Corrigendum to "On the solutions of a parametric family of cubic Thue equations" [Bull Braz Math Soc, New Series 39 (4) (2008), 537-554]

Alain Togbé*

Abstract. In our original paper [4], Theorem 2.1 of [2], that we quoted, was not properly proved. This was done by Lee-Louboutin [3]. The gap doesn't affect the final result of the paper.
Keywords: Parametric Thue equations, Baker's method.
Mathematical subject classification: 11D59, 11Y50.

0. Corrigendum

In [4], using Baker's method we studied the family of Thue equations

$$
\begin{align*}
\Phi_{n}(x, y)=x^{3} & -n\left(n^{2}+n+3\right)\left(n^{2}+2\right) x^{2} y \\
& -\left(n^{3}+2 n^{2}+3 n+3\right) x y^{2}-y^{3}= \pm 1 \tag{0.1}
\end{align*}
$$

for $n \geq 0$. To do so, we considered the number field \mathbb{K}_{n} related with $\phi_{n}(x)$ defined by

$$
\begin{equation*}
\phi_{n}(x)=x^{3}-n\left(n^{2}+n+3\right)\left(n^{2}+2\right) x^{2}-\left(n^{3}+2 n^{2}+3 n+3\right) x-1 \tag{0.2}
\end{equation*}
$$

See also [2]. One can see that ϕ_{n} has three real roots $\theta^{(1)}, \theta^{(2)}, \theta^{(3)}$. For a solution (x, y) of (0.1), we have

$$
\begin{equation*}
\Phi_{n}(x, y)=\prod_{j=1}^{3}\left(x-\theta^{(j)} y\right)=N_{\mathbb{Q}\left(\theta^{(1)}\right) / \mathbb{Q}}\left(x-\theta^{(j)} y\right)= \pm 1 \tag{0.3}
\end{equation*}
$$

Received 31 October 2014.
*The author was supported in part by Purdue University North Central.

This means theat $x-\theta^{(j)} y$ is a unit in the order $\mathcal{O}:=\mathbb{Z}\left[\theta^{(1)}, \theta^{(2)}\right]$. Kishi proved the following theorem (see Theorem 2 of [2]).

Theorem 0.1. Let θ and θ^{\prime} be two distinct roots of $f_{n}(X)$. Then $\left\{\theta, \theta^{\prime}\right\}$ is a system of fundamental units of the order $\mathbb{Z}\left[\theta, \theta^{\prime}\right]$. Let E denote the unit group of $\mathcal{O}_{\mathbb{K}_{n}}$ and put

$$
N:=\frac{\left(n^{2}+3\right)\left(n^{4}+n^{3}+4 n^{2}+3\right)}{4^{\delta_{1}} \cdot 9^{\delta_{2}}}
$$

where

$$
\delta_{1}=\left\{\begin{array}{ll}
0 & \text { if } n \text { is even }, \\
1 & \text { if } n \text { is odd } ;
\end{array} \quad \delta_{2}= \begin{cases}0 & \text { if } n \equiv 2(\bmod 3), \\
1 & \text { if } n \not \equiv 2(\bmod 3) .\end{cases}\right.
$$

Suppose N is squarefree. Then the index $\left[E:\left\langle-1, \theta, \theta^{\prime}\right\rangle\right]$ is equal to 1 , that is, $\left\{\theta, \theta^{\prime}\right\}$ is a system of fundamental units of \mathbb{K}_{n}, except for $n= \pm 1,-2$. For $n= \pm 1$, we have $\left[E:\left\langle-1, \theta, \theta^{\prime}\right\rangle\right]=7$, and for $n=-2,\left[E:\left\langle-1, \theta, \theta^{\prime}\right\rangle\right]=3$.

We deduced that $\left[E:\left\langle-1, \theta, \theta^{\prime}\right\rangle\right] \leq 2$ (see Remark 2.2 on page 540 of [4]). There was a gap in the proof of Theorem 0.1 due to the misinterpretation of Cusick's result, see Proposition 2.1 of [1]. Lee and Louboutin filled the gap and confirmed Remark 2.2, for any n by proving Lemma 6.1, page 290 of [3]. As Remark 2.2 on page 540 of [4] is correct, this doesn't affect the main result obtained in our paper.

Remark 0.2. The example given on page 288 of [3] has no link with polynomial (0.2).

Acknowledgments. We thank Professor Stéphane Louboutin for sending us the manuscript of their paper.

References

[1] T. Cusick. Lower bounds for regulators, in "Number Theory, Noordwijkerhout, 1983," Lecture Notes in Mathematics, Vol. 1068, pp. 63-73, Springer-Verlag, Berlin/New York, (1984).
[2] Y. Kishi. A family of cyclic polynomials whose roots are systems of fundamental units, Journal of Number Theory, 102 (2003), 90-106.
[3] Jun Ho Lee and Stéphane R. Louboutin. On the fundamental units of some cubic orders generated by units, Acta Arith., 165 (2014), 283-299.
[4] A. Togbé. On the solutions of a parametric family of cubic Thue equations. Bull. Braz. Math. Soc., New Series, 39 (2008), 537-554.

Alain Togbé
Mathematics Department
Purdue University North Central 1401 S, U.S. 421
Westville IN 46391
USA
E-mail: atogbe@pnc.edu

