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Abstract
Ectomycorrhizal (EM) associations can promote the dominance of tree species in otherwise diverse tropical forests. These 
EM associations between trees and their fungal mutualists have important consequences for soil organic matter cycling, yet 
the influence of these EM-associated effects on surrounding microbial communities is not well known, particularly in neo-
tropical forests. We examined fungal and prokaryotic community composition in surface soil samples from mixed arbuscular 
mycorrhizal (AM) and ectomycorrhizal (EM) stands as well as stands dominated by EM-associated Oreomunnea mexicana 
(Juglandaceae) in four watersheds differing in soil fertility in the Fortuna Forest Reserve, Panama. We hypothesized that 
EM-dominated stands would support distinct microbial community assemblages relative to the mixed AM-EM stands due 
to differences in carbon and nitrogen cycling associated with the dominance of EM trees. We expected that this microbiome 
selection in EM-dominated stands would lead to lower overall microbial community diversity and turnover, with tighter 
correspondence between general fungal and prokaryotic communities. We measured fungal and prokaryotic community 
composition via high-throughput Illumina sequencing of the ITS2 (fungi) and 16S rRNA (prokaryotic) gene regions. We 
analyzed differences in alpha and beta diversity between forest stands associated with different mycorrhizal types, as well 
as the relative abundance of fungal functional groups and various microbial taxa. We found that fungal and prokaryotic 
community composition differed based on stand mycorrhizal type. There was lower prokaryotic diversity and lower relative 
abundance of fungal saprotrophs and pathogens in EM-dominated than AM-EM mixed stands. However, contrary to our 
prediction, there was lower homogeneity for fungal communities in EM-dominated stands compared to mixed AM-EM stands. 
Overall, we demonstrate that EM-dominated tropical forest stands have distinct soil microbiomes relative to surrounding 
diverse forests, suggesting that EM fungi may filter microbial functional groups in ways that could potentially influence 
plant performance or ecosystem function.

Keywords  Tropical forest · Mycorrhizal associations · Microbial community · Fungal pathogens · Mycorrhizal-
bacterial interactions

Introduction

Plants often influence surrounding soils via interactions 
with microbial organisms (Zak et al. 2003). Predominant 
among these plant–microbe interactions are mycorrhizal 
associations between fungi and plant roots (Hawkes 
et al. 2007). Two main types of mycorrhizal association, 
namely, arbuscular mycorrhizal (AM) and ectomycorrhizal 
(EM), can impact plant health (Revillini et al. 2016), litter 
decomposition (Jacobs et al. 2018), nutrient cycling (Phillips 
et al. 2013), and soil organic matter dynamics (Frey 2019). 
Importantly, mycorrhizal fungi facilitate plant acquisition 
of soil nutrients such as nitrogen and phosphorous to 
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support plant growth and nutrition (Smith and Smith 2011). 
However, bacteria, archaea, and non-mycorrhizal fungi 
also contribute to mycorrhizal plant and ecosystem effects 
as they can influence nutrient transformation processes, 
promote plant root exudation, and benefit plant growth 
(Tarkka et al. 2018; Sangwan and Prasanna 2022; Berrios 
et al. 2023). These non-mycorrhizal microbial communities 
are likely responsible for the extended plant-soil effects of 
mycorrhizal associations that can influence overall forest 
population dynamics in temperate ecosystems (Bennett 
et  al. 2017). However, we know very little about how 
these “mycorrhizosphere” (Rambelli 1973) microbiomes 
manifest in tropical ecosystems that have differing patterns 
of productivity, species diversity, and soil functionality 
(Barlow et al. 2018).

Neotropical forests are generally a matrix of primarily 
AM-associating tree species interspersed with fewer EM-
associated species (McGuire et al. 2012), but EM-associated 
species can also form stands where the majority of the total 
basal area comprises a single species (Hart et al. 1989; Peh 
et al. 2011). These EM-dominated stands often differ signifi-
cantly from surrounding mixed-mycorrhizal forest stands in 
important ecosystem characteristics (Torti et al. 2001), with 
slower decomposition rates (McGuire et al. 2010) and lower 
soil inorganic nutrient availability (Corrales et al. 2016b) 
than adjacent mixed AM-EM forest stands. Ectomycorrhi-
zal-dominated stands in these forests are also associated with 
changes to the relative abundance of some fungal functional 
guilds (Seyfried et al. 2022), but the impact of EM domi-
nance on the broader complex soil microbiome, particularly 
prokaryotic communities, is still unclear due to a relative 
lack of data from neotropical forests.

