩ S̃R ,

Lk∞({ f ≤ α}) is homeomorphic to { f ≤ α} ∩ S̃R, and that

{g− ≤ α} ∩ S̃R = { f ≤ α + 1

Rk
} ∩ S̃R

is homeomorphic to { f ≤ α} ∩ S̃R, since S̃R ∩ 
 f ,ρ ∩ {α ≤ f ≤ α + 1
Rk } = ∅.

Similarly if α belongs to the interval of R\� f not bounded from above, we can
suppose that 0 is the biggest bifurcation value and that α > 0. The proof is the same,
replacing {g− ≤ b+α

2 } with {g− ≥ α
2 } and taking R such that α + 1

Rk < 2α. �


Let G+(x) = f (x) + 1
ρ(x)k

and let g+ = G+|X . Note that � f = �g+ .

Lemma 5.6 For R � 1, χ({g+ ≥ di } ∩ S̃R) = χ({ f ≥ di } ∩ S̃R).

Corollary 5.7 We have χ(Lk∞({g+ ≥ di })) = χ(Lk∞({ f ≥ di })).
Lemma 5.8 Let α /∈ � f . We have χ(Lk∞({g+ ≥ α})) = χ(Lk∞({ f ≥ α})).
Lemma 5.9 The sets (∇g−)−1(0) and (∇g+)−1(0) are compact.
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Proof Let us suppose that (∇g−)−1(0) is not compact. Therefore, there exists α a
critical value of g− such that (∇g−)−1(0) ∩ g−1− (α) is not compact. Then, there
exists {xn} ⊂ (∇g−)−1(0) ∩ g−1− (α) such that {xn} → ∞. Then { f (xn)} → α and
0 = ∇ f (xn)+ k

ρk+1(xn)
∇ρ(xn). This implies that xn ∈ 
 f ,ρ \ f −1(α). Therefore α is

a bifurcation value of f and | f (xn) − α| = 1
ρk (xn)

, which contradicts Lemma 5.1. �


Corollary 5.10 We have

∫

R

χ(Lk∞({g− ≤ t}))dχc(t) =
∫

R

χ(Lk∞({ f ≤ t}))dχc(t),

and
∫

R

χ(Lk∞({g+ ≥ t}))dχc(t) =
∫

R

χ(Lk∞({ f ≥ t}))dχc(t).

We are in position to state the main theorem of this section.

Theorem 5.11 We have
∫

R

indg( f , X , f −1(t))dχc(t) =
∫

R

indg(g−, X , g−1− (t))dχc(t),

and
∫

R

indg(− f , X , f −1(t))dχc(t) =
∫

R

indg(g+, X , g−1+ (t))dχc(t).

If X = R
n , we have that

∫

R

indg(g−, X , g−1− (t))dχc(t) = deg∞ ∇g−,

so
∫

R

indg( f , X , f −1(t))dχc(t) = deg∞ ∇g−.

Moreover, ifW− is the vector field defined byW− = ρk+1∇ f +∇ρ, then deg∞ W− =
deg∞ ∇g− and so,

∫

R

indg( f , X , f −1(t))dχc(t) = deg∞ W−.

We can apply the same procedure to g+ and obtain a vector field W+. We note if f is
a polynomial then W− and W+ are polynomial vector fields.
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Tibăr, M., Zaharia, A.: Asymptotic behaviour of families of real curves. Manuscripta Math. 99, 383–393

(1999)
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