Mycorrhizal fungi often interact with surrounding 
microbial communities in ways that create favorable 
ecological conditions for their plant partners (Uroz et al. 
2019). These interactions may play an important role in 
the formation or proliferation of EM-dominated forest 
stands. For example, EM fungi are thought to outcompete 
saprotrophic organisms for nutrients in soil organic matter 
(SOM; Averill and Hawkes 2016) due to their ability to 
produce SOM-degrading extracellular enzymes (Pellitier 
and Zak 2018). This fungal interguild competition can 
increase soil carbon (C)-to-nutrient ratios, slowing C and 
inorganic nutrient cycling (Fernandez and Kennedy 2016). 
These changes could decrease overall microbial C and 
nutrient availability, potentially resulting in lower overall 
microbial diversity with increasing EM dominance (Eagar 
et al. 2021; Heděnec et al. 2023), as well as downstream 
impacts on copiotrophic or oligotrophic soil microbiota 
(Nemergut et  al. 2010). Ectomycorrhizal-associated 
changes to non-mycorrhizal microbial communities  
associated with soil organic matter cycling could potentially 
further promote positive feedbacks to slow SOM cycling 

and create a competitive advantage for EM mutualisms. 
Arbuscular mycorrhizal fungi are often thought to scavenge 
inorganic nutrients from soil and must rely on surrounding 
microbial communities to degrade SOM (van Der Heijden 
et al. 2015). Mycorrhizal fungi also influence the activity 
and abundance of soil fungal pathogens (Borowicz 2001; 
Veresoglou and Rillig 2012). Both AM and EM fungi can 
confer pathogen resistance to their plant hosts through the 
release of volatile organic compounds (Dreischhoff et al. 
2020) or extracellular secretion of secondary metabolites 
(Pellegrin et  al. 2015). However, EM relationships 
can generate greater conspecific benefits for pathogen 
suppression than AM, potentially promoting EM dominance 
(Liang et al. 2020) and resulting in greater conmycorrhizal 
plant recruitment (Delavaux et al. 2023). Overall, the effects 
of mycorrhizal associations on surrounding microbial 
community function are highly context-dependent, with 
their outcome varying based on mycorrhizal fungal species 
(Emmett et  al. 2021), plant species and litter quality 
(Fernandez et al. 2019), climate (Bennett and Classen 2020), 
and soil parent material (Seyfried et al. 2021b). Quantifying 
the effects of EM dominance on the different constituents 
of the soil microbiome could provide valuable insight to 
help contextualize the effects of mycorrhizal associations  
on surrounding soil microbiomes.

To characterize soil microbiome responses to EM tree 
dominance in a neotropical forest, we conducted a study 
comparing bulk soil fungal and prokaryotic communities 
between EM-dominated (by Oreomunnea mexicana at > 50% 
basal area per stand) and mixed AM-EM stands of highly 
diverse lower montane tropical forests in western Panama. 
While these sites also contain ~ 14 other EM tree species, 
those species occur in low abundance, and O. mexicana 
is the only one to form monodominant stands (Prada et al. 
2017). Variation in parent material and geology among these 
stands leads to the formation of soils differing in nutrient 
availability, pH, and base saturation (Prada et al. 2017; 
Seyfried et al. 2021a), allowing for the investigation of 
microbial relationships with stand mycorrhizal type across 
a range of soil fertilities. We hypothesized that EM-domi-
nated stands would be associated with distinct fungal and 
prokaryotic community assemblages relative to the AM-EM 
mixed stands. Given that EM dominance can slow SOM 
cycling and reduce nutrient availability, we present three 
predictions related to microbiome differences between stand 
mycorrhizal types (1) that EM stands would be associated 
with decreased microbial community diversity and heteroge-
neity compared to mixed AM-EM stands; (2) that EM stands 
would be associated with decreased relative abundance of 
saprotrophic and pathogenic fungal functional guilds, as 
well as bacteria and archaea associated with SOM cycling, 
compared to AM-EM mixed stands; and (3) that microbial 
communities in EM-dominated stands would have tighter 
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Procrustean correspondence between general fungal and 
prokaryotic communities, as EM fungi could be acting to 
filter the soil microbiome to select microbial organisms that 
may contribute to an EM competitive advantage.

Methods

Study design

This study was conducted in four adjacent watersheds in 
the Fortuna Forest Reserve of western Panama: Alto Frio, 
Honda, Hornito, and Pinola/Zorro. We chose to use Pinola/
Zorro as a paired site (collectively referred to hereafter as 
“Pinola”) because there were no EM-dominated stands at 
the Pinola site and the Zorro site was the closest alternative 
(~ 800 m away, although on differing parent material). These 
diverse neotropical montane forests differ in elevation, 
parent material, soil chemistry, and tree species diversity, 
containing between 61 and 153 (primarily AM-associating) 
species/ha (Prada et  al. 2017), but also large (> 1  ha) 
patches where > 50% of the basal area is made up of the 
EM-associated species O. mexicana (Table  1; Dalling 
and Turner 2021). In April 2015, three soil samples were 
collected from one EM-dominated and from one mixed 
AM-EM stand within each watershed (4 watersheds × 2 
stand mycorrhizal stand types × 3 replicates = 24 samples 
in total). The soil samples were collected from 0–10 cm 
depth using a 10 cm diameter soil corer after removing 
the leaf litter layer; thus, ~ 785 cm3 of soil was collected 
for each sample. Samples contained soil from both organic 
and mineral horizons, as we did not separate these layers 
due to high variability in organic horizon depth. Within 
each stand, the three soil samples collected in each stand 

were from locations separated from one another by ~ 5 m, 
and all samples were collected > 1 m away from the nearest 
tree trunk to limit localized effects of individual species 
on microbial community composition. Soil samples were 
stored in insulated coolers with ice packs and transported to 
the Smithsonian Tropical Research Institute’s Naos Marine 
and Molecular Laboratories in Panama within 2 days of 
collecting. At Naos, samples were passed through a 2-mm 
sieve (sterilized with 70% EtOH between samples), and 
roots/course organic matter was removed. After processing, 
samples were stored at − 80 °C for up to 1 week prior to 
DNA extraction.

DNA extraction and sequencing

To characterize the fungal and prokaryotic communities, 
DNA was extracted from 0.25 g of soil using the PowerSoil 
DNA Isolation Kit (MO BIO Laboratories, Carlsbad, 
USA). DNA extracts were submitted to the Roy J. Carver 
Biotechnology Center at the University of Illinois at Urbana-
Champaign for PCR amplification using a Fluidigm Access 
Array IFC chip (see: Cronn et  al. 2012), which allows 
for amplification of multiple primer sets simultaneously 
(Fluidigm, San Francisco, USA), and Illumina sequencing 
(Illumina, San Diego, USA). Specific details for the PCR 
procedures and mixtures as well as library generation can 
be found in Suriyavirun et al. (2019). Fungal communities 
were assessed via the ITS2 gene region using ITS3 and 
ITS4 (White et  al. 1990) primers to amplify DNA. We 
assessed bacterial and archaeal communities via the 
bacterial and archaeal 16S rRNA genes. The samples were 
amplified using V4_515f forward (Parada et al. 2016) and 
V4_806r reverse (Apprill et al. 2015) primers. Sequence 
information for all primers can be found in Table S1. Both 

Table 1   Site characteristics for the four watersheds in the Fortuna Forest Reserve, Panama, that were included in this study

Means (and standard deviations) were calculated from data across each watershed reported by Turner and Dalling (2021) and Prada et al. (2017). 
Dashes indicate data not available

Alto Frio Honda Hornito Pinola (AM-EM 
mixed only)

Zorro (EM 
dominated 
only)

Lat/Long 8.654, − 82.215 8.751, − 82.239 8.674, − 82.214 8.754, − 82.259 8.761, − 82.261
Elevation (m) 1100 1155 1330 1135 1249
Parent material Undifferentiated volcanics Rhyolite Dacite Basalt Granodiorite
Annual precipitation (mm) 4641 (632) 6255 (962) 5164 (232) 4964 (863) -
Bulk density (g cm−3) 0.66 (0.02) 0.29 (0.02) 0.26 (0.03) 0.50 (0.02) -
pH 5.62 (0.22) 3.58 (0.21) 5.03 (0.68) 5.44 (0.19) -
Total C (mg cm−3) 51.1 (2.3) 43.9 (2) 35.0 (1.6) 54.2 (1.6) -
Total N (mg cm−3) 4.7 (0.1) 2.9 (0.2) 2.8 (0.1) 4.5 (0.1) -
Total P (µg cm−3) 503 (27) 180.6 (12) 280 (20) 280 (20) -
Stems > 10 cm DBH 964 787 647 784 -
Species count 75 120 89 80 -
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ITS and 16S amplicons were sequenced via Illumina HiSeq 
bulk 2 × 250 bp V2. Sequence data are publicly available 
from the NCBI SRA database under accession number 
PRJNA1027860.

To assess variation in microbial communities, we gener-
ated amplicon sequence variants (ASVs) from our sequence 
data using the DADA2 bioinformatics pipeline (Version 
1.16; Callahan et al. 2016). Sequences were quality filtered 
and denoised, forward and reverse reads were merged, and 
chimeric sequences were removed using recommended 
parameters for 16S and ITS genes (Callahan et al. 2020). 
Taxonomy was assigned via the naïve Bayesian DADA2 
classifier (Wang et  al. 2007), using the SILVA R138.1 
(Quast et al. 2012) and UNITE V9.0 (Nilsson et al. 2019) 
reference databases for 16S and ITS taxonomic assignments, 
respectively. Final count numbers were relativized without 
rarefaction (McMurdie and Holmes 2014) via a Hellinger 
transformation prior to statistical analysis. Final datasets 
consisted of 1043 fungal, 25,817 bacterial, and 96 archaeal 
ASVs. More information about sequencing depth and quality 
can be found in supplementary Table S2 and supplementary 
Fig. S1. Due to being derived from the same primer sets, 
bacterial and archaeal communities were analyzed together. 
We assigned fungi to saprotrophic, pathogenic, and EM 
functional guilds using the FUNGuild database (Nguyen 
et al. 2016), classifying assignments to guilds with “prob-
able” or “highly probable” confidence scores.

Statistical analysis

Statistical analyses were performed in the R statistical envi-
ronment (Version 4.3.2; R Core Team 2013). To understand 
how stand mycorrhizal type influenced microbial alpha 
diversity (i.e., relative ASV richness and diversity), we used 
Hill numbers for orders of q (q = 0, 1, 2) using the hillR 
package (Version 0.5.2; Li 2018). Hill numbers provide the 
“effective number of species” or “species equivalents” (Mac-
Arthur 1965; Hill 1973; Jost 2007; Chao et al. 2014): q = 0 
is representative of richness, where all species are weighted 
equally; q = 1 is the exponential of Shannon entropy rep-
resentative of diversity, where species are weighted by 
their proportional abundance; and q = 2 is equivalent to the 
inverse of Simpson’s index, where rare species are down-
weighted. To assess differences in beta diversity patterns 
between stand mycorrhizal types, we used distance-based 
redundancy analyses (dbRDA) in the VEGAN package 
(Version 2.6–4; Oksanen et al. 2010) on a Jaccard distance 
matrix of Hellinger transformed fungal and prokaryotic ASV 
abundances. Stand mycorrhizal type was a fixed factor in the 
dbRDA, and the sampling site was partialed out via the Con-
dition() arguments in the dbrda() function in VEGAN. We 
also depict these relationships visually through the dbRDA 
ordination without fixed or partialed effects. To assess the 

relative variation explained by site and stand mycorrhizal 
type, we used variance partitioning via the varpart() func-
tion in VEGAN on the Jaccard distance matrix for both fun-
gal and bacterial/archaeal communities. To understand the 
correspondence between fungal and bacterial/archaeal com-
munities, we calculated the procrustean association metric 
(PAM) based on the output of the residuals() function from 
procrustean correspondence between fungal and bacterial/
archaeal dbRDA ordinations, protest() function in VEGAN. 
We used linear mixed models to test the effects of stand 
mycorrhizal type on fungal and prokaryotic Hill numbers, 
the relative abundance/richness of fungal functional guilds 
(saprotrophs, pathogens, and EM fungi), and PAM, with 
stand mycorrhizal type as a fixed effect and site location as 
a random effect. Finally, to understand whether community 
dissimilarity between fungal and bacteria/archaeal commu-
nities was related to the relative abundance/richness of EM, 
saprotrophic, or pathogenic fungi, we used a general linear 
model to examine the relationship between PAM and the 
relative abundance of fungal functional groups. We used 
DESeq2 (Version 3.18; Love et al. 2014) to determine bac-
terial, archaeal, and fungal phyla, classes, orders, families, 
and genera that differed significantly in abundance between 
stand mycorrhizal types, as this approach accounts for multi-
ple comparisons and overdispersion among taxonomic count 
numbers. Significance for all statistical test was assessed as 
p < 0.05.

Results

Ectomycorrhizal-dominated stands had significantly lower 
alpha diversity (Hill numbers) for bacterial/archaeal com-
munities at all orders of q, with 27% fewer effective number 
of species at q = 0, 40% fewer effective number of species 
at q = 1, and 46% fewer effective number of species at q = 2 
(p < 0.05, Fig. 1). In contrast, we found no significant differ-
ence between EM-dominated and mixed AM-EM stands for 
fungal Hill numbers at any order of q (Fig. 1).

The relative abundances and ASV richness of fungal 
functional guilds differed significantly between stand myc-
orrhizal types. The relative abundance of EM fungal ASVs 
was significantly greater in EM-dominated stands (aver-
age 180%) relative to mixed AM-EM stands (F1,19 = 11.75, 
p = 0.002; Fig. 2). Richness of EM fungal ASVs was also 
significantly greater (average 170%) relative to mixed 
AM-EM stands (F1,19 = 59.7, p < 0.001; Fig. 2). On average, 
saprotrophic fungal ASV relative abundance was 56% lower 
in EM-dominated than mixed AM-EM stands (F1,19 = 6.33, 
p = 0.02), with ASV richness of fungal saprotrophs decreas-
ing 27.5% from EM-dominated to AM-EM mixed stands 
(F1,19 = 5.35, p = 0.03). Pathogenic fungal ASV relative 
abundance was 50% lower in EM-dominated stands than 
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AM-EM mixed stands (F1,19 = 10.2, p = 0.004; Fig. 2); how-
ever, pathogenic ASV richness was not different between 
stand mycorrhizal types. We did not detect significant corre-
lations among the ASV relative abundances of saprotrophic, 
pathogenic, and EM functional guilds (p > 0.05). We also did 
not find a significant difference between stand mycorrhizal 
types in the relative abundance of ASVs not assigned to 
saprotrophic, pathogenic, or EM functional guilds (average 
68.2%, p > 0.05; Fig. S2).

Fungal and bacterial/archaeal communities both differed 
significantly between stand mycorrhizal types, but the ways 
in which these communities differed, and the potential driv-
ers of these differences were not the same for fungi and 
prokaryotes. Stand mycorrhizal type explained 7.71% of the 
variation in fungal community composition among samples 
(dbRDA: F1,19 = 2.81, p = 0.001), while site explained 13.1% 
of variations. Fungal communities in EM-dominated stands 
had significantly greater dispersion than those in mixed 

Fig. 1   Mean (25th, 75th percen-
tile, lowest and highest values 
observed) fungal and bacte-
rial alpha diversity between 
ectomycorrhizal (EM) and 
mixed arbuscular mycorrhizal 
(AM)-EM stand types using 
Hill numbers depicting effec-
tive number of species with all 
ASVs weighted equally (q = 0), 
ASVs weighted based on their 
proportional abundance (q = 1), 
and rare ASVs down-weighted 
(q = 2)

Fig. 2   Mean (25th, 75th 
percentile, lowest and highest 
values observed) of the rela-
tive abundance (%) and ASV 
richness (Hill q = 0) of fungal 
saprotrophic, pathogenic, and 
ectomycorrhizal (EM) fungal 
functional guilds between EM 
and mixed arbuscular mycorrhi-
zal (AM)-EM stand mycorrhizal 
types
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AM-EM stands (betadisper: F1,21 = 5.28, p = 0.03; Fig. 3a). 
Stand mycorrhizal type explained 15.3% of the variation in 
bacterial/archaeal community composition (F1,19 = 5.02, 
p = 0.001), while site explained 14.1% of the variation. We 
did not detect significant stand mycorrhizal type differences 
in bacterial/archaeal community homogeneity (Fig. 3b).

There was a significant Procrustean rotational similarity 
correlation between fungal and bacterial/archaeal ordina-
tions (R2 = 0.78, p = 0.001). However, Procrustean residuals 
(PAM) were significantly lower (i.e., greater resemblance) 
in EM-dominated than mixed AM-EM stands (Fig. 3c). Fur-
ther, there was a significant positive relationship between 
PAM and fungal pathogen relative abundance (R2 = 0.16, 
p = 0.03; Fig. 3d). We did not detect a similar relationship 
between PAM and the relative abundance of saprotrophic or 
EM fungi (Fig. S3; p > 0.05).

The dominance of EM-associated trees was significantly 
correlated with the abundance of fungal and bacterial/
archaeal groups at various phylogenetic levels, with some 
taxonomic groups exhibiting increased and others decreased 
relative abundances in mixed AM-EM compared to EM-
dominated stands. We found that 3 fungal phyla (Mortiere-
llomycota, Kickxellomycota, and Chytridiomycota) were 
less abundant in EM-dominated than mixed AM-EM stands 
(Table S3). For fungi overall, 5 classes, 6 orders, 12 families, 
and 18 genera were less abundant in EM-dominated stands, 
while three classes, 4 orders, 8 families, and 9 genera were 
more abundant in these stands (Table S3). For prokaryotes, 
10 among the 16 phyla that responded to stand mycorrhi-
zal type were less abundant in EM-dominated stands (e.g., 
Bacteroidota, Myxococcota, Firmicutes, Gemmatimonadta, 

Methylomirabilota, Latescibacterota, Nitrospirota, 
MBNT15, Entotheonellaeota, and SAR324), while Pro-
teobacteria, Acidobacteriota, Planctomyceteota, RCP2-54, 
WPS-2, and Armatimonadota were more abundant in EM-
dominated stands (Table S4, Fig. 4). For prokaryotes overall, 
29 classes, 86 orders, 153 families, and 227 genera were less 
abundant in EM-dominated stands (Table S4). Compara-
tively, far fewer prokaryotic groups were more abundant in 
EM-dominated stands, with 8 classes, 19 orders, 20 families, 
and 32 genera falling into this category (Table S4). However, 
these groups often represented the most abundant bacterial/
archaeal groups overall, as shown in the graphical depictions 
of the relative abundance of the top 10 bacterial groups at 
these phylogenetic levels (Figs. S4–S7).

Discussion

We found a strong relationship between EM dominance and 
bulk soil microbiome composition in diverse neotropical 
montane forests. The relative abundance of EM-associating 
tree species in tropical forests is associated with significant 
shifts in soil properties (Barceló et al. 2022), yet it remains 
unclear how these shifts influence soil microbial composi-
tion. In support of our hypothesis, we found clear differentia-
tion in soil microbial communities between stand mycorrhi-
zal types across a range of forests differing in parent material 
and soil chemical properties, with stand mycorrhizal type 
explaining slightly greater variation in prokaryotic commu-
nities than site location. In relation to our predictions, (1) we 
demonstrate that EM-dominated forest stands maintain a less 

Fig. 3   Fungal (a) and bacte-
rial (b) community ordina-
tions with axes indicating 
the proportion of community 
variation explained by the first 
and second multidimensional 
dimension scaling (MDS). 
Procrustean residuals between 
fungal and bacterial community 
ordinations with site-specific 
differences shown in the panel 
and overall difference between 
stand mycorrhizal type shown in 
insert (c). Relationship between 
procrustean residuals and fungal 
pathogen relative abundance (d)
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diverse prokaryotic microbiome than mixed AM-EM stands, 
(2) EM-dominated stands have lower relative abundance of 
fungal saprotrophs and pathogens than surrounding AM-EM 
mixed stands with taxonomic shifts of prokaryotes aligning 
with expected functional shifts for SOM cycling, and (3) 
correspondence between fungal and prokaryotic communi-
ties was greater in EM-dominated stands than in AM-EM 
mixed stands, but this did not correlate with the relative 
abundance of EM fungi. Our findings suggest that mycor-
rhizal fungi may affect the composition of non-mycorrhizal 
communities either directly or indirectly, through mycor-
rhizal effects on plant communities (Liang et al. 2020) and 
soil nutrient economies (Corrales et al. 2016b).

Ectomycorrhizal tree and fungal microbiome recruitment 
may have influenced the lower prokaryotic diversity we 
observed in EM-dominated than in mixed AM-EM stands. Tree 
species can independently recruit distinct bacterial communities 
(Oh et al. 2012). The EM-dominated stands we studied have 
a much lower overall tree species diversity than surrounding 
AM-EM mixed stands (Prada et  al. 2017), potentially 
explaining higher prokaryotic community diversity in these 
stands. At our study site, EM leaf litter is not necessarily lower 

quality than AM leaf litter (Seyfried et al. 2021b). However, 
leaf litter in EM-dominated stands may be more chemically 
homogenous than leaf litter in mixed species AM stands where 
a high diversity of AM tree species contributes litter ranging 
widely in chemical quality to the forest floor (Seyfried et al. 
2021b). Chemical heterogeneity could increase overall niche 
breath for microorganisms to support a highly diverse bacterial/
archaeal community in AM-EM mixed stands. Additionally, 
mycorrhizal fungi may affect prokaryote communities directly 
by recruiting specific hyphosphere bacterial communities 
(Liu et al. 2018; Heděnec et al. 2020; Zhang et al. 2022). 
Specifically, AM fungi can support bacterial growth to 
facilitate inorganic nutrient transformations (Wang et al. 2023), 
while EM fungi may compete with free-living decomposers 
for organic nutrients (Fernandez and Kennedy 2016). These 
mycorrhizal hyphosphere responses also may be driven by 
differing patterns of belowground C allocation and root/
fungal exudation between AM- and EM-associating tree and 
fungal species (Xu et al. 2023). Mycorrhizae and prokaryotic 
communities show strong patterns of interactions that may 
be driven by above- and belowground functional differences 
between AM and EM guilds.

Fig. 4   Relative abundance of 
the top 10 fungal and bacterial/
archaeal phyla in ectomycorrhi-
zal (EM-dominated) and arbus-
cular mycorrhizal-EM (AM-EM 
mixed) tree stands. Adjacent 
to phylum names, * indicates 
a group significantly more 
abundant in AM-EM mixed 
plots while + indicates a group 
significantly more abundant in 
EM-dominated plots
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Shifts in alpha diversity in response to stand mycorrhizal 
type also corresponded to functional changes among prokar-
yotic taxa. The influence of EM-dominated versus AM-EM 
mixed stand type on microbiome recruitment could have 
driven the lower relative abundance of bacterial/archaeal 
groups associated with inorganic nutrient transformation 
processes, such as Nitrospirota (Myrold 2021), in EM-dom-
inated stands relative to AM-EM mixed stands. Microbiota 
beneficial to AM fungi could have been inhibited either 
directly, or indirectly through EM effects on inorganic N 
availability (Phillips et al. 2013; Corrales et al. 2016b). Fur-
ther, there may be a relationship between these changes to 
functionally important taxa and EM-associated C dynamics. 
Ectomycorrhizal-dominated stands favored bacterial groups 
associated with diminished C mineralization activities, 
with greater Acidobacteriota and lower Bacteroidota rela-
tive abundance (Fierer et al. 2007) than in mixed AM-EM 
stands. These differences in the taxonomic composition of 
prokaryotic communities suggest that there may also be 
lower overall rates of C cycling and SOM decomposition 
in AM-EM mixed stands than in EM-dominated stands. 
Alternatively, O. mexicana may produce allelochemicals, 
as has been observed for other members of Juglandaceae 
(Jose and Gillespie 1998), which could be responsible for 
directly inhibiting specific soil microbiota (Revillini et al. 
2023). This mechanism could potentially explain negative 
plant-soil feedbacks associated with O. mexicana legacy, 
although further investigation is necessary to determine the 
presence and identity of any possible allelopathic chemi-
cals this plant could produce. Overall, suppression of C and 
N cycling by EM fungi and low tree diversity resulting in 
chemically homogenous root and leaf litter inputs in EM-
dominated stands may promote specific microbiome assem-
bly, potentially providing EM trees a competitive advantage.

Overall fungal community beta diversity may have been 
driven by mycorrhizal interactions with their environment. 
We did not find a decrease in fungal alpha diversity in 
EM-dominated stands relative to mixed AM-EM stands as 
has been reported in temperate forests (Eagar et al. 2021). 
Rather, fungal communities were more heterogeneous 
among EM-dominated stands than among mixed AM-EM 
stands. Greater fungal community heterogeneity across 
EM-dominated stands could have been driven by soil pH 
and fertility which varied across our four watersheds and 
can select for functionally distinct EM fungal communities 
(Corrales et al. 2016a). Specifically, low pH and fertility 
in Honda may select EM fungi that have a great capacity 
to alter C and N cycling through organic N uptake and that 
contribute abundant, low-quality fungal biomass to SOM 
pools (Seyfried et al. 2022). In contrast, relatively high soil 
pH and fertility in Alto Frio may select EM fungi which 
exclusively take up inorganic N and contribute limited, high-
quality biomass to SOM pools (Seyfried et al. 2021a). These 

selective forces on EM fungi may represent a disproportion-
ate influence on the overall fungal community based on the 
high relative abundance of EM fungi in these EM-dominated 
stands. In mixed AM-EM stands, environmental filtering 
for functionally robust, less specialized fungal communities 
may have driven greater homogeneity across sites despite 
differences in underlying soil pH and fertility (Kivlin et al. 
2018). Shifts in fungal communities between stand mycor-
rhizal types were also correlated with higher relative abun-
dance of EM fungi and lower relative abundance of fungal 
pathogens and saprotrophs in EM-dominated stands than 
in the AM-EM mixed stands. Interactions among fungal 
guilds may help promote positive plant-soil feedbacks asso-
ciated with EM mutualisms (Bennett et al. 2017) by creating 
favorable microbiomes (i.e., lower potential pathogen loads 
and decomposer abundance) in EM-dominated forest stands. 
The functional composition of soil fungal communities in 
EM-dominated forest stands may partially drive the effects 
of EM trees on ecosystem function (McGuire et al. 2010) 
and be influenced by underlying soil pH and fertility.

The relationships between fungal and prokaryotic com-
munities may highlight tradeoffs in belowground dynam-
ics for different stand mycorrhizal types. Fungal and 
prokaryotic communities were more closely associated in 
EM-dominated than in mixed AM-EM stands. However, 
the divergence in this relationship (Procrustean residuals) 
increased with the relative abundance of fungal pathogens. 
Tradeoffs between defense, growth, nutrient acquisition, 
and mutualist collaboration in the development and mor-
phology of root structures are an important component of 
plant development (Ravanbakhsh et al. 2019; Bergmann 
et al. 2020; Monson et al. 2022). For example, in tropical 
forests, the species most proficient at acquiring soil phos-
phorus are also the most vulnerable to pathogens (Laliberté 
et al. 2015; Lambers et al. 2018), with this tradeoff hypoth-
esized to potentially help to maintain high plant diversity in 
these systems. Divergences between fungal and prokaryotic 
communities could be representative of tradeoffs made by 
plants to alter resource allocation for microbiome assem-
bly in favor of pathogen protection. While this argument is 
largely speculative, the relationships we present here provide 
further support for microbial communities (or the capacity 
to manipulate them) as an extended plant root trait, which 
may be influenced by the surrounding environmental context  
(Freschet et al. 2021).

Conclusion

In a tropical montane forest, we demonstrate that EM-dominated 
stands are characterized by decreased prokaryotic diversity 
and different relative abundances of several important 
microbial functional groups compared to surrounding diverse 
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mixed AM-EM forest. Differences in microbial communities 
between stand mycorrhizal types could be driven by overall 
differences in plant communities or microbiome assembly but 
likely contribute to broad EM-associated ecosystem effects. 
The relationships among different constituents of the soil 
microbiome could be an important extension of mycorrhizal 
function in response to the surrounding environment. Distinct 
soil microbiomes in EM-dominated versus mixed AM-EM 
stands may contribute to the effects of EM relationships on 
plant health or ecosystem function via changes to the relative 
abundance of fungal pathogens and saprotrophs. Overall, 
we found that the effects of mycorrhizal associations extend 
beyond the plant-fungal partnership into the broader soil 
microbiome and are especially pronounced for soil bacterial/
archaeal communities.
